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ABSTRACT 
 
In this study, advanced techniques for oil spill detection and oil spill type identification using hyperspectral AVIRIS data are 
presented.  Spectrally complex areas are highly dimensional and are consequently difficult to fully unravel. In our previous study, 
the Spectral Linear Unmixing (SLU) technique showed many limitations for operational applications, since signatures for all the 
target materials in the scene must be spectrally identified. Our new methodology emphasizes the ability to distinguish oil slicks from 
the background using the Partial Unmixing (PU) technique. Both the data reduction and the pixels projection methods are used for 
distinguishing thick, slick oil from dispersed oil; moderate and thin oil sheens; polluted water; and tarry oil. It was developed in part 
to partially un-mix the oil target pixels from the background mixed pixels.  This method improve on the SLU technique because it 
dose not require prior knowledge of the background material spectral signatures.  Our analysis applies to oil spill targets with the 
assumption that all pixels are pure and they are not mixed with background materials.  In the specific case of the Santa Barbara 
coastal zone event (March, 2002), the changes in the oil slick occurred from the north (oil spill source) to the south due to the high 
sea waves and strong current effects. 
 
Our study is focusing on target identification for oil slick.  We show that oil spill on sea water can be clearly identified.  
 
 

1. INTRODUCTION 
 

The classification of oil is extremely complicated due to the 
variance in the optical properties of different oil spill types.  
Sea waves currently lack positive discrimination and cause poor 
contrast and mixing of many oil spill types. There is difficulty 
in optically identifying thick oil slicks spectra from streaks and 
oiled water.. Also, it is difficult some times to optically identify 
oil slick spectral signatures for oil spills on the scene.  A 
complete spectral mixing of a complicated AVIRIS scene may 
not always be possible or even desired.  High-quality data of 
spectrally complex areas are very high dimensional and 
difficult to fully separate.  There is a need for a more selective 
method to increase the ability to identify regions of interest for 
the desired regions.  Therefore, using more advanced 
techniques such as the Partial Unmixing (PU) is very efficient 
for increasing the reliability of the analysis.   
 
The improved signal to noise AVIRIS data complemented by 
new data reduction and processing techniques permits 
unambiguous oil identification and spectral unmixing of 
subpixel targets; subtle spectral differences enhanced in the 
data include oil types and polluted water discrimination.  This 
allows the detailed detection of smaller oil spill areas. The 
techniques developed so far classify oil spills and verify their 
effectiveness experimentally, which in turn will make it 
possible to model water-leaving radiances from different types 
of oil slicks. Analysis methods focus on classifying each pixel 
into a single class by identifying the main material in the pixel 
(Richard, et al. 2002).   
 

Our new methodology emphasizes the ability to distinguish oil  
slicks from the background using the Partial Unmixing (PU) 
technique.  It was developed in part to partially un-mix the oil 
target pixels from the background mixed pixels.  Our model 
focuses on distinguishing the abundance of targets under 
investigation from background features. The PU techniques are 
used to identify oil spill targets in the presence of a complex 
background and when there is no ground truth information.  
 
In practice, with multispectral techniques, one method alone is 
not conclusive in all oil spill detection (Goodman and Fingas, 
1988).  Often, oil has no specific characteristics that distinguish 
it from the background.  Taylor (1992) studied oil spectra in the 
laboratory and field and observed flat spectra with no usable 
features distinguishing it from the background (Taylor, 1992).  
Techniques that separate specific spectral regions did not 
increase detection capability.  
 
1.1 Case Study:  Santa Barbara  
 
Santa Barbara County is home to the most intensive offshore oil 
development on the West Coast.  For decades, Santa Barbara 
County has been sensitive to offshore oil drilling.  In 1969, 
California's biggest oil spill fouled the Santa Barbara Channel 
with about four million gallons of crude oil.  Moreover, at least 
10,000 gallons of oil have been spilled from an undersea pipe 
near Santa Barbara.  As oil production continues offshore, 
tourism has grown dramatically, increasing the threat of oil-
related injuries. 
1.2  AVIRIS Data Set 
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In our previous study using the AISA sensor, the classification 
process was performed using 25 bands.  The Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor allows 
more specific spectral analysis with wavelengths from 380 nm 
to 2500 nm.  AVIRIS data with spectral radiance in 224 
contiguous spectral channels, spectral resolution of about 10 
nm, and a ground pixel size of 18m x 18m were available to 
this study.  The 2001 AVIRIS scene of the Santa Barbara 
coastal zone was obtained from the NASA Jet Propulsion 
Laboratory (JPL) in California.  The whole track scene consists 
of 13 segments; each segment consists of 512 x 614 pixels.  
Four scenes were selected, each one representing an oil spill at 
a different stage from north to south.  AVIRIS data allow the 
study of different types of oil spills in the ocean, oil spill 
classification, and quantitative measurements for on apparent 
oil spill.  
 
 

2.  METHODOLOGY AND RESULTS 
 
In this research study, hyperspectral processing techniques are 
applied to an AVIRIS image using a total of 224 bands from 
0.374 µm to 2.50 µm.  This process involved several steps 
beginning with looking at the change in spectral signatures in 
both space and time, as the oil spill characteristics changed 
with time.  Three segments were selected to detect the different 
oil slick shapes.  Data browsing was used to look at spatial and 
spectral changes in reflectance.  

2.1 Model Description 
 
In this paper an attempt was made to use newer and simpler 
techniques for target identification building on the PU 
technique.  This PU method is used for partially unmixed 
AVIRIS data.  High quality data of spectrally complex areas are 
highly dimensional and are consequently difficult to fully 
unravel (Boardman, et al., 1995).  PU technique provides a 
method of solving only that fraction of the data inversion 
problem that directly relates to the specific goals of the 
investigation.  In our previous study, the spectral linear 
unmixing technique showed many limitations for operational 
applications, because signatures for all the target materials in 
the scene must be spectrally identified.  The PU method does 
not requires a prior knowledge of the background material 
spectral signatures.  Our investigation included only oil spill 
targets that were not mixed with other materials except water.  
The data are subjected to dimensional reduction processes using 
Minimum Noise Fraction (MNF) technique for reducing high 
dimensionality of the data.   
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2.2   Data Reduction  
 
The data reduction phase of the analysis strives to identify 
Regions of interest (ROIs) in the data set by separating noise 
from information and reducing the data set to its true 
dimensionality by applying the minimum noise transform, then 
determining spectrally pure (extreme) pixels using the Pixel 
Purity Index (PPI) function on the minimum noise fraction 
results (Wagtendonk, et. al., 2000).  N-dimensional 
visualization can then be performed using the grand tour of the 
high PPI value pixels to cluster the purest pixels into image-
derived ROIs.   
 
 
AVIRIS data were put through a dimensionality analysis using 
the MNF transform.  The data are translated to have a zero 

mean, and then the data are rotated and scaled so that the noise 
in every band is uncorrelated and has unit variance.  The 
inherent dimensionality of the data is determined by examining 
the final eigenvalues and the associated images.  The data space 
is divided into two parts: one part associated with near-unity 
eigenvalues and coherent eigen-images, and a complementary 
part with near-unity eigenvalues and noise-dominated images.  
By using only the coherent portions, the noise is separated from 
the data, which improves the spectral processing results.  Image 
linking and overlaying are used to identify pixel locations for 
thick oil slicks to selected oil spill spectra.  A target weighting 
variance for high eigenvalues for each class provides clues to 
spectral features, contributing to the classification.  

2.3 Target Identification Using Partial Unmixing 
 
In our study another experiment was performed using the MNF 
(principal component) technique for target identification using 
data reduction and PU.  The results indicated good separation 
of oil slicks, oiled water, and polluted water.  Results are here 
used as a preliminary identification of oil targets, since no 
ground truth data were available.  PU allows mapping of the 
apparent target abundances in the presence of an arbitrary and 
unknown spectrally mixed background. 
 
We have developed a partial unmixing technique as a method 
of mapping target ROIs using two MNF bands in a 2-D scatter 
plot to separate the oil spill target from the background pixels 
and to produce ROIs.  The purest pixels in the scene are then 
compared against the target spectra.  If any are close matches 
for the target materials, they are identified and separated from 
the other purest pixels.  High-purity pixels that do not closely 
match a target spectrum are used to determine the subspace 
background.  This analysis does not require a prior knowledge 
of the background material signatures. The steps are indicated: 
  

 
2.3.1 Eigenvector Weighting  

 

 
Wavelength (400-2500 nm) 

 
Figure 7.  The MNF Spectrum For Thick Oil Slick Bands 

Shows High Eigenvalues. 
 

Figure 7 shows a plot of the MNF eigenvalues, showing the 
amount of covariance in each output MNF band.  Most of the 
information is derived from differences in 640 to 890 nm.   
The output results of data reduction processes are 25 MNFs; 
some of these bands have significant pixels for oil spills and the 



 

rest are MNFs for other classes. Two MNFs with high 
variances in oil spill are required to process the PU method to 
be used in a 2-D scatter plot.  Eigenvalue weighting is used to 
compare the average spectrum of oil in the raw data and the 
MNF spectra of oil. Both spectra are selected from the same 
pixel location.  The statistics provide clues to spectral features 
contributing to the classification.  The oil slick spectra and the 
associated spectra in the image are examined for weighting 
using the high variance (eigenvector) portion of the spectra.  

 

 
2.3.2 Data Projection  
 

 

 

Oil Spill 

Figure 9 (a)  PU Results; Radiance Pixels Projection 
 
In Figure 9 (a), the radiance (raw) data projection is for band 9 
(visible) in the X axis and band 63 (near IR) in the Y axis.  
These two bands were selected with minimum correlation to 
maximize the variance between targets.  It shows a good 
separation in the background cluster (mountains) appearing in 
brown and very poor separation between the oil and water 
clusters appearing in the lower corner in blue, green, and 
yellow.  

 
Figure 9. (b)  PU Results; MNFs Pixels Projection. 

 
In Figure 9 (b), the vertical axis corresponds to the separation 

yellow = polluted water and streaks) and the background (white 
cluster), while the horizontal axis maps inter-target separation.  
The plot shows the optimal projection selected of the data using 
2 MNF bands, where the background composite ROIs is 
centered at the 0, 0 mean. 
 
 

between the targets (green = oiled water, red = thick oil slicks, 

 

 

Figure 10.The PU Results; The Abundance of Oil Materials 
 

he agreement between the observed data and the 2-D scatter 

Figure 
11 A 
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T
plot indicates the successful derivation of the optimal projection 
that the targets are optimally separated, and the multi-
component background is fully compressed.  Spectral 
signatures for oil spill types can be generated from the 2-D 
scatter plot clusters.  
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Bands Composite Image for a Complex Stage of the Oil Spill
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3. RESULTS AND CONCLUSIONS 
 

• The PU method significantly reduces the overall 
processing complexity and is making analysis easier and 
more robust for the user.  

 
• The PU method provides a quick and practical operational 

method for selecting ROIs, without using statistical 
classification algorithm, where MNF function and 2-D 
scatter plot are available in all image analysis software 
packages.  
 

The results indicated good separation of oil slicks, oiled water, 
and polluted water.  Results are used as a preliminary 
identification of oil targets, as there is no ground truth data 
available.  PU provides a method of resolving only that fraction 
of the data division problem that directly relates to the specific 
goals of the investigation.  PU allowed mapping of the apparent 
target abundances in the presence of an arbitrary and unknown 
spectrally mixed background. 
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