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ABSTRACT: 
 
This study presents a field-based crop mapping through sequential masking classification of multi-temporal Landsat-7 ETM+ images 
acquired in May, July, and August 2000 in Karacabey, Turkey. First, the classification of each image date was carried out on a 
standard per pixel basis. The results of the per pixel classification were integrated with digital agricultural field boundaries and for 
each field, a crop type was determined based on the modal crop class calculated within the field. The classification accuracy was 
computed by comparing the reference data, field-by-field, to each classified image. The individual crop accuracies were examined on 
each classified data to determine those crops whose accuracy exceeds a preset threshold level. Then, the multi-temporal masking 
classification of the crops was carried out in sequential steps using the three image dates, excluding after each classification the crop 
properly classified. The masking technique was applied to overcome the problems caused by the spectral overlaps between some 
classes. The final classified data was analyzed in a field specific manner to assign each field a crop label. An immediate update of the 
database was provided by directly entering the results of the analysis into the database. The use of sequential masking procedure for 
field-based crop mapping improved the overall accuracies of the classifications of the July and August images alone by more than 
10%. 
 
 

1.    INTRODUCTION 
 
The availability of remotely sensed images and the advances 
in digital processing and analysis techniques have enabled 
research scientists to have information about the type, 
condition, area, and the growth of agricultural crops. Image 
classification is one of the crucial techniqes in detecting the 
crops from remotely sensed data. Most current automatic 
classification techniques to obtain land cover maps from 
digital imagery operate on a per-pixel basis in isolation from 
other pertinent information. Therefore, per-pixel techniques 
often yield results with limited reliability. The reliability of 
image classification can be improved by including apriori 
knowledge about the contextual relationships of the pixels in 
the classification process. Agricultural field boundaries 
integrated with remotely sensed data divide the image into 
homogeneous units each of which can be analyzed seperately. 
In each field, the geometry of field boundaries defines the 
spatial relationships between the pixels contained within, and 
enables those pixels to be processed in coherence. The 
decision by the analysis is taken, for each field, based on the 
coherent processing of the pixels falling within the field. 
Therefore, the standard per-pixel image classification can be 
replaced by a classification which operates in a field specific 
manner. 

 
Field-based approaches to the classification have been 
adopted by several researchers (Catlow et al. 1984; Mason et 
al. 1988; Janssen et al. 1990; Janssen et al. 1992; Aplin et al. 
1999; Turker and Derenyi 2000; Aplin and Atkinson 2001). 
To perform field-based classification, the vector field 
boundaries must be integrated with the imagery. The 
integration between the two data sets can be achived at three 

stages: (i) before classification, (ii) during classification, and 
(iii) after classification. Usually, field-based classification 
employs the integration between raster imagery and vector 
data after classification (Brisco et al. 1989; Janssen et al. 
1990; Janssen et al. 1992; Aplin et al. 1999; Turker and 
Derenyi 2000; Aplin and Atkinson 2001). The imagery is 
classified on a per-pixel basis before integrating the classified 
output with digital vector data. A per-field analysis is then 
carried out to assign each field a class label based on the 
analysis of the classified pixels contained within the field. 
The success of a field-based approach that incorporates 
vector data after a per-pixel classification depends mainly on 
the success of the classification. Several studies have shown 
that multi-temporal images improve the classification 
accuracy by utilizing different spectral responses of the land 
cover classes over a period of time according to phenological 
evolution (Maracci and Aifadopoulou 1990; Conesa and 
Maselli 1991; Kurosu et al. 1997; Panigrahy and Sharma 
1997; Beltran et al. 2001; Lanjeri et al. 2001; Murakami et 
al. 2001). 
 
The objective of this study was field-based mapping of 
summer (August) crops in Karacabey, Turkey through 
sequential masking classification of Landsat7 ETM+ satellite 
data. The sequential masking classification technique was 
applied to improve discrimination between the crop classes. 
We made an assumption that each field grows one type of 
crop. Field-based classification was performed by computing 
the percentages of classified pixels within each field and 
assigning a class label to the field based on the majority class. 
The fields were selected through a database query and the 
results were directly inserted into the database.  
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2.    THE STUDY AREA AND DATA DESCRIPTION 
 
The study area is a 18 km by 13.5 km site situated near the 
town of Karacabey, Bursa in northwest of Turkey (Figure 1). 
The geographic boundaries of the area are N40°07′44″ - 
N40°13′43″ and E28°10′31″ - E28°20′28″. The main crops 
grown in the region are tomato, corn, pepper, wheat, onion, 
and sugar beet. The villages that fall within the study area 
include Akhisar, Eskisaribey, Hotanli, Ismetpasa, 
Kucukkaraagac, Sultaniye, Yenisaribey, and Yolagzi. In the 
region, a land consolidation project was performed between 
1988 and 1992. Therefore, majority of the fields have regular 
shapes that affect the classification accuracy. However, a 
significant number of small fields exist in the area. The size 
of the fields range from 0.0074 to 48 ha. The elevation 
difference across the study area is very small (within 10 m). 
The Landsat7 ETM+ images (Path:180, Row:32) used in the 
classification were acquired on May 15, 2000, July 2, 2000, 
and August 19, 2000. All images were cloud free and of good 
quality. A 600 pixels x 450 lines (multispectral) subscene 
covering the study area was extracted to perform the 
proposed sequential masking classification procedure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The study area. 
 

 
3.    DATA PRE-PROCESSING 

 
The field boundaries were digitized from the cadastral map 
sheets. The maps were converted into a raster form by 
scanning them. Each raster map was registered to Gauss-
Kruger (Zone-5) projection and datum ED50 using six grid 
intersections. The registration was based on first-degree 
polynomial and nearest neighbor resampling techniques. The 
registration accuracies were between ± 1.14 m and ± 3.59 m. 
Next, the field boundaries were manually delineated through 
on screen digitization and stored as vector polygons in the 
database. Each polygon was assigned an identification 
number and the crop types were recorded as attributes for 
those fields from which reference information was collected 
during site visit. There were a total of 2977 fields.  
 
The multispectral bands (1-to-5 and 7) and the panchromatic 
band were merged for each image date. The fused image 
retains the spatial resolution of the panchromatic band, yet 
provides the spectral properties of multispectral bands. 
Furthermore, the field-based classification of a higher spatial 
resolution image would be adventageous for small fields 
since the number of pixels falling within the fields will 
increase. The fused images were geometrically corrected to 
Universal Transverse Mercator (UTM)-zone 35 projection 
and the European Datum 1950 (ED50). The geometric 

correction was based on second-degree polynomial and 
nearest neighbor resampling techniques. The root mean 
square error (RMSE) values were computed as ± 0.52 pixels 
for the May image, ± 0.67 pixels for the July image, and ± 
0.59 pixels for the August image.  

 
We displayed the merged August image on the screen with 
the digitized field boundaries overlaid, and those  fields (275 
in total) that contain multiple crops were identified through 
visual inspection. The sub-boundaries within the fixed 
geometry of these fields were then delineated through on 
screen digitization and each sub-field was assigned an 
identification number. There were 424 new sub-fields. With 
these new sub-fields the total number of fields increased to 
3401.  
 
 

4.    THE METHODOLOGY 
 
A total of 1083 fields were visited on the ground. For each 
field, crop type was collected as essential information and the 
database was populated with the new data. For each image 
date, the training samples were selected from all crops found 
in the study area. The field boundaries were displayed on the 
screen in superimposition with the raster imagery. For each 
class, those fields from which reference information was 
collected during site visit were selected through a database 
query. Thereby, the boundary pixels were avoided. The 
following classes were defined for the May image: bare soil, 
wheat, clover, pasture, rice, pea, and onion. The July classes 
include corn, residue, tomato, sugar beet, clover, pasture, 
pepper, watermelon, bare soil, rice, cauliflower, and onion. 
The classes defined for the August image are the same as the 
July classes except for onion, which does not exist in August. 
For each class, a group of representative pixels were 
delineated within designated fields. Approximately 10% of 
the ground-visited fields were used in training, while the 
other fields were set aside to be used as check fields to 
perform accuracy assessement. 
  
A per-pixel supervised classification of the images was 
performed using the maximum likelihood method. For each 
image date, the classification was carried out on bands 1, 2, 3, 
4, 5, and 7. In addition, Principal Component Analysis (PCA) 
was carried out to obtain new channels. In the present case 
the first 4 components of the May, July, and August images 
provided 99.77%, 99.60%, and 99.76% respectively of the 
total variance of the original data sets. Therefore, the first 4 
PCs were used in the classification.  
 
Upon completing the per-pixel classification, the integrated 
analysis of the classified images and the vector field data was 
carried out. To eliminate the effect of the boundary pixels on 
the classification, a narrow corridor was generated along the 
boundary inside each field. Field-based analysis was 
performed by computing the class percentages within inside 
corridor boundaries of each field and applying the entire field 
the label of the modal class. For each field, the class 
percentages and the final class label were automatically 
inserted into the database. To compute classification 
accuracy, the reference data were compared, field-by-field, to 
each of the six classified images. The error matrix was used 
to measure the accuracy of each classified output. The 
accuracies of individual classes and the overall accuracy of 
all bands and the first 4 PCs classifications are given in tables 
1 and 2.  
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May July August 

 
PA 
 (%) 

UA 
(%)  

PA 
(%) 

UA 
(%)  

PA 
(%) 

UA 
(%) 

Bs 94.2 97.9 Cr 56.1 76.1 Cr 76.0 87.4
Wt 86.8 99.4 Rs 93.1 92.6 Rs 70.2 98.9
Cl 50.0 100 Tm 71.9 65.8 Tm 85.4 72.3
Pa 100 64.7 Sb 78.3 95.4 Sb 60.4 95.3
Rc 50.0 62.5 Cl 50.0 100 Cl 50.0 100
Pe 60.0 81.8 Pa 66.7 83.3 Pa 100 40.0
On 60.0 10.0 Pp 16.4 18.0 Pp 50.9 32.9

Wm 7.7 25.0 Wm 57.1 80.0 Overall: 88.9 
Bs 80.0 9.8 Bs 22.4 42.9 

 Rc 80.0 100 Rc 90.0 75.0 
 Cw 34.3 48.0 Cw 57.1 27.0 
 On 50.0 7.0 
 Overall: 66.8 

Overall: 70.8 

Table1. Producer’s and user’s accuracies of individual classes 
for the classification of all bands. 

Bs: Bare Soil; Wt: Wheat; Cl: Clover; Pa: Pasture; Rc: Rice; 
Pe: Pea; On: Onion; Cr: Corn; Rs: Residue; Tm: Tomato; 
Sb: Sugar Beet; Pp: Pepper; Wm: Watermelon; Cw: 
Cauliflower; PA: Producer’s Accuracy; UA: User’s Accuracy 
 

May July August 

 
PA 
 (%) 

UA 
(%)  

PA 
(%) 

UA 
(%)  

PA 
(%) 

UA 
(%) 

Bs 92.8 98.3 Cr 43.9 67.7 Cr 76.4 87.4 
Wt 85.8 100 Rs 92.0 93.0 Rs 67.2 98.9 
Cl 100 100 Tm 66.1 61.3 Tm 83.7 70.7 
Pa 100 61.1 Sb 80.2 95.5 Sb 54.5 96.5 
Rc 60.0 54.5 Cl 50.0 100 Cl 50.0 50.0 
Pe 62.2 84.8 Pa 60.0 69.2 Pa 100 37.8 
On 70.0 10.6 Pp 14.5 13.6 Pp 49.1 31.3 

Wm 7.7 10.0 Wm 64.3 69.2 
Overall: 88.4 

Bs 40.0 3.8 Bs 23.9 37.2 
 Rc 70.0 50.0 Rc 80.0 80.0 
 Cw 28.6 34.5 Cw 51.4 25.7 
 On 50.0 8.5 
 Overall: 61.2 

Overall: 69.2 

Table 2. Producer’s and user’s accuracies of individual 
classes for the classification of the first 4 PCs. 

 
Next, the sequential masking classification was performed. 
To design the classification procedure, we analyzed the 
producer’s and user’s accuracies of individual crops and 
determined those classes with high accuracy. The thresholds 
of 80% and 90% were defined for producer’s and user’s 
accuracies respectively. The threshold for the user’s accuracy 
was kept higher for avoiding wrong masking of the fields 
belonging to other classess due to commission error. The 
accuracies of residue and rice were higher than the thresholds 
on the all bands classification of the July image. The 
producer’s and user’s accuracies of residue were 93.1% and 
92.6% respectively. Rice had a user’s accuracy of 100% and 
a producer’s accuracy of 80%. The other classes that meet the 
preset accuracy criteria are clover and sugar beet. While the 
producer’s and user’s accuracies of sugar beet were 80.2% 
and 95.5% respectively on the classification of the first 4 PCs 
of the July image, clover had the highest producer’s and 
user’s accuracies of 100% on the classification of the first 4 

PCs of the May image. The considerably high classification 
accuracies of residue, rice, clover, and sugar beet can be 
attributed to their phenological evolution. Therefore, a 
sequential-masking classification seems to be more suitable. 
It allows us to perform step-by-step classification of the 
classes using the multi-date images, excluding after each 
classification the class properly classified.  
 

The main steps of the proposed sequential classification 
procedure is illustrated in figure 2. We should indicate that 
the areas other than agricultural fields, such as roads, 
channels, and villages were not included in the classification 
and were eliminated by masking them out. The classification 
procedure was carried out as follows: First, clover was 
masked out on the classification of the first 4 PCs of the May 
image. Those fields classified as clover were excluded prior 
to further classification and the class training corresponding 
to clover was taken out. After this operation, the reduced 
class tranings were used to perform further classification. 
Next, those fields labeled as residue on the classification of 
the all bands of the July image were masked out. The reduced 
class training-set will now contain all crops except clover and 
residue. Further classification will now be performed over 
unmasked fields only. After that, those fields corresponding 
to rice on the classification of the July image were masked 
before proceeding the classification procedure. The last class 
to be masked was sugar beet. Finally, the remaining crops 
(corn, tomato, pasture, pepper, watermelon, bare soil, and 
cauliflower) were classified using all the bands of the August 
image through their training statistics only.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The sequential masking classification 

procedure. 
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After completing the masking classification procedure, the 
classified outputs were combined to make a single classified 
image. A field-based analysis was then performed on the 
final classified output by computing the class percentages 
within each field and applying the entire field the label of the 
modal class. The result of the multi-temporal masking 
classification is illustrated in figure 3. The validation of the 
masking classification was carried out by comparing the 
reference data, field-by-field, to the classified image. The 
individual class accuracies and the overall accuracy are 
illustrated in an error matrix in table 3. 
 
 

Adobe Systems

 
Figure 3. The result of sequential masking classification. 

 
 
 Reference 
 Cr Rs Tm Sb Cl Pa Pp Wm Bs Rc Cw 

 

Cr 181 0 10 1 0 0 14 2 0 1 1 210 
Rs 0 162 0 0 0 0 0 0 0 0 0 162 
Tm 33 5 252 15 0 0 11 2 3 0 5 326 
Sb 0 0 0 84 0 0 0 0 0 0 0 84 
Cl 0 0 0 0 2 0 0 0 0 0 0 2 
Pa 0 4 1 0 0 14 0 0 0 0 2 21 
Pp 18 0 21 4 0 0 28 1 0 0 1 73 

Wm 0 0 1 1 0 0 0 9 0 1 0 12 
Bs 2 2 3 0 0 0 0 0 4 0 6 17 
Rc 0 0 0 0 0 0 0 0 0 8 0 8 
Cw 0 1 3 0 0 0 0 0 0 0 17 21 

 234 174 291 105 2 14 53 14 7 10 32 936 
             
PA 77.4 93.1 86.6 80.0 100 100 52.8 64.3 57.1 80.0 53.1  
UA 86.2 100 77.3 100 100 66.7 38.4 75.0 23.5 100 81.0  

Overall: 81.3 % 

 
Table 3. Error matrix for the sequential masking 

classification. 
 
 

5.    RESULTS AND DISCUSSION 
 
The producer’s and user’s accuracies and the overall 
accuracy for the classification of all bands of the May, July, 
and August images are summarized in table 1. The overall 
accuracy of the May image (88.9%) was the highest. The 
overall accuracies for the July and August images were 
68.8% and 70.8% respectively. On May image, bare soil had 
a producer’s accuracy of 94.2% and a user’s accuracy of 
97.9%. The producer’s and user’s accuracies of wheat were 
found to be 86.8% and 99.4% respectively. Among the 
remaining classes, onion had the lowest user’s accuracy. Of 
the two clover fields, one was omitted. All pasture fields 
were correctly classified. However, some confusion is 
evident between pea and pasture. Both the producer’s 
accuracy (50%) and the user’s accuracy (62.5%) of rice were 
below the overall accuracy. The user’s and  producer’s 
accuracies of pea were 81.8% and 60% respectively. Some 

confusion is evident between the pea class and the onion and 
pasture classes.   
 
The overall accuracies of the July image (66.8%) and the 
August image (70.8%) were lower than the May image. A 
large number of fields (446) that were classified as bare soil 
on May image contain crops at their active growth phase on 
July and August images. Tomato, pepper, sugar beet, and 
corn present an important vegetative development in the 
June-August period. On July image, residue had the highest 
producer’s accuracy of 93.1% and a very high user’s 
accuracy of 92.6%. Both rice and sugar beet also exhibit 
significantly high accuracies. Pepper, uncultivated land, 
onion, and watermelon exhibit a significant amount of errors 
of commission. The producer’s and user’s accuracies of 
tomato and pasture were above the overall accuracy. The 
user’s accuracy of clover was computed to be 100% but the 
producer’s accuracy (50%) was significantly low. Similarly, 
corn exhibits a relatively high user’s accuracy (76.1%) and a 
rather low producer’s accuracy (56.1%). The classification of 
the August image indicates that the producer’s and user’s 
accuracies of corn, tomato, pepper and watermelon increased. 
The user’s accuracy of residue and uncultivated land 
improved but their producer’s accuracies decreased. The 
reverse trend is observed for pasture, rice, and cauliflower 
which exhibit higher producer’s accuracy and lower user’s 
accuracy in the August image classification than the July 
image classification. The August image classification 
revealed no difference in the accuracies of clover. 
 
The results of the first 4 PCs classification (Table 2) reveal 
that the overall accuracy of the May image (88.4%) is the 
highest. Similar to all bands classification (Table 1) the 
overall accuracies of both the July and August images are 
remarkably lower than that of May image. When we compare 
the overall accuracies of the PCs classification to that of all 
bands classification it is evident that the PCs classification 
accuracies are slightly lower. The July image shows the 
maximum decrease of 5.4%.  
 
The multi-temporal masking classification yields better 
results (Table 3) than both the all bands classification and the 
first 4 PCs classification of the July and August images 
alone. The overall accuracy of the masking classification was 
computed as 81.3%. When compared to the classification of 
the July and August images alone the improvement in overall 
accuracy of more than 10% is evident. This improvement in 
accuracy with the masking procedure is due to the use of 
different spectral responses of the crops over a period of time 
according to phenological evolution. The  accuracy of the 
clover, residue, sugar beet, rice, tomato, and corn classes 
were quite high. The producer’s and user’s accuracies of 
clover were 100%. Residue had a user’s accuracy of 100% 
and a producer’s accuracy of 93.1%. It was found that of the 
174 reference fields, only 12 were omitted from the residue 
category. The user’s and producer’s accuracies of sugar beet 
were 100% and 80% respectively. It is evident that sugar beet 
does not exhibit commission error. However, the exclusion of 
21 fields out of 105 from this class resulted in 20% omission 
error. The user’s and producer’s accuracies of rice were also 
computed as 100% and 80% respectively. Of the total ten 
fields, eight were correctly classified through masking 
classification procedure and two were omitted from rice. 
Tomato had a producer’s accuracy of 86.6% and a user’s 
accuracy of 77.3%. Of the 291 reference tomato fields, 252 
were correctly classified. Tomato is most often confused with 
corn and pepper, and additional imagery can improve 



classification accuracy. For corn, the masking procedure 
resulted in a producer’s accuracy of 77.4% and a user’s 
accuracy of 86.2%. Pasture had a very high producer’s 
accuracy (100%) and a rather low user’s accuracy (66.7%). It 
was observed that four residue fields, one tomato field, and 
two cauliflower fields were improperly included in the 
pasture class. Watermelon exhibits a relatively low 
producer’s accuracy of 64.3% and a user’s accuracy of 75%. 
Of the 14 reference fields, 5 were omitted from this class 
resulting an omission error of 35.7%. The user’s accuracy of 
cauliflower (81%) is relatively high when compared to other 
classes. However, this class illustrates a considerably high 
error of omission (46.9%) which is caused by the exclusion 
of 15 fields from this category. Both pepper and bare soil 
exhibit low classification accuracy. While the producer’s and 
user’s accuracies of pepper were 52.8% and 38.4% 
respectively, bare soil had the lowest user’s accuracy of 
23.5% and a considerably low producer’s accuracy of 57.1%. 
It is evident that the spectral signatures of pepper and both 
tomato and corn greately overlap in the images used in this 
study. 
 
In comparison with the all bands classification of the August 
image, the multi-temporal masking classification shows 
10.5% increase in overall accuracy. Clover exhibits the 
highest increase of 50% in the producer’s accuracy. A 
significant increase in the producer’s accuracy is also evident 
for bare soil, residue, and sugar beet. However, while residue 
and sugar beet exhibit 1.1% and 4.7% increase in the user’s 
accuracy respectively, bare soil shows 19.4% decrease. It 
appears that the number of the fields that were improperly 
included in the bare soil class increased with the masking 
procedure. Among the classes which do not exhibit a 
significant improvement are corn, tomato, pepper, and 
watermelon. A significant increase (26.7%) in the user’s 
accuracy of pasture indicates that some of the fields that were 
improperly included in pasture in all bands classification of 
the August image were correctly classified with the 
sequential masking procedure. Cauliflower presents the 
highest increase of 54% in the user’s accuracy. A significant 
improvement in the user’s accuracy (25%) is also evident for 
rice. However, both cauliflower and rice exhibit a decrease in 
the producer’s accuracy. As an overall, the results show that 
the masking procedure improve the accuracies and the 
increase is significant for several classes.  
 
 

6.    CONCLUSIONS 
 
The sequential masking classification of Landsat7 ETM+ 
images acquired in three different dates (May, July, and 
August 2000), coupled with field-based analysis, to identify 
summer crops proved to be better than the uni-temporal 
classifications. The overall accuracy for the all bands 
classification of the May image (88.9%) was the highest. This 
is attributed to the fact that the number of classes are less on 
May image than that of July and August images and the 
classes are spectrally distinct from each other. The overall 
accuracies for the all bands classification of the July and 
August images were found to be 66.8% and 70.8% 
respectively. The overall accuracies for the first 4 PCs 
classifications were found to be slightly lower than that of all 
bands classifications.  
 
In comparison with the uni-temporal classification results, the 
sequential masking classification performs better, giving an 
overall accuracy of 81.3%. The use of sequential masking 

procedure improved the overall accuracies of the 
classifications of the July and August images performed 
alone by more than 10%. It appears that the masking 
technique has overcome the problems caused by the spectral 
overlaps between the classes. The level of classification 
accuracy achieved in this study through masking procedure is 
possibly high enough for crop mapping from Landsat7 ETM+ 
images, and better results may be achieved if additional 
images are used.  
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