
  
1. INTRODUCTION 

Gravel-bed rivers form the upper reaches of virtually all river 
networks and are ubiquitous across the world. They are a major 
source of aggregate for construction, support important 
fisheries, and provide (and frequently threaten) crucial 
transportation corridors. The sediment particles that make up 
the surface of a gravel-bed river define hydraulic roughness, 
control bed material mobility and provide benthic habitat, but 
accurate characterisation of the surface material is notoriously 
difficult. Hydraulic sorting produces a patchwork of textures 
across the channel bed so that a large number of point samples 
is required to parameterise a reach (Wolcott & Church, 1991). 
In addition, even homogeneous sedimentary patches known as 
“facies” can exhibit a range in grain size that spans two or three 
orders of magnitude, so that precise estimates require many 
measurements (ISO, 1992). Conventional measurement 
techniques (Fripp & Diplas, 1993) are extremely labour 
intensive and sampling is therefore costly. This typically leads 
to inadequate characterisation of individual sites and to 
sampling programmes that compromise spatial or temporal 
representation. Moreover, conventional sampling methods are 
invasive, destroying the very substrate that is being monitored. 

Although aerial photography is widely acquired in river 
engineering and commonly used for basic mapping, the 
potential of remotely sensed imagery to provide additional 
information about river systems has not yet been fully realised 
(Gilvear, 1999; Lane, 2001). Recent work using Lidar, multi 
and hyper-spectral data, has focussed on the derivation of high 
resolution digital elevation models (DEMs), the classification of 
stream morphology and the estimation of water depth (e.g. 
Gilvear et al, 1995; Thompson et al, 1998; Marks and Bates, 
2000; Wright et al., 2000; Westaway et al., 2001). No published 
work to date has presented methods for the automated 
characterisation of river bed material facies from aerial 
photography, though this has recently been flagged as a key 
challenge (Gilvear, 2001) and Lane (2001) highlights the 
relevance of texture operators in this context.  

This paper describes a pilot study carried out on the Fraser 
River, British Columbia, Canada as part of an ongoing research 
and management project (Church, 2003). The principal aim of 
this study was to assess the potential of colour aerial 
photography for riverbed classification. Objectives were to 
assess the influence of photo-scale upon the classifications and 
to ascertain whether the large archive of grey scale imagery 
could be also used for such bed classifications. 
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ABSTRACT: 
 
Colour aerial photography has the potential to identify and classify the size characteristics of exposed riverbed sediments over 
large areas efficiently. This paper describes the findings of a pilot project that sought to assess this potential and consider the 
impact of photo-scale on the accuracy of classifications obtained.  
 
Colour multi-scale digital imagery was acquired of a test area (120 x 80m) at scales of 10,000, 5,000, 3,000, 2,000 and 1,000 
using a helicopter and a hand-held Kodak DCS460 high-resolution digital camera. Intensive ground work obtained conventional 
grain size parameters (Wolman samples), requiring 15 person days of fieldwork. This was supplemented with the measurement of 
a 1 and 2 m high resolution digital elevation model (DEM) and photo-control, using a motorised Total Station. Conventional 
photogrammetric processing and the DEM were then used to create orthophotos of the test area at differing photo-scales. 
Supervised classification methods were adopted to classify each pixel into one of five classes: sand, sandy gravel, pebble, clean 
gravel and cobbles. Comparison with the known ground truth achieved a success rate initially of only 38% at 1:5,000 photo-scale, 
but developments enabled this to be increased to a more encouraging 49%. Similar tests were conducted using orthophotos at 
other scales (1:3,000 and 1:10,000) and similar improvements were achieved using the approaches developed. 
 
A key parameter that indicates bed roughness and is of significant biological interest, is the percentage content of sand. Further 
work was carried out to ascertain whether this simple parameter could be extracted from the imagery at differing photo-scales. The 
dataset derived by the supervised classification procedure was converted to percentage sand using a 5x5 convolution filter. It was 
hoped to assess the accuracy of the classification by comparing this percentage sand map with a similar map derived from the 
intensive fieldwork. However, the enormous improvement in spatial resolution demonstrated that the two datasets were not 
directly comparable. Despite this, it was evident that overall sand distribution was clearly revealed using both the 1:5,000 and 
1:10,000 scale imagery. More significantly, it was apparent that significant savings in time and effort would be accrued if the 
methods developed in the study were to be used to map and classify large areas of dry river-bed using colour aerial photography. 
 



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX 

 
Figure 2- DEM points and 10m sampling quadrats 

 

2. PRACTICAL WORK 

2.1 Fieldwork 

The Fraser River drains 250,000 km2 of western Canada, rising 
in the Coast, Columbia and Rocky Mountains and flowing 
1,300 km to the Fraser delta in the vicinity of Vancouver, 
British Columbia. The river regime is typified by both high and 
low flows created by annual snow melt cycles. Chilliwack is a 
small town located 100 miles east of Vancouver where the river 
is both an important habitat for salmon and a resource for 
aggregate extraction for the construction industry. Several field 
sites close to Chilliwack have been studied intensively by the 
research centre at The Department of Geography, University of 
British Columbia (Church, 2004) and one of these field sites, 
known as “Queens Bar”, was selected for this particular study, 
(Figure 1) 

 
Fieldwork at the Queens site was carried out in March and April 
2002, before the spring melt and during a period when river 
flows were at their seasonal lowest. An area of exposed river 
bed that occupied an area 120 x 80 metres was selected. Criteria 
for selection included the presence of a range of sub-regions 
occupied by particle mixtures with differing size distributions 
(facies). Intensive fieldwork was carried out on site during a 
two week period and generated the following data sets: 

1. A high resolution digital elevation model (DEM) 
covering the entire study area. Two resolutions of DEM 
were measured: 1 m resolution DEM within a small 
central portion (60 by 40 m) and; a 2 m resolution DEM 
for the remaining part of the 120 x 80 m study area; 

2. Conventional grain-size parameters were obtained 
within 96 sampling units covering the entire test area, 
each being 10x10 m (Figure 2).  

3. Ground observations identified the boundaries of fifteen 
sub-areas which could be classified as type sites using 
descriptive terminology (i.e. sand, sandy gravel, pebble, 
clean gravel, cobble).  

 
Both the 1 and 2 m resolution DEMs (Dataset 1) were measured 
using a motorised Total Station (Leica TCA1105), complete 
with the remote control unit (RCS1100). The DEMs at the two 
resolutions consisted of approximately 3,000 points. The plan 
view of the test area (Figure 2) includes each data point 
measured and demonstrates the difficulty of measuring points 
along what is perceived to be a straight line in the field. 
 
The bed characteristics were measured within the 96 10 x 10m 
blocks, using conventional Wolman (1954) sampling techniques 

(Dataset 2). This laborious work entails identifying 100 
particles randomly within each quadrat and manually measuring 
the “b” axis by passing the pebble through a sizing sieve. This 
was a large undertaking, requiring the assistance of fifteen field 
workers for a whole day. A clear weakness with this sampling 
strategy was the transgression of sediment type boundaries 
(facies) by the rigid 10 m quadrat boundaries. In an attempt to 
overcome this weakness the irregular boundaries between a 
series of facies types were measured and digitised using the 
motorised Total Station also (Dataset 3). The sediment 
characteristics within each sub area were determined also. 
 
Additional surveying was carried out to determine the positions 
of 20 photo-control targets distributed across the test area. 
These targets were constructed locally by laminating a simple 
black and white target design printed on a standard A4 laser 
printer. Two sizes of target were used, 110 x 110mm and 180 x 
180 mm. Angles and distances were measured to each target 
using the Leica TCA1105 located at two survey stations. These 
data were combined in a least squares “variation of coordinates” 
estimation to derive the best coordinate estimates for these 
targeted points. 
 
Multi-scale digital imagery was acquired from a helicopter 
using a Kodak DCS460 hand-held 35mm digital camera, with a 
resolution of 3060 x 2048 pixels. Unfortunately weather 
conditions were marginal during photo-acquisition, with low 
cloud and light drizzle creating poor lighting conditions. 
Imagery was acquired at 1:10,000, 1:5,000 and 1:3,000 photo-
scales using a 24mm lens and 1:2,000 and 1:1,000 photo-scales 
using an 85mm lens. At such a diverse range of scales, stereo 
coverage could be achieved using a varied number of frames 
ranging between 2 images through to a block consisting of 24 
images. The latter proved to be un-achievable because of the 
time required to store each frame on the PCMCIA card, but 
sufficient imagery was acquired at all scales except 1:2,000, to 
provide coverage of one area of the site. Most of the 1:2,000 
scale images were blurred, arising from long exposure times 
caused by the poor lighting conditions. Additional oblique 
imagery proved valuable in maintaining coverage at other 
scales, image redundancy originally acquired for purpose of 
camera calibration. 

 
Figure 1- Queens Bar, British Columbia, Canada 
 



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX 

 
Figure 4- supervised classification (5 classes), 1:5,000 

 

 
2.2 Initial photogrammetric processing 

Once images were downloaded it was possible to use 
conventional photogrammetric methods to derive colour ortho-
photographs for the 120 x 80m test area. This was achieved 
using Erdas Imagine OrthoBase (�Erdas LLC), following an 
“in-situ” calibration of the camera using an off-line self-
calibrating bundle adjustment (Chandler et al., 2001). 
Automated DEM extraction methods were capable of generating 
a DEM, but orthophotos were derived using the more accurate 
DEMs measured in the field. All available imagery was 
processed and full orthophoto coverage was achieved at the 
1:10,000 and 1:5,000 photo-scales (Figure 3). The central area 
was derived at 1:3,000 and finally a small area within this was 
achieved at 1:1,000. 
 

3. RESULTS 

3.1 Bed classification 

Once orthophotos had been generated a conventional 
“supervised classification” procedure was used to categorise 

each pixel in the orthophotos into one of five classes: sand, 
sandy gravel, pebble, clean gravel, and cobble (Figure 4). Type 
signatures, initially based on three colour bands, were derived 
from five of the fifteen classified sub-areas and located by 
ground survey (Dataset 3). The true accuracy of the 
classification was then assessed by comparing the classification 
in the remaining sub-areas with their known bed material 
categorisation. It is important to stress that these areas were 
determined on the ground but were not used during signature 
derivation, which contrasts to the dubious practice of deriving 
“accuracy” statistics from the same areas used to create 
signatures. Results are presented in the form of an accuracy or 

contingency matrix in which the columns represent each of the 
test areas (truth), whilst rows indicate the percentages of pixels 
classified into each of the 5 classes. The initial results were 
disappointing (Table 1- average success rate 38%), with only 
Cobble areas being identified with a high success rate (90%). 
Both Atkinson and Lewis (2000) and Lane (2001) recommend 
the addition of a “texture” layer to enhance spectral 
classification. An initial and simple texture layer was derived 
using a 3x3 variance convolution filter, which enabled localised 

variability in the image 
to be represented. This 
simple addition 
improved accuracies 
radically (Table 2). 
The average success 
rate improved overall 
to 49%, with Sand 
exhibiting an accuracy 
improvement of 26%.  
 
One additional test that 
was carried out was to 
assess the significance 
of the three colour 
bands compared with 
simple grey-scale 
image representation 
combined with texture. 

Figure 3- Orthophoto of test area- 1:5,000 imagery 

Classified\Truth Sand Sand gravel Clean gravel Cobble Pebble 
Sand 13 24 1 0 n/a 

Sand gravel 16 23 8 1 n/a 

Clean gravel 25 25 27 9 n/a 

Cobble 20 8 62 90 n/a 

Pebble 25 20 3 0 n/a 
Table 1, 1:5,000- Percentages classified from three colour bands 

Classified\Truth Sand Sand gravel Clean gravel Cobble Pebble 
Sand 39 6 0 0 n/a 

Sand gravel 12 43 8 0 n/a 

Clean gravel 4 16 32 18 n/a 

Cobble 18 9 59 81 n/a 

Pebble 28 26 1 0 n/a 
Table 2- 1:5,000- Percentages classified from three colour bands + texture layer 
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The overall average success rate was lower (44%) but accuracy 
was better than may have been expected and is of particular 
significance. There are many large collections of black and 
white vertical aerial photography of gravelly river channels and 
significantly, these record changes that have taken place over 
many decades. The spectral qualities of these archives have 
been largely unused and the simple techniques described could 
be used to obtain informative long-term records.  

 
3.2 Percentage Sand 

Percentage sand is increasingly recognised as a key parameter in 
defining hydraulic and transport characteristics in gravel-bed 
rivers and the ability to generate just percentage sand from 
aerial imagery is significant.  
 
The Wolman data from 10 x 10m sampling units (Dataset 2) 
were manipulated to yield percentage sand values across the full 
120 x 80m test area (Figure 5). It must be remembered that the 
sampling effort involved in obtaining this map (for a relatively 
small part of the river bed) was great, yet resolution is coarse 
and inevitably key facies boundaries are transgressed. The 
classified image derived using the 1:5,000 orthophotograph and 
signatures based on three colours bands and the texture layer 
was then used to create an alternative percentage sand map. 
This was achieved by plotting the proportion of pixels classified 
as sand within a five by five pixel moving window (Figure 6). 
 
If figures 5 and 6 are compared there is clearly a significant 
improvement in the information provided. Facies units in the 
image have shapes and orientations that closely resemble their 
true nature and are clearly not influenced by the artificial blocks 
created by the conventional sampling strategy. Moreover, the 
automated classification procedure broadly mirrors that 
achieved by the ground fieldwork in terms of the estimation of 
percentage sand across the entire surface. 
 
This is further demonstrated if the ground and aerial estimates 
of percentages are superimposed (Figure 7), where it is clear 
that localised peaks are smoothed by the course ground based 

methods. It had been hoped to derive quantitative data to 
demonstrate the accuracy of the image based approach. 
However, the contrast in resolution prevents an objective and 
quantitative assessment being made. 
 
The automated aerial classification procedure was carried out 
also using the 1:10,000 orthophoto. A very similar result was 
achieved, and only a slight smoothing effect was apparent when 
compared to the 1:5,000 percentage sand map (Figure 6).  

 
4. DISCUSSION 

The classification accuracies achieved is this pilot project, are 
not as high as many published in the remote sensing literature, 
with the highest average accuracy achieved being just 49%. 
There are perhaps three factors that need to be considered. It 
should be remembered that sample sub-areas used to create 
signatures were not homogeneous, with many individual 
particles being outside the size range of the field identified type.  
In such inhomogeneous areas, a per-pixel classification will 

Figure 5, Percentage sand from ground truth 

Figure 6 Percentage sand from aerial photos (1:5000) 
 

Figure 7  Percentage sand- ground and aerial 
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inevitably yield a range of particle types and hence, during 
accuracy assessment many pixels will be identified as 
erroneous, when they actually represent valid particles. In 
addition, it should be recognised that true accuracies have been 
derived by comparing classified data with test areas not used for 
signature generation. Finally, the imagery was acquired in poor 
and overcast lighting conditions during light drizzle. In brighter 
weather, improved results may be obtainable; at least conditions 
were typical of mountainous environments! 
 
It is clear that a supervised classification based upon the three 
colour bands is inadequate, particularly for a five-fold 
classification. A three-fold classification into just sand, pebble 
and cobble was more successful (56%) but the more ambitious 
target was pursued. The classification is significantly enhanced 
by adding a “texture” layer, which implies that the spatial 
variability of signal response, rather than simply the colour 
characteristics of the pixels is important. An interesting variable 
in this context is the lithotype mix represented in the sediments 
with colour variation between clasts being important. It would 
be necessary to examine other field sites before this influence 
can be examined fully. The criticality of texture was expected 
given the relative roughness and hence shading-induced 
intensity variability of different bed material textures.  Other 
authors have noted the significance of texture in related work, 
with Atkinson and Lewis (2000) reviewing “geostatistical” 
methods for classification and describing various alternative 
measures of “texture”. These range from the statistics derived 
from the simple variance (Section 3.1) through to spatial auto-
correlation (Section 4.1) and semi-variograms (Section 4.2) 
which were investigated in this study briefly. 
 
4.1 Texture via spatial auto-correlation 

An additional avenue explored was the use of spatial auto-
correlation to assist in the bed classification procedure. Rubin 
(2004) used spatial auto-correlation to derive correlation 
profiles between an original greyscale image of borehole-sand 
sections and the same image displaced by one, two, three and 
four, etc. pixels. The basic idea being that large particles exhibit 
high correlations for initial displacements, while smaller 
particles generate low correlations for all pixel displacements. 
These basic differences generate contrasting correlation profiles 
which then vary spatially. Rubin (2004) then develops an 
empirical calibration function between measured sand grain size 
distributions and the correlation profiles that, it is claimed, can 
be used to identify sand grain size distributions for borehole-
sand sections. 
 
The basic correlation algorithm was implemented in Matlab but 
tests revealed some concerns, particularly whether spatial auto-
correlation can provide a good basis for measuring texture. An 
alternative approach was developed based upon the reciprocal 
of the summed variances between a 5x5 image patch and the 
same patch displaced by one pixel. This was adopted for bed 
classification using the 1:5000 orthophotos (converted to 

greyscale) and used 
as an additional 
layer to the three 
colour bands and the 
texture layer used 
prior. Results 
indicated only a 
modest 
improvement (Table 
3, average success 
rate 51%), implying 

that very little new information was being added to the 
classification process and that the original texture layer was 
sufficient.  
 
4.2 Texture via the semi-variogram 

Another approach investigated was the use of semi-variograms 
to perhaps provide an alternative measure of “texture”. Work 
conducted by Atkinson & Lewis (2000) and particularly Chica-
Olmo and Abarca-Hernandez (2000) advocated this 
geostatistical method most strongly. Their field of application 
was quite different, and involved the classification of 
Quaternary deposits using Landsat 5 imagery (Chica-Olmo & 
Abarca-Hernandez, 2000). Their results indicated an accuracy 
improvement of approximately 20% and the approach appeared 
promising. 
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Figure 8- semi-variogram, 1:1,000, (NS) 

 
To investigate the technique semi-variograms were computed 
for three of the sub-areas (Dataset 3) labelled in the field as 
Sand, Gravel and Cobble. (Figure 8). This plot certainly 
suggests that production of a semi-variogram could provide 
useful information for bed classification, with contrasting 
profiles being generated for the differing bed materials.  
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Figure 9- semi-variogram, 1:1,000, (EW) 

 
However, Figure 8 represents a North-South section through the 
semi-variogram surface, whilst Figure 9 represents an East-West 
section through the same surface. In this case there is not such a 
clear distinction in the profiles, particularly between the Gravel 
and Cobble sediment types. It is clear that semi-variogram 
direction is a critical controlling parameter with such an 

Classified\Truth Sand Sand gravel Clean gravel Cobble Pebble 
Sand 42 3 0 0 n/a 

Sand gravel 10 45 5 0 n/a 

Clean gravel 5 21 43 27 n/a 

Cobble 8 9 52 73 n/a 

Pebble 35 22 0 0 n/a 
Table 3 Percentages classified from three colour bands, texture + “similarity index” 
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anisotropic field. The anisotropy being a function of sediment 
preferred orientation arising from water flow direction.  
 
There are other problems with using a semi-variogram 
approach, as indicated by Atkinson & Lewis (2000). 
Homogenous regions of varying texture must be large enough to 
allow computation of the semi-variogram with a reasonable 
number of lags. In many cases, areas of interest are too small 
relative to the spatial resolution of the imagery. Computation of 
the semi-variogram is also intensive, particularly if the full 
variogram surface is generated. A consequent problem is how 
this surface is represented and stored to a precision sufficient 
for the classification process. For each desired profile direction, 
a minimum of three parameters is necessary and these results 
suggest that storing both downstream and cross-stream 
parameters would be essential. 
 
Despite these drawbacks it is believed that additional texture 
layers represented by either variance or semi-variograms could 
provide additional information necessary for bed-classification 
and the derivation of grain-scale data from aerial imagery. 
 

5. CONCLUSION 

This project has demonstrated that it is possible to derive a five-
fold bed classification to a true accuracy of 49% using just the 
three original colour bands and 1:5,000 scale photography.  It 
has to be recognised that this was achieved using a “per-pixel” 
classification within non-homogeneous bed material. If material 
had been homogeneous, accuracies would have been higher. It 
was found necessary to create an additional “texture” layer 
using a 3x3 variance convolution filter. It was found that 
classification accuracy was not affected greatly by varying the 
photo-scale, with 1:10,000 scale imagery also yielding a valid 
classification. Significantly, it was found that simple grey-scale 
imagery could yield useful classifications, provided a texture 
layer was generated and used.  Alternative methods of deriving 
a texture layer were investigated. Autocorrelation yielded only a 
modest improvement to 51%. The semi-variogram could 
provide the basis for useful measures of bed texture and may 
improve the classification accuracies further but efficient 
storage of semi-variogram data is required. 
 
Once a classified image had been generated from the aerial 
imagery it was simple to derive a percentage sand map. 
Comparison between this and traditional ground-based methods 
requiring intensive fieldwork, highlighted the potential for 
significant savings in time and effort if aerial imagery is 
acquired. More detailed examination of the optimal photo-scale 
for identifying sand patches remains an area for further 
development. 
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