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ABSTRACT: 
 
The classification of vegetation has been an important research subject in botany, ecology, geography, and other disciplines 
to map the differences in vegetation types. Classifying vegetation by remote sensing is valuable because it can determine 
vegetation distribution and occurrence for very large areas in a short time. Advances in technology have led to developments 
in methods of vegetation classification, leading to the creation of new and more sophisticated components and powerful 
techniques. Classifying original bands and/or image components may cause unsatisfactory results in spectrally chaotic fields. 
In such cases, the demand for accurate land-use, land-cover, vegetation, and forestry information may require more 
explanatory components those components should represent specific information for target land-covers and not contain 
redundant knowledge.  
 
In this study, spectral bands of Landsat Thematic Mapper and topographic data were used as an input. Different image 
components and indices were produced and then used in the Maximum Likelihood Classification method. In order to find out 
proper inputs for our case, newly produced components and indices were statistically compared and the bands that include 
the information about vegetation are selected. Overall accuracy parameter that is obtained from the Error Matrix helped to 
evaluate the results of the classification. Results obtained in this study suggest that using these spectrally improved bands and 
indices; the accuracy of the classification could be increased up to 10-15 percent. 
 
 
1. Introduction 
 
The need to map wide areas with limited resources forced 
the improvement of vegetation classification methods by 
using satellite images. Conservation agencies use these 
images to extract variety of vegetation types in order to 
assess the biodiversity of a region. Among the possible 
commercial satellite systems, Landsat images have got 
some serious advantages over other systems such that: 30 
m ground resolution yields as a convenient resolution for 
regional vegetation studies with a minimum mapping unit 
of 100 ha., the spectral coverage fits well to the vegetation 
spectra, and the wide swath width yields in less number of 
images to process which maintains the coherence of the 
imagery. Furthermore Landsat system is a mature system 
dating back to early 1970’s, hence plenty of researchers 
have exploited many mapping methods. However still the 
classification results are way off the desired levels, only 
major homogenized groups of forest can be discriminated, 
yet the conservation measures require a more detailed 
legend. Subdivision of this multi-spectral continuum into 
meaningful vegetation classes is a major challenge that 
requires careful consideration (Brook and Kenkel, 2002). 
For instance, visual analysis of different bands/colour 
composites from a multispectral dataset with constant 
pixel resolution still reflects the same spatial structure, 
even if the contrast between different scene elements (i.e. 
forest patches versus non-forest patches) might 
considerably vary for the different band combinations 
(Bryan,1988). 

 
With the aid of classical vegetation indices or raw input 
bands hardly any classification can fulfill this need; hence 
some improvements should have to be made either by post 
classification sorting or by adding new components 
derived from the original input bands to the classification 
process. The extraction of spectral information related to 
this type of target from Landsat TM imagery has been 
achieved through the use of image processing techniques 
such as band rationing and principal component analysis 
(Sabine1999). The major fact behind this new component 
adding is to create a spectral subset of the data itself and to 
create more explanatory variables which can be used to 
exploit the variance of the vegetation types that are desired 
to be mapped from imagery. Due to the high similarity 
among individual bands of a multispectral image, 
statistical data compression tools like principal component 
analysis (PCA) are often applied in image analysis and 
image classification to reduce the amount of redundant 
information (Ricotta et al., 1999).  The objective of the 
study was to improve the accuracy of vegetation 
classification by using future components which were 
constituted by using raw bands and various vegetation 
indices.  
 
2. Study Area 
 
Study area is located in the Southern part of Turkey in the 
Mediterranean region and covers approximately 235km² 
(Figure 1). Elevation values of the region vary between 



300 m and 2500 m above sea level. The area is 
characterized by a variety of landcover types, including; 
forest areas, open areas and farmland which were suitable 
for the purpose of this study. 
 

 
Figure 1. Location of the study area 

 
3. Methodology  
 
Using raw bands of Landsat in the classification process is 
a widely used way of extracting vegetation maps. But the 
statistical similarities of vegetation spectral responses, 
spatial resolution of data and presence of similar species 
sometimes do not allow obtaining the desired results from 
the original bands. As a first step of the study raw bands of 
Landsat ETM belonging to Mediterranean region were 
classified. The maximum likelihood method was used to 
classify the image because, unlike the minimum distance 
and the parallelepiped classifiers, this technique takes into 
account both the spectral variability within and between 
classes (Fahsi et al,, 2000 ).  
 
The classification legend was determined by using the 
available data such as forest management maps and 
reconnaissance field survey results. While forming the 
training data, this legend was taken into account and eight 
different vegetation classes; Callabrian Pine, Black Pine, 
Taurus Fir, Taurus Cedar,  Farmland, Sparse vegetation 
were discriminated.  
 
To check the accuracy of the results, ground truth data set 
with 26 reference point were determined using the 1/25 
000 scaled forest management map of the region. When 
the training set was applied on the classified image, an 
overall accuracy of 62.96% was obtained, which is not 
satisfactory for this kind of studies. 
 

 
Figure 3. Error matrix of classification performed on raw 

bands. 
 
At this step a new method was implemented, in order to 
increase the accuracy of the result. Suitable vegetation 
indices and image components were produced by using 

Principal Component Analysis (PCA) which is a technique 
for removing or reducing the duplication or redundancy in 
multispectral images and for compressing all of the 
information that is contained in an original n-channel set 
of multispectral images into less than n channels or, more 
specifically, to their principal components (Ricotta et al., 
1999). 
In this study the main inputs of the feature components are 
the indices. Two sets of indices were used; the first set 
includes the vegetation indices which directly give the 
spectral response of chlorophyll by using the ratio between 
red and NIR bands. The second set was used to remove the 
soil noise by changing slope value of red and NIR bands.  
 
First set of indices are most commonly used remote 
sensing tools for extracting green vegetation cover that 
employ red and near infrared vegetation such as 
Normalized Difference Vegetation Index (NDVI) (Drake 
et al., 1999). In addition to NDVI, Global Vegetation 
Index (GVI), Infrared Percentage Vegetation Index (IPVI), 
Transformed Vegetation Index (TVI), and Tasseled Cap 
Greenness Index were used. Equations of these indices are 
given in Table 1.   
 

Normalized 
Difference 

Vegetation Index 

NIR-red 
NDVI =    -----------   X 255 

NIR+red 

Global Vegetation 
Index 

GVI=-0,2848*TM1-0,2435*TM2-
0,5439*TM3+0,7243* 

TM4+0,0840*TM5-0,1800*TM7 

Greenness 

Greenness = -0.2848(TM1)-
0.2435(TM2)-0.5436(TM3)+ 
0.7243(TM4)+0.0840(TM5)-

0.1800(TM7) 
Transformed 

Vegetation Index 
TVI=100 * [((NIR - red) / (NIR + 

red))½)+0,5] 
Infrared 

Percentage 
Vegetation Index 

1 
IPVI = ---- (NDVI+1) 

2 
Soil Adjusted 

Vegetation Index 
L=0 for high 

vegetation cover 
L=0 for low 

vegetation cover 

NIR-red 
SAVI = -------------(1+L) 

NIR+red+L 

Modified Soil 
Adjusted 

Vegetation Index 1 

MSAVI1 = (( NIR-red) / (NIR + red 
+L) x ( 1+ L ) 

L= 1-( 2* slope * NDVI * WDWI) 
WDWI = NIR – slope * red 

Modified Soil 
Adjusted 

Vegetation Index 2 

MSAVI2 = 1/2*((2*(NIR+1))-
(((2*NIR)+1)2-8(NIR-red))1/2) 

Table 1. Indices used in this study 
 
Principal components of these six indices were calculated 
and the lists of image eigenvalue loadings for this 
transformation on all vegetation indices are given in  
Table 2. According to this table, correlations of PC1 with 
the indices are very high except IPVI. This means PC1 has 
a great amount of information of these 5 indices. To 
include the spectral information of IPVI in the analysis, 
PC2 is used because IPVI has a high loading value in this 
component. 92.27 percent of the spectral information was 
collected on the first two principal components; PC1 and 
PC2 are selected as feature components of vegetation 
indices.  
 



Axis 
GREE

N 
NESS 

GVI IPVI ND TVI 

1 0.7340 -0.9673 -0.2756 0.8746 0.8622 
2 0.1738 0.1960 -0.9519 0.1359 0.2095 
3 0.5125 0.1605 0.1340 0.4491 0.4354 
4 -0.4101 0.0071 0.0015 0.1178 0.0580 
5 -0.0131 0.0000 0.0016 -0.0321 0.1404 

Table 2.  Correlation Between Input Rasters and Principal 
Components 

 
The relationship between vegetation cover and the indices 
appears to change over the area according to the certain 
conditions such as soil cover type. To minimize the effect 
of soil on vegetation reflectance, second set of indices 
were used. These indices were Soil Adjusted Vegetation 
Index (SAVI), Modified Soil Adjusted Vegetation Index 1 
(MSAVI1), and Modified Soil Adjusted Vegetation Index 
2 (MSAVI2) (Table 1). For this study the first PC acquired 
from the 3 soil indices contains the spectral information 
adequate for the classification to normalize the effects that 
emerge due to the different soil types of the areas with low 
canopy of vegetation.  
(Table 3)  
 

Axis MSAVI MSAVI2 SAVI Eigenvalues 
(%) 

1 0.9999 0.0789 0.0046 84.4805 
2 -0.0145 0.9969 -0.0629 15.5186 
3 -0.0000 0.0000 0.9980 0.0009 
Table 3. Correlation Between Soil Adjusted Vegetation 

Indices and Principal Components 
 
Besides these feature extraction oriented indices, PCA 
were performed on raw bands in order to find if vegetation 
related information could be collected in few explanatory 
bands. In this transformation, examination of principal 
components eigenvector loadings determine which PC 
possesses information related directly to the spectral 
signatures of vegetation. Eigenvector loadings for PC2 in 
Table 4 indicate that PC2 describes the difference between 
the visible channels (TM1, 2, and 3) and the infrared (IR) 
channels (TM5 and 7) and also this component is 
commonly thought to be related to vegetation. Eigenvector 
loadings for PC3 (in Table 3) indicate that PC3 is 
dominated by vegetation. In this component both the 
loading values of TM3 and TM4 is negative but the 
difference between these two band were high because in 
TM3 chlorophyll is absorbed, on the contrary chlorophyll 
is highly reflected in the near infrared band. Therefore 
PC2 and PC3 were selected as feature components.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Axis TM1 TM2 TM3 TM4 TM7 TM5 
Eigen 
values 

(%) 

1 0.9160 0.9667 0.9781 0.6093 0.9615 0.9329 85.731
0 

2 -0.3436 -0.2114 -0.1570 0.6718 0.1201 0.3008 9.2461 

3 -0.1460 -0.1245 -0.0459 -0.4201 0.2347 0.1756 3.9920 

4 -0.1408 0.0019 0.1247 -0.0047 -0.0164 -0.0336 0.6456 

5 -0.0100 0.0107 -0.0155 0.0286 0.0756 -0.0846 0.2556 

6 0.0394 -0.0720 0.0284 0.0104 0.0070 -0.0099 0.1296 

Table 4. Correlation Between Input Rasters and Principal 
Components 

 
In addition to principal component bands, Decorrelation 
Stretched (DS) bands were used in this study. Even though 
these bands still show the properties of the original bands, 
the color separation of these bands are enhanced with 
significant band to band correlation. Decreasing the 
correlation of spectral data corresponds to exaggerating 
the color saturation without changing the distribution of 
hues (or relative color composition) (Gillespe et al., 1987). 

 
At the end of these analyses it is assumed that; selecting 
PC1 and PC2 of vegetation indices, PC1 of soil indices, 
PC2 and PC3 of raw bands and DC3 and DC4 as feature 
components will remove the redundant data among 
multivariate datasets, such as multispectral remote sensing 
images and increase the accuracy of the classification.  
 

 
Figure 2. Classification results of both raw bands and 

feature components. 
 
By using these feature components overall accuracy was 
increased to 76.92 %. This rise shows that the new formed 
bands were very successful in the discrimination of 
vegetation classes with very similar spectral reflectance 
values.  



 
Figure 4. Error matrix of classification which performed 

on feature components. 
 
3. Discussion and Conclusion 
 
The results obtained from this study show that Principal 
Components of raw bands and vegetation indices can 
extract valuable and concentrated vegetation information 
by creating a new variable set with eliminated interband 
correlation and reduced dimensionality of the data. In this 
method Principal Components which were highly loaded 
with the spectral information of desired band or index 
considered as a feature component, and used in the 
classification process. By using this method the accuracy 
of classification could be increased up to 15%.   
 
This is a simple and fast technique which could easily be 
implemented on a landscape scaled classification studies.  
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