
VERY HIGH SPATIAL RESOLUTION IMAGE SEGMENTATION BASED ON THE 
MULTIFRACTAL ANALYSIS 

 
 

M. Vooronsa, *, Y. Voirina, G. B. Béniéa, K. Fungb 

 
a Centre d'applications et de recherches en télédétection (CARTEL), 2500 boul. de l'Université Sherbrooke (Québec) 

J1K 2R1 - matthieu.voorons@USherbrooke.ca 
b Centre Canadien de télédétection, Division Acquisition des données,  588 rue Booth Ottawa (Ontario) K1A 0Y7, 

ko.fung@ccrs.nrcan.gc.ca 
 

 
KEY WORDS:  Remote Sensing, Vision, Analysis, Algorithms, Texture Segmentation, High Resolution, Multifractal, CDROM 
 
 
ABSTRACT: 
 
The availability of very high spatial resolution images in remote sensing brings the texture segmentation of images to a higher level 
of complexity. Such images have so many details that the classical segmentation algorithms fail to achieve good results. In the case 
of IKONOS images of forest areas, a texture can be so different within a same class that it becomes very difficult even for a human to 
segment or interpret those images. The study of the high frequency content of the data seems to be a good way to study those images. 
We work on a new method which uses the singularity information to achieve the segmentation. It is based on the computation of the 
Hölder regularity exponent at each point in the image. From this parameter we can compute the local Legendre or the large deviation 
multifractal spectrum which gives information about the geometric distribution of the singularities in the image. So we use global 
and local descriptors of the regularity of the signal as input parameters to a k-means algorithm. The whole algorithm is described and 
applied to IKONOS images as well as to an image made of brodatz textures. The segmentation results are compared to those 
obtained from the laws filters and the co-occurrence parameters techniques. The proposed method gives better results and is even 
able to segment the image in tree density classes.  
 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

Very high spatial resolution images provide a huge amount of 
details and information. Thus, it is possible to extract new 
thematic classes and to detect smaller objects. But all those 
advantages are strongly tied to a major drawback from an image 
processing point of view. The processing of such images 
becomes very tricky; the local variability of the grey level 
values and the large number of data is a limiting factor for most 
of the classical analysis tools. Even the visual interpretation is 
not obvious and needs experience to recognize each region. 
Therefore, new segmentation algorithms have to be created in 
order to achieve good classification results with high spatial 
resolution images. Classical segmentation tools fail to give 
homogeneous segments and usually give very sparse results 
where the classes are not compact. To overcome those issues, it 
seems appropriate to use a textural analysis approach. Thus, for 
each pixel, we study the neighbourhood and not only the grey 
level value. 
 
Image segmentation based on texture is a complex problem. 
Many theories were developed but their all result in partial 
solution to the problem. None can fully characterize all the kind 
of textures. Even the definition of a texture is not clearly 
defined. Depending on the field of application and the nature of 
the image, the definition of a texture can be very different. Co-
occurrence matrices (Haralick et al, 1973), Markov random 
fields (Chellappa and Chatterjee, 1985), Gabor filters (Turner, 
1986), the fractal analysis (Kaplan, 1999), etc. are tools which 
are not able to analyze all the textures. In the particular case of 
very high spatial resolution images, the high variability of the 
grey level of each thematic objects prevent from using the 
previously quoted analysis methods. Furthermore, we do not 

have any a priori information about the nature of the grey level 
distribution of those objects. Pentland, (Pentland, 1984), 
showed that the fractal dimension is a good tool to study natural 
scenes, but this kind of analysis reach its limits when the image 
is strongly irregular. On the opposite, the multifractal analysis is 
the perfect tool to analyze signals having a highly varying 
regularity from point to point. 
 
It is to circumvent all these problems and to bring a new 
approach to the segmentation of remote sensing images that we 
propose a method based on the analysis of the fractals 
components of the image. No a priori knowledge of the image 
is required and it enables to study simultaneously the local and 
global regularity of a signal by the means of the Hölder 
exponent and the multifractal spectrum. The singularities often 
carry most of the information contained in a signal. It is 
generally possible, for a human being, to determine the nature 
of an object only from its boundaries and its texture. Many 
works are dedicated to the analysis of the "high frequencies" 
components of an image. Edge density, Zero crossing analysis 
and every method based on the gradient of an image are not 
efficient to characterize textures sufficiently well to give 
satisfactory segmentation results for this type of image. They do 
not take into account the nature of the singularities of the signal 
nor even their spatial distribution, while the multifractal 
analysis does. 
 
In a first section we will recall the basics of the multifractal 
analysis, then we will describe the proposed segmentation 
method and finally, before concluding, we will comment and 
expose some results which are compared to classical 
segmentation results.  



 

  
2. MULTIFRACTAL ANALYSIS BASICS 

The multifractal formalism was created to describe the 
properties of very turbulent systems with change in scale. It is 
the case, in particular, in the study of fluids turbulences in 
physics, (Grassberger and Procaccia, 1983) or (Frisch and 
Parisi, 1985). It is used to describe the local behaviour and 
nature of the singularities of irregular functions in a geometrical 
or statistical way. A more complete theoretical description of 
the multifractal analysis can be found in (Abry et al, 2001; 
Lévy-Vehel et al, 2001).  
 
2.1 Regularity and Hölder exponent 

The concept of specific regularity, in a point 0x , was created to 
quantize, using a positive real number α , the "roughness" of the 
graph of a function in this point.  The Hölder regularity is a 
generalization of the concepts of derivability and continuity of a 
function. It is defined as following: 
 
Let α  be a positive real number and ℜ∈0x ; a function 

ℜ→ℜ:g  is said to be )( 0xCα  if it exists a polynomial P  

with maximum degree ][α  such that: 
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where [ ] 1−= αα  if α  is an integer.  
Therefore, the regularity of a function g  is computed using an 
estimation of the maximum difference of g  with respect to a 
polynomial P  of degree lesser or equal to ][α . 
 
From the definition of the regularity we can define the Hölder 
exponent gα  of a function g  as: 
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Thus, from its definition, it is obvious that the Hölder exponent 
can characterize the regularity of a function g  in each point. 
 
2.2 The singularity spectrum 

The multifractal analysis is generally used to study signal 
without any a priori knowledge on its nature. It is a very useful 
tool to describe and analyze the variations of the local regularity 
of an unspecified signal. Most of the time it is used to 
characterize the regularity of highly irregular signals whose 
singularity spectrum is not a single point. The singularity 
spectrum of such signals is function of time, contrary to 
(mono)fractals signals which are entirely characterized by single 
exponent. These signals are called multifractal because they are 
characterized by infinity of fractal sets. Those sets have to be 
studied in order to deduce the signal singularity spectrum.  
 
This spectrum is a global description of the singularities 
distribution. It exist various singularity spectrum types 
according to whether one uses a statistical or geometrical 
approach to estimate it. They all try, as well as possible, to 

approach the theoretical singularity spectrum by using different 
methods (Berroir, 1994). One of them is called the large 
deviation spectrum Gf  and its definition is given below. The 
proposed algorithm is based on this spectrum.  
 
To obtain the large deviation spectrum, we first have to 
compute the Hölder exponent for each point of the signal. From 
the image of Hölder exponents, we extract the fractal 
component sets αF  which are formed by the points having the 

same Hölder exponents: { }ααα == )(: xxF g
ρρ

. In practice, this 

spectrum can be calculated by using the widened spectral 

components ε
αF  based on a quantization of gα  noted εα :  
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because the number of different exponents can be large.  The 
spectrum is then obtained by the following formula: 
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where )( εαrN  is the number of balls C  of size r  which 

contain a Hölder exponent εα , so: 
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This is equivalent to the computation of fractal dimension of 

each fractal component ε
αF . Thus, the large deviation spectrum 

can be approximated by using the box dimension of the fractal 
component sets, which is the slope of the points whose 
coordinates are ))(log,(log εαrNr − . 
 
The spectrum Gf  is a statistical approach of the multifractal 
spectrum and can be interpreted as the probability of finding a 
Hölder exponent of order α  in a ball of radius r  centred in 

0x . This is equivalent to: 
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The aim of the multifractal formalism is to establish a strong 
relation between the different multifractal spectra. If one makes 
the assumption, not proved in our case, that the multifractal 
formalism holds, then Gff = , but in a more general way: 

Gff ≤ , where f  is the theoretical spectrum.  
 
2.3 The wavelet transform and the Hölder exponent 

The Fourier transform is a powerful tool for studying the 
singularities of a signal, but it is only possible to perform a 
global analysis. Thus, it is not adapted to analyze the spatial 



 

distribution of discontinuities. However, the wavelet transform 
(Daubechies, 1992) enables to locally analyze a signal in time 
and frequency, and therefore to compute the local regularity of a 
signal. 
 
In (Abry et al, 2001), it is shown that the continuous wavelet 
transform is an efficient tool for the computation of the Hölder 
exponent of a signal. For an accurate estimate of the Hölder 
exponent of a function, it is better to use only the maxima lines 
of the wavelet coefficients (the Wavelet Transform Modulus 
Maxima method) as introduced in (Mallat and Hwang, 1992; 
Muzy et al, 1993). 
However, for the segmentation of an image, we need to estimate 
this exponent in each point of the image; therefore this method 
is not appropriate. Moreover, it is not the accuracy of the 
estimation which is important in our case, but rather the 
discriminating power of the resulting multifractal spectrum. 
 
The choice of the wavelet basis is important. It should have a 
sufficiently large number of vanishing moments to eliminate the 
polynomial trends present in the signal. These polynomial 
trends are sometimes so important that it is impossible to study 
the local singularities of the signal. The more the wavelet basis 
has vanishing moments, the larger the degree of the polynomial 
we can get rid off. The wavelet basis must also have a relatively 
small support size, in order to preserve the local aspect of the 
analysis. It is desirable that the value of the wavelet transform 
of a function in a point depends only on the values of this 
function in its vicinity. A more complete study on the choice of 
the wavelet basis is made in (Turiel, 1998). 
 
It was proved that for a multifractal signal g , its wavelet 
coefficients gd  are such that at the location x

ρ
 and for the scale 

r , we have: 
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 is the mean of the squared wavelet 

coefficients. 
 
Thus, the wavelet coefficients follow a power law and the 
Hölder exponent can be estimated as the slope of the regression 

line of the points ))),(log(,(log
2

rxdEr g
ρ

. Therefore, 

according to the definition of the Hölder regularity, it is the 
decrease of the amplitude of the wavelet coefficients through 
the scales which characterizes the local regularity of a signal. 
 
 

3. THE PROPOSED SEGMENTATION ALGORITHM 

3.1 Principle 

The proposed algorithm is based on the idea that an image can 
be divided into sets of points having a similar singularity 
spectrum. We make the assumption that a texture is a particular 
combination of Hölder exponents. In other words, a texture 
consists of singularities and the nature and the spatial 
distribution of these singularities are enough to entirely 
characterize this texture. 
 

The proposed method is based on the estimation of the spectrum 
Gf  in each point of the image. The formulas given in the 

previous sections are used. The spectrum is not computed on 
the whole image, but on a sliding window of fixed size. During 
the computation of the spectrum we also introduce a weighting 
filter. It represents the distance of the point studied compared to 
the nearest singularity. Its coefficients are computed as follows: 
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where cx

ρ
 and sx

ρ
 are the coordinate vectors of respectively, the 

pixel for which we compute the spectrum and the nearest 

singularity location. ),( badist
ρρ

 corresponds to the Euclidean 

distance between vectors a
ρ

 and b
ρ
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This weighting filter was introduced in order to prevent all the 
points in the neighbourhood of a singularity to have the same 
spectrum. To some extent, this factor takes into account the 
neighbourhood of the singularity by affecting a decreasing 
weight according to the distance. 
 
Obviously, the local analysis of a signal is very important, 
because an image is made of several thematic classes, each one 
having its own texture. If a particular discontinuity is rather rare 
in a class, it can be much more frequent in another. Locally, the 
histogram of the singularities of a texture can be very different 
according to the class that is studied. Therefore, to achieve a 
good segmentation result, it is necessary to take account of 
both, the strength and the spatial distribution of the 
singularities. 
 
An interesting advantage of the multifractal analysis is that it is 
completely independent of the grey level values of the image. 
Therefore, it is not affected by the low frequency variations of 
the grey levels within a class. As this method is based on the 
local spectrum multifractal, we name it the LMS method in the 
remainder of this article. In (Arduini et al, 1991; Kam and 
Blanc-Talon, 1999), methods of image classification based on 
multifractal tools were proposed and give interesting results 
based on different ideas. 
 
The method that we propose is unsupervised and is based on the 
k-means clustering algorithm, therefore only the number of 
classes in the image is required as input to the method. 
 
3.2 The method parameters 

The first step of this algorithm is the computation of the wavelet 
transform of the image. A two-dimensional "Mexican hat" 
wavelet is used, but other tests with the Morlet wavelet lead to 
similar results. We chose to use the continuous wavelet 
transform rather than the discrete one because it better fits the 
needs for the analysis, which are a high degree of accuracy and 
invariance under translation. The redundant information present 
in the continuous wavelet transform enables to compute more 
robust estimators, and thus to have a better stability of the 
estimate. Tests showed that 5 to 8 levels of decomposition were 
sufficient to obtain good segmentation results. The Hölder 
exponents were computed for each point of the image by linear 
regression on a neighbourhood of 16 by 16 pixels. The large 
deviation spectrum was computed for each point of the image 



 

by the box method over a 32 by 32 pixels window. The number 
of quantization values of the fractal components was fixed to a 
reasonable value to avoid a too long computing time. The 
singularity spectrum values in each point are the input to a k-
means algorithm. 
 
All the parameters of the LMS algorithm were fixed in an 
empirical way. The choice of the sizes of the neighbourhood 
and of the studying windows results from a compromise 
between the processing time and the quality of the results. 
However, the size of the neighbourhoods is strongly related to 
the characteristic dimension of the objects that have to be 
detected in the image. The automatic estimation of all these 
parameters will be the subject of future work, so that the 
segmentation algorithm will be completely automatic. 
 
 

4. RESULTS AND COMMENTS 

In order to appreciate the contribution of the LMS method, we 
compare the results with those obtained by the grey-level co-
occurrence method (Haralick et al, 1973) and by the Laws 
filters method (Laws, 1980). We use only six of Haralick 
texture parameters: energy, entropy, dissimilarity, contrast, 
homogeneity and the correlation. The Laws filters of size 5 are 
used, then the energy measures used for the segmentation are 
computed by averaging the output of the filters on a square 
window of size 15. Then, for each method, the computed 
parameters are used as input to the k-means algorithm. 
 
We initially carried out tests on images of the brodatz set of 
textural images, then on a very high spatial resolution image of 
a forestry scene. The results obtained for each image are then 
compared with those resulting from the analysis based on the 
grey-level co-occurrence matrices. The results are compared by 
means of percentage of good classification in the case of the 
brodatz image, and qualitatively in the case of the satellite 
image. A ground truth map of this region will be done in a 
future work. This will enable the computation of classification 
rates for the IKONOS image. This map will be realized by 
image-interpretation. 
 
4.1 The brodatz image   

 

 
Figure 1. Image created from 5 brodatz texture images 

 
The brodatz set of textural images provides many images of 
natural textures. Some of them are rather close to what can be 
seen in our IKONOS image. That is why we chose them to try 
out our algorithm. They are usually used in the field of the 
textural analysis, and thus it is easy to compare the results 
provided with those presented in other articles. We have created 
an image of 500500×  pixels with 5 different textures from the 

brodatz set of natural textures (D29, D93, D100, D9 and D4), 
see Figure 1. 
The results given by the three methods are presented in Figure 
2, Figure 3 and Figure 4. 
 

 
Figure 2. The grey-level  
co-occurrence matrices 

 

 
Figure 3. The Laws Filters 

 

 
Figure 4. The LMS method 

 
We noticed that the LMS method gives more homogeneous and 
compact segments and that the rate of classification is much 
better.  The Laws filters method is not efficient for the central 
texture because it is a very chaotic texture which can be easily 
confused with the others. The grey level co-occurrence method 
can not differentiate some of the classes and gives the worst 
results.  
 

Method used Classification 
results (in %) 

LMS algorithm 81 
Grey level co-occurrence 57 
Laws filters 67 

 
Table 1.  Classification results on the brodatz image  

 
 
4.2 The IKONOS image.   

 



 

 
Figure 5. The IKONOS image of a forestry zone 

 
The goal of this work is to perform an efficient classification of 
forestry scenes and more particularly to segment the forest in 
tree density classes. The classes of density of trees are visually 
very close from one to another; they differ only by their high 
frequency distribution. 
 
A test was carried out on a IKONOS panchromatic image of 

563635×  pixels which represents a forest scene of Labrador 
(Figure 4). On this image we can clearly distinguish different 
tree density classes, two lakes and non-stocked zones. We chose 
to fix the number of classes to 5: 3 different tree density classes 
(from dense to sparse), a class for the clear land and a class for 
the lakes. The results are given in the Figure 6, Figure 7 and 
Figure 8.  
 
 

 
Figure 6. The Haralick parameters 

 

 
Figure 7. The Laws Filters 

 

 
Figure 8. The LMS method 

 
From these results, it clearly appears that the proposed 
algorithm gives more homogeneous segments and that the 3 tree 
density classes can easily be differentiated (Figure 8). 
Furthermore, the results given by the analysis based on the 
Haralick texture parameters are very heterogeneous. The lakes 
are not detected and the density classes as well as the "non-
stocked" class are completely mixed (Figure 6). Generally, the 
obtained classes do not seem to correspond to those which one 
can visually detect in the IKONOS image. The Laws filter 
approach gives homogenous results but the lakes are missed and 
confusion exists between the tree density classes. 
 
 

5. CONCLUSION  

We have seen that the method based on the multifractal 
analysis, that we propose, gives good results in the case of 
IKONOS image, but also with brodatz textures. The tree density 
classes appear clearly and the non-wooded zones and the lakes 
are well detected. The LMS method uses only the high 
frequencies to classify the image. It would be interesting to 
integrate additional information, such as low frequencies, to the 
approach. This could help to identify regions with smooth 
textures, and to differentiate classes having very little local grey 
level variability but very different mean values. The multifractal 
analysis is an interesting tool for the texture analysis because it 
enables to characterize the singularities in a local and global 
way. However, the parameters required for the algorithm are not 
easy to compute automatically. A study on the automatic 
estimation of these parameters will be considered in a future 
work. It is also envisaged to use other classification methods 
than the K-means in order to see the possible profits in term of 
percentage of classification. Preliminary tests on the use of the 
Legendre spectrum are also in hand and give promising results. 
 
A ground truth image is to be produced by a photo-interpreter 
so that it will be possible to quantitatively measure the 
effectiveness of the method on the IKONOS images at our 
disposal. 
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