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ABSTRACT: 
 
The main purpose of this study  was to compare hyperspectral remotely sensed data collected by the Hyperion satellite, and the 
airborne Real-time Data Acquisition Camera System (RDACS-3) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
for environmental mapping and vegetation species identification.  Hyperion was NASA's first hyperspectral imager aboard NASA's 
Earth Observing-1 (EO-1) spacecraft.  The EO-1 mission had three advanced land imaging instruments; Advanced Land Imager, 
Hyperion, and Atmospheric Corrector.  AVIRIS collects 224 contiguous spectral bands with wavelengths from 0.4 to 2.5 µm, 
whereas RDACS-3 has many spectral modes (64, 128, 256, etc.).  The study area, Land-Between-the-Lakes (LBL), is located in 
western Kentucky, USA.  Most of LBL consists of forested areas, which are predominantly oak and hickory, and open land areas.  
Twenty-five percent (17200 hectares) of LBL falls within the Biosphere Reserve.  AVIRIS was flown on the Twin Otter turboprop 
at approximately 4000m above the ground with 4m spatial resolution on November 11, 1999 and September 10, 2001.  The 
Hyperion provided 242 spectral bands (from 0.4 to 2.5 µm) with a 30 meter spatial resolution and covered 7.5km by 200km area on 
April 29, 2001.  An RDACS-3 imagery with 120 spectral bands and 2x4m spatial resolution was collected at 2350m above the 
ground by the ITD Spectral Visions on September 7, 1999.  During the overflights, ground spectra using an ASD FieldSpec-FR® 
spectroradiometer (0.35-2.5 µm) were collected for data calibration, spectral library construction, atmospheric correction and species 
identification.  Moreover, multispectral satellite and aerial imagery at 1m resolution was collected for some of the test sites  in the 
area.  Several hyperspectral and multispectral processing tools were utilized for atmospheric corrections, enhancements, and 
classifications.  Best results were obtained using the AVIRIS and RDACS-3 data.  The Hyperion data also provided very good 
results for the mapping; however, its spatial resolution was one of the limitations of the Hyperion sensor.  The statistical difference 
among the classifications using the sensors proved to be mostly significant. 
 
 

1. INTRODUCTION 

The primary goal of the NASA Earth Observation System 
(EOS) is to study the effects of climate on terrestrial 
vegetation (Huete et al., 1994).  The development of 
multispectral imaging spectrometers during the early 1970's 
allowed scientists for the first time to classify large areas of 
terrain (Marmo, 1996). This led to the advent of 
hyperspectral sensors with many bands and high spatial 
resolution, allowing for the classification of large areas with 
finer spectral resolution (Cloutis, 1996).  Current 
multispectral satellites that orbit the earth have their own 
limitations.  The multispectral satellites such as Landsat and 
SPOT as well as high spatial resolution sensors such as 
IKONOS and QuickBird have broad spectral bands.  These 
bands cover the visible, near and middle-infrared regions of 
the electromagnetic spectrum (Jakubauskas and Price, 1997).  
This greatly reduces the ability of the multispectral sensor to  
spectrally discriminate between two objects on the ground 
(Marmo, 1996).  Multispecral sensors have been utilized for 
many purposes including regional mapping.  However, 

multispectral imagery could not be used for very detailed 
mapping and identification of surface material, for which 
hyperspectral and/or ultraspectral sensors have been utilized.  
Unlike the multispectral classifiers, hyperspectral classifiers 
are used to identify objects using spectral endmembers in 
spectral libraries.  Many attempts have been made to classify 
hyperspectral data using the traditional multispectral 
classifiers.  Classification time has been very long and 
classification accuracy has not improved by the increased 
number of bands when the multi-spectral classifiers were 
used (Lee and Landgrebe, 1993).  Another approach using 
hyperspectral data has been mapping of cover types based on 
their abundances by using spectral unmixing techniques 
(Adams et al., 1986; Boardman 1990; Dwyer et al., 1995; 
Mustard and Pieters, 1987).     
 
Ecologists are now only beginning to explore the potential 
uses of high spatial and high spectral resolution remote 
sensing.  For example, Schlesinger and Gramenopoulos (1996) 
used high spatial resolution satellite imagery and aerial 
photography to test for desertification in the Sahel by 



examining tree densities in images collected over 51 years.  In 
this study, no time-trend was observed, suggesting that if it is 
occurring at all, desertification is slower than previously 
thought in the Sahel.  A range of ecological problems become 
tractable with the possibility of locating and identifying 
individual trees by remote sensing.  At one end of the 
spectrum is the detection of rare individuals, genotypes, or 
species and at the opposite end of the spectrum is the 
location and identification of individual trees of a common 
species in a diverse community of similar species.  A forester 
may have a particular interest in detecting the presence of rare 
survivors of a disease or insect pest outbreak in order to find 
resistant individuals.  For example, many field ecologists have 
observed occasional large American chestnut individuals that 
have reached reproductive size and age despite exposure to 
ubiquitous chestnut blight.  It may be that 99 percent of such 
cases can be due to chance escape from the blight, but 1 
percent can be due to genetically-based resistance.  Detection 
of a large enough sample of reproductive chestnuts to 
perform genetic screening could be impossible without an 
extensive search procedure such as that provided by remote 
sensing.  
 
The identification of species resisting to different stress 
conditions has direct forestry and agriculture applications.  
The ability to identify vegetation at the species level using 
hyperspectral data has been difficult because of lack of 
information on vegetation characteristics and biochemical 
characterization of vegetation at canopy level  (Martin and 
Aber, 1997).   
 
There have been many studies comparing spaceborne and 
airborne multispectral imagery.  However, similar 
comparisons could not be done for hyperspectral sensors 
until the successful lunch of the Hyperion sensor.   
 
The main objective of this study was to compare 
hyperspectral remotely sensed data collected by the 
Hyperion satellite, and the airborne Real-time Data 
Acquisition Camera System (RDACS-3) and the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) for 
environmental mapping and vegetation species identification.   
 

2. STUDY AREA 

The study area is located in the Land-Between-the Lakes 
(LBL) (Figure 1) National Recreation Area, which was 
designated in 1991 as an Internat ional Biosphere Reserve 
under the Man and Biosphere Programme of the United 
Nations Education, Scientific and Cultural Organization 
(UNESCO).  In addition to LBL, the Reserve includes 17 
surrounding counties in Kentucky and Tennessee as the area 
influenced economically, socially and environmentally by the 
management of LBL.  One of the main purposes of the 
Biosphere Reserve Programme is to "involve industry, 
government, social agencies, schools, and special interest 
groups in management of the Reserve" and to encourage 
cooperation in studying and solving regional problems.  The 

draft Environmental Impact Statement for LBL identified 
more than 20,000 acres to be designated as core areas in the 
preferred management alternative.  The remainder of the 
170,000 acres of LBL serves as the buffer zone with the 17-
county area is the transition zone.  Many research studies 
concerning LBL and Kentucky Lake have been conducted at 
Murray State University in the last 30 years; some of which 
provided useful information for this research.   
 
LBL is approximately 90 percent forested, which makes it 
one of the largest contiguous blocks of forested land east of 
the Mississippi River in the US.  Ferguson Spring/Energy 
Lake site has been selected as a research site because of its 
diverse ecology including wetland and bottom land/upland 
forest.  The dominant forest species are oak and hickory.  
Oak and hickory trees requiring large amounts of sunlight 
when they are seedlings have been the dominant overstory 
tree species in LBL.  Forest composition of LBL would shift 
toward maple and beech trees, which prefer shade if it is left 
completely unmanaged.  Maple trees do not produce nuts 
that wildlife can feed on maple seeds are small and winged.  
This would negatively impact many different wildlife species, 
including deer, squirrel, songbirds, and wild turkey, which for 
thousands of years have fed on the acorns and nuts of 
oak/hickory forest of LBL.  Table 1 summarizes some of the 
overstory species found in LBL.  
 
 

 
Figure 1.  Location map  of the study area and the datasets 

 
The Center for Reservoir Research (CRR) was established in 
1987 by the Kentucky Council on Higher Education as a 
Center of Excellence for Teaching and Research.  CRR 
research has been focused mainly on Kentucky Lake water 
monitoring and the Kentucky Lake GIS (KLGIS).  One of the 
principal programs of CRR is the Kentucky Lake Long Term 
Monitoring Program (begun in July, 1988), which 
encompasses 17 primary monitoring sites on the lower 30 km 
of the lake.  The KLGIS database providing a better 
evaluation of the forest and wetlands in the area include 
bathymetry, cultural features, geology, groundwater, 
hydrography, soils, terrain, water quality and wetland data 
for the Kentucky Lake drainage basin. 



Acronym Genus Species Common name 
POHE Populus heterophylla swamp cottonwood 
PRSE Prunus serotina black cherry 
QUAL Quercus alba white oak 
QUBI Quercus bicolor swamp white oak 
QUCO Quercus coccinea scarlet oak 
QUFA Quercus falcata southern red oak 
QUIM Quercus imbricaria shingle oak 
QULY Quercus lyrata overcup oak 
QUMA Quercus marilandica blackjack oak 
QUMC Quercus macrocarpa bur Oak 
QUMI Quercus michauxii swamp chestnut 

oak 
QUMU Quercus muehlenbergii chinquapin oak 
QUNI Quercus nigra water oak 
QUPA Quercus pagoda cherrybark oak 
QUPH Quercus phellos willow oak 
QUPL Quercus palustris pin oak 
QUPR Quercus prinus chestnut oak 
QURU Quercus rubra northern red oak 
QUSH Quercus shumardii shumard oak 
QUST Quercus stellata post oak 
QUVE Quercus velutina black oak 
RHCA Rhamnus caroliniana carolina buckthorn 
ROPS Robinia psuedoacacia black locust 
SAAL Sassafras albidum sassafras 
SANI Salix nigra black willow 
TADI Taxodium distichum bald cypress 

ULAL Ulmus alata winged elm 
ULAM Ulmus americana american elm 
ULRU Ulmus rubra slippery elm 

Table 1.  Summary of tree species found in LBL. 
 
High spectral resolution (ultraspectral) leaf, soil, and water 
reflectance data were collected on a regular basis with an ASD 
Field Spec FR, a full-range field spectroradiometer, in the 
field to create a spectral library to aid the classification of the 
surface material.  During the satellite and aerial data collection 
events, ground spectra were also collected for selected 
spectral targets. 
 

3. IMAGERY 

Several hyperspectral remotely sensed datasets collected by 
the Hyperion satellite (Figure 2) on April 29, 2001, and the 
airborne RDACS-3 (Figure 3) on on September 7, 1999 were 
utilized in this research.  AVIRIS data were also used but 
because of some system problems with the sensor, only small 
parts of the data were utilized..  AVIRIS was flown on the 
Twin Otter turboprop at approximately 4000m above the 
ground with 4m spatial resolution on November 11, 1999 and 
September 10, 2001.  The Hyperion provided 242 spectral 
bands (from 0.4 to 2.5 µm) with a 30 meter spatial resolution 
and covered 7.5km by 200km area.  An RDACS-3 imagery 

with 120 spectral bands and 2x4m spatial resolution was 
collected at 2350m above the ground by the ITD Spectral 
Visions.  Hyperion was NASA's first hyperspectral imager 
aboard NASA's Earth Observing-1 (EO-1) spacecraft,which 
had three land imaging instruments; Advanced Land Imager, 
Hyperion, and Atmospheric Corrector.   
 

4. METHOD 

Hyperspectral imagery can be considered as a single image 
dataset with a continuous spectrum of radiance (or 
reflectance) values associated with each image pixel (Bateson 
and Curtiss, 1996).  Hyperspectral imagery can distinguish 
between slope and brightness variations and resolve 
absorption bands in the spectrum, which can allow one to 
identify surface material such as specific minerals or any 
material with absorption features (Clark et al., 1992).  
AVIRIS was the first airborne hyperspectral sensor to 
measure reflected solar radiation from 400nm to 2500 nm 
(Green et al., 1998).   
 
Individual bands of the RDACS hyperspectral datasets were 
calibrated to percent reflectance using the known reflectances 
of two gray scale placards placed on the ground during the 
overflight (Figure 4).  The calibration and radiance to 
reflectance conversions for the Hyperion dataset were done 
using several ground targets (dark, medium and light areas), 
for which ground spectra were collected using the field 
spectrometer.  A simple linear regression model was used in 
the calibration and conversion process. 
 

 
 

Figure 2.  The Hyperion dataset , April 29, 2001 
 

A spectral library of surface material (endmembers) and 
vegetation species (Table 1 and Figure 5) was created for 
hyperspectral analysis of the datasets.  Several techniques 



 
Red: Band 110 (850nm),_Green: Band 60 (650nm), 

Blue: Band 35 (550nm) 
Figure 3.  The RDACS dataset , September 7, 1999  

 
including the Pixel Purity Index (PPI), an n-Dimensional 
Visualizer, Spectral Angle Mapper (SAM) and Binary 
Encoding  were utilized to map the study datasets.   
 
For detailed classification, the n-Dimensional Probability 
Functions (nPDF) approach was used (Cetin, 1990; Cetin 
and Levandowski, 1991; Cetin et al., 1993).  The nPDF 
techniques is an interactive 
 
 

 
Figure 4.  a) Gray-scale placards, b) RDACS imafe showing 
the location of the placards, c) GPS measurement, d) 
sycamore leaves; healthy and under stress, and e) Full range 
(350-2500nm) field spectroradiometer used in this study 
 
image analysis technique, which overcomes many of the 
inherent limitations of traditional classifiers.  The techniques 
has applications in three broad areas:  data visualization, 
enhancement and classification.  For data visualization, nPDF 

 
Figure 5.  Spectra of the vegetation species in LBL 

 
provides a method for transforming multiple bands of data in 
a predictable, and scene-independent way.  These 
transformations may be designed so as to enhance a particular 
cover-type, or to give the best visual representation of the 
multi-band image data.  Spectral frequency plots of the nPDF 
components give a spectral view of data distribution that can 
be used to investigate the number and distribution of spectral 
classes in a high dimensional data set.  In addition, these plots 
are used in a non-parametric classification of the image for 
discrimination of discrete classes, as well as for classes that 
are mixtures at the sub-pixel scale.  In a mixed deciduous and 
coniferous forest an nPDF Deciduous Forest Index showed a 
high correlation with percent deciduous vegetation determined 
from field surveys. 
 
The nPDF approach may be explained using a cube model.  A 
generalized distribution of highly correlated digital remotely 
sensed data in three dimensional feature space is shown in 
Figure 1.  In three-dimensional feature space the feature 
vector is defined by X=[ x1,x2,x3].  The location of a point 
within the range of the total possible measurement space can 
be described by the distances to the two corners of the cube 
shown in Figure 6.  They are: 
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For the multi-dimensional case, the feature vector is defined 
by X=[x1,x2,x3,...,xn], where n is the dimension of the data 

and R is the maximum possible range of the data (255 for 8 
bit data.)  When a hyper-dimensional cube is used, the vector 
magnitudes (the distances to the two corners) for n- 
dimensional data are: 
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where j is the band number.  A generalized formula for the 
distance to the corners of a hyper-dimensional cube can be 
written as (i is the corner or component number): 
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 Figure 6.  nPDF Cube Model 

There are eight possible corners of a three-dimensional cube 
as is shown in Figure 6.  Four of the corners can be selected 
as principal corners (1 through 4), the remaining corners (5 
through 8) are the complimentary to the four principal 
corners.  For the hyper-dimensional cube model, "a" values 
for the equation (5) are as follows (j is the band number): 
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The nPDF formula is: 

 

 nPDFi = S * Di / (2
BIT * NB1/2)    (6) 

 
where: 
 
nPDFi     

=  Component i of nPDF, 

        i  =  Corner number, 
       S  =  Desired scale for the nPDF axes, 
      D

i      
=  Calculated distance for component i, 

    BIT  =  Number of bits of input data, 
     NB  =  Number of bands used. 

     
Frequency plots of two nPDF components (hyper-
dimensional distances) provide an excellent perspective of 
multidimensional data distribution.  Depending on the 
spectral distribution of the classes of interest, the user can 
select corners which provide the maximum separation of the 
classes.  A convenient scale for these nPDF components is 8 
bit in range, and thus a two-dimensional frequency plot 
requires a 256 by 256 array. 
 
The cube model has the advantage of being a conceptually 
simple way of describing corners in multidimensional space.  
However, it does tend to limit the choice of corners for four 
and higher dimensional data.  Where this is a problem, the "a" 
values (see equation 1) are used to describe the corner 
location.  Thus in Figure 6, corner #2 is also labeled (001), 
which can be interpreted as a corner that has "a" value of zero 
for the first two bands, and that of one in the third band.  
Using this convention, the length of the list of "a" values 
depends on the number of input bands, and thus the corner 
corresponding to the origin in a four band image would be 
described as (0000). 
 
Prior to the classification process the spectral values for the 
entire scene are transformed into nPDF space.  The software 
allows the user to view the distribution of the data and 
enhance the data by interactively stretching and rotating.  
This allows a rough visual identification of separable classes.  
For the supervised classification procedure the training field 
data are then plotted into nPDF space.  Polygons can then be 
drawn around the obvious classes to delineate the spectral 
boundaries.  The classification procedure uses the boundaries 
of these polygons to assign pixels to the appropriate class. 
 

5. RESULTS AND DISCUSSION  

Classification of the RDACS-3 dataset provided the highest 
overall accuracy (76% overall accuracy for the overstory 
species classification and 94% overall accuracy for the other 
land cover classes such as agriculture fields).  The AVIRIS 
datasets provided an overall accuracy of 69% for the 
overstory species and 83% for the other land cover classes.  
The Hyperion dataset provided 62% overall accuracy for the 
overstory species and 81% for the other classes (Figures 7 
and 8; tones of red were used for the forest species).   
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A comparison between the classifications indicated that they 
were significantly different.  A Z statistic of 3.7 (Hyperion 
and RDACS-3) and a Z statistic of 4.5 ((Hyperion and 
AVIRIS) were computed for the pairwise comparisons.  
Because the Z statistic values were greater than 1.96, there 
were significant differences in the results of the classifications 
of the sensors.   
 
 

 
 
Figure 7.  Classification map of the Hyperion dataset  
 
Another objective of this research was to outline forested 
areas that were under stress due to a drought.  Figure 9 shows 
the spectra of black willow leaves; healthy (cyan, green and 
red lines), moderately stressed (blue) and severely stressed 
(black).  Another objective was to map the water quality in 
the lakes using the hyperspectral data (Figure 10).  However, 
because of the page limitations, these studies were not 
included in this paper.   

 

 
 

Figure 8.  Classification map of the RDACS-3 dataset 
 
 

 
Figure 9.  Spectra of black willow; healthy and under stress 

(the scale is between 0 and 1 (100%) for the reflectance axis) 
 

6. CONCLUSIONS   

Airborne and spaceborne hyperspectral imagery is becoming 
increasingly accessible due to the increasing number of 
companies and agencies operating hyperspectral scanners.  
Airborne data acquisitions benefit greatly over satellite based 
missions because the user has influence on the mission in 
terms of time schedules, flight line arrangements, calibration 
measurements, spectral/spatial resolutions, and acceptable 
weather conditions.  However, airborne hyperspectral 
sensors are often very expensive due to fact that limited 
spatial coverage and multiple flight lines may be required to 
cover a study area.  Also, data processing is usually complex 
and can cause problems.   
 
Airborne hyperspectral sensors are usually used to test 
spaceborne hyperspectral sensors, which provide continuous 
coverage of most of our planet as well planetary surfaces .   



 
Figure 10.  High resolution spectra of Kentucky Lake (the 
scale is between 0 and 1 (100%) for the reflectance axis) 

 
The RDACS data used in this study provided the highest 
accuracy in terms of classification of individual overstory 
species.  Although AVIRIS generally provides very good 
results, the datasets collected for the study area had many 
problems.  Only very limited areas could be used to classify 
the land cover; therefore, the AVIRIS datasets were not fully 
utilized in the comparison process.  Although the Hyperion 
data had a low spatial resolution, the results showed that the 
data could be used for mapping of vegetation alliances in 
forestry related studies.  Water quality studies using the 
Hyperion sensor should be more cost effective than using 
airborne hyperspectral imagery. 
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