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ABSTRACT:

The dynamic and complex nature of shorelines and beach topographic morphology present numerous challenges to geospatial
analysis. Displaying and visualizing changes in these environments requires integration of knowledge on spatial data
characterization as well as scientific understanding of the underlying coastal processes. This paper presents a method to visualize and
analyze topography and topographic changes on Assantage Island Nation Seashore (AINS), which is located along a 37-mile stretch
of Assateague Island National Seashore in Eastern Shore, VA. The DEMS data sets from the NASA ATM LIDAR data acquired
from 1996 through 2000 for various time intervals, e.g., year-to-year, season-to-season, date-to-date, and a four year (1996-2000),
have been created. The spatial patterns and volumetric amounts of erosion and deposition of each part on a cell-by-cell basis were
calculated. A 3D dynamic display system using ArcView Avenue for visualizing dynamic coastal landforms has been developed.
The system was designed into five functional modules: Dynamic Display, Analysis, Chart analysis, Output, and Help. The Display
module includes five types of displays: Shoreline display, Shore Topographic Profile, Shore Erosion Display, Surface TIN Display,
and 3D Scene Display. Visualized data include rectified and co-registered multispectral Landsat digital image and NOAA/NASA
ATM LIDAR data. The system is demonstrated using multitemporal digital satellite and LIDAR data for displaying changes on the
Assateague Island National Seashore, Virginia. The analyzed results demonstrated that a further understanding to the study and
comparison of the complex morphological changes that occur naturally or human-induced on barrier islands is required.
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Fig. 1. Study area of Assateague Island on the Eastern Shore,
Virginia.
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Our study area (Assateague Island) is located within the
Assateague Island National Seashore in Virginia (Fig. 1)
between 37.883747° S to 38.020204° S, latitude,

(http://soundwaves.usge.gov/2002/11/research.html). Important
features of Assateague are its fragile coastal elements,
characterized by sand dunes, maritime forests, inlets, lagoons,
back-barrier marshes and vegetation. The island is one in a
chain of barrier islands along the U.S. Atlantic seaboard that are
built as wave action piles up sand from the ocean floor (Allen et

other barrier islands, Assateague is constantly changing shape
and geographical position (Dolan et al. 1997, 1992).

3. DATA ACQUISITION

We downloaded LIDAR data from the NOAA Coastal Services
Center  (http://www.csc.noaa.goc/crs/tcm/index.htm) for our
study. The data sets acquired on October 11, 1996, September
16-18, 1997, February and December 1998, as well as
September and November 2000 cover the entire study data,
while the date set acquired on Oct. 11, 1996, Sept. 16-18, 1997

using ArcView inverse distance weighting (IDW) methods with
a planimetric (cell) resolution of 1.5 by 1.5 m. All the DEMs
were geo-referenced to the WGS84 spheroid and North
American Vertical Datum (NAVD) of 1988, respectively.

4. ANALYSIS OF TOPOGRAPHIC AND
MORPHOLOGIC CHANGES

4.1 Methods

and morphological change (erosion, deposition, or no change)
along the coastline, we partitioned the shoreline into six
also referred to as

the spatial surface profiles of the DEMs, slope and relief data of
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activity were excluded because these factors would impact the
reliability of the change analysis (White et al. 2003). Finally,

topographical and morphological change analysis using the
successive DEM data pairs in the periods of 1996-2000. The
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and where the processes of erosion and deposition may be
easily studied spatially. Each AOI was chosen so as to cover,
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perienced faster erosion at speed of approximate 4m
(see Fig. 3c). Since the foreshore slope was eroded, the near
shore was extended to the foreshore by 36m (see Fig. 4g). In
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Section 4, the most deposition occurred in a 1220m length by /
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line ynovement out by 27-30m (see Fig. 5b, and 5c). On the
other hand, as observed from Profile 2 of Section 4, Profile 1 of
Section 4, and Profile 3 of Section 5, the top of dunes increased
in heightsome 0.7 to 1.5m (see Fig. 5b, 5a, and 5f). In Section
5 and Section 6, the areas near the shore, the foreshore, and the
dune were all generally eroded, which caused the dune areas /||

have slowed from 1996 to 2000. Only a small area gxperienced

and the shoreline to retreat, 6-15m (see Fig. 5d, Se, 5g, 5h, and

severe erosion, such as Profile 1 in Section 3 (see Fig. 3c). In
Section 4, the most yapid deposition occurred in a 1200m long

5i), and the near shore extended to foreshore by 30-45m (see C‘i,'
Fig. Se, and 5f). _Observing Section 6, the tops of the dune f,’

by 85m wide area of the foreshore (see Fig. 3d). In Section 5,
erosion occurred in the near shore, foreshore, and dune areas
facing the Atlantic, and deposition occurred in the berm and
dune areas, not facing Atlantic (see Fig. 3e). In contrast, , the

decreased by 0.8m in the south of Profile 3, by 1.5m in the /||
middle of Profile 2, and by 1.8m in the north of Profile 1 (see i
Fig. 5g, 5h, and 5i).

foreshore in Section 6 experienced deposition, while the berm
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and dune area experienced erosion. Additionally, a 40m wide
by 415m long foreshore area experienced significant deposition
(see Fig. 3f).
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coastal area was generally eroded in summer and fall, and ynost

the slopes of foreshores in all six sections have grown steeper.

deposition occurred in winter. In the early spring and late fall,
the coastal topographic change undulates, we think this may be

(4) Dune changes differ in topographic profile and morphology
over the course of the study. For example, the dunes from

caused by yarying weather. We selected three profiles in each

/

Section 1 to Section 3 decreased in volume, accreted in Section |

Section to demonstrate the topographic changes within the
study area, and Figures 4 present the elevation curves of each

4, and retreated west in both Section 5 and Section 6. |
Additionally, their rate of change , was not the same. For | |

profile in different years.

From Fig. 3a and Fig. 4c, we found that a length of about 1500
m in the south end of Section 1 has seen significant deposition
of up to 1.37m in height over a 190m width from the near shore
to the foreshore and significant erosion up to a maximum 0.8m

example, the dunes from Section 1 through Section 3 rapidly
decreased between 1997 and 1998 (see Fig 4c, 4d, 4e, and 4g),
while the dunes from Section 5 to Section 6 rapidly retreated |

and 1997 (see Fig Sa, Sb, and 50). An approximate 2.6km long
shoreline has getreated inland from 2 - 40m fhrough different
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moved ...island ...67m ...f("

Section 1 in the period of 1996-2000. In only two years, from
1998 to 2000, a 67m wide berm gwas eroded 2.4m, resulting in

4.3 Volumetric Morphologic Changes

the coastline ghifting 67m Jjnland (see Fig. 3a and Fig. 4b).

To quantify the 4-year topographic change of the study area,

Additionally, a 700m long foreshore in Section 1 gustained

volumetric analysis (deposition, erosion, and net change) of

deposition like that seen in profile 1 of Section 1 (see Fig. 4a),
and an approximate 67m wide foreshore near shore gained 1m
in_height, resulting in shoreline ygnovement outward by 67m,

each gection was conducted. Table 1 summarizes the

deposition, erosion, and net change results of the six sections
for the period of 1996 through 2000.
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Section 6 showed the least amount of deposition (2,835.9 m’).
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the entire study area, fhe estimated average erosion rate is
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Figure 5. The profile analysis of topographic changes for Section 1-3 from October 1996 to November 2000

Table 1. Summary of volumetric change per unit area (m%m?) for all Sections from 1996-2000.

Net-Change Deposition Erosion
Period | Sections Sum PUA Sum PUA Sum PUA
(m3) (m3/m?) (m3) (m3/m?) (m3) (m3/m?)

Section 1 -2613.39 -0.005 +14647.92 +0.639 -17261.32 -0.602

Section 2 9501.69 -0.038 +4961.35 +0.607 -14463.03 -0.983

1996-2000| Section 3 224434 -0.005 +7140.12 +0.471 9384.46 -0.394
Section 4 +1998.63 +0.005 +7714.21 +0.420 -5715.59 -0.271

Section 5 -4817.29 0.014 +3396.59 +0.322 -8213.88 -0.383

Section 6 9515.45 -0.023 +2835.99 +0.321 -12351.44 -0.422

Total -26693.54 -0.011 +40696.18 +0.485 -67389.72 -0.485

5. CONCLUSION

This paper has presented a method to analyze topographic

These results also demonstrated that LIDAR sensors provide an

extraordinary capability for capturing data upon which high- //,
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reliable information for the effective planning and management
of the coastal area.
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