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ABSTRACT: 
 
Remotely sensed data are essentially used for land cover and vegetation classification. However, classes of interest are often imperfectly 
separable in the feature space provided by the spectral data. One of the most common attempts to improve image classification is the 
integration of ancillary data into classification. In this study, an approach for integrating topographic data into land cover classification is 
presented. Integration is basically through selection of training set in order to provide additional sensitivity to topographical 
characteristics associated with each land cover class in the study area. Topographic data including elevation, slope and aspect are tested 
for their correlation with land cover classes and correlated topographic data are used as input. Signatures from topographical data are 
assumed to represent the topographical preferences of land cover classes and are extracted with respect to the spatial position of spectral 
signatures from the remotely sensed images.  Initial set of topographical signatures is evaluated and refined statistically. A new training 
set covering both spectral and the topographical signatures is created. New training set is used to supervise the standard Maximum 
Likelihood classification where; topographical raster data together with images is used as input for the classification. Two products are 
derived. First product used remotely sensed data only as input and is trained by spectral information. Second product used bands and 
topographical data as input and it is trained with both spectral and topographical information. Comparison between two products 
conveyed that procedure provided an improvement of 10% in overall accuracy for the classification with the integration of topographical 
data over the one that depended on spectral data only. 
 
 
 

INTRODUCTION 
 

 
 

Use of ancillary data has long been acknowledged as a necessity 
in remotely sensed image classification especially when 
discriminating between different types of information classes is 
difficult due to low spectral seperability. Image classification 
converts image data into thematic information by categorizing 
spectral data into classes with respect to statistical decision rules 
introduced by classifier algorithm. However, information gathered 
by the classification of remotely sensed data, based solely on 
spectral variability is often insufficient in accuracy (Janssen et al., 
1990; Bruzzone et al., 1997). Accuracy of image classification can 
be improved with the integration of data and/or information other 
than the imagery (Westmoreland and Stow, 1992; Gahegan and 
Flack, 1996). The data and information, also known as “ancillary 
data” in the literature, are often composed of map-based thematic 
data, terrain data and non-spatial data. There have been numerous 
attempts to increase overall accuracy of classification during the 
period regarding the use of automated classification systems. 
Hutchinson (1982) categorized these attempts into three according 
to their proceeding before, during or after classification.  

Integration before classification so called stratification involves 
segmentation of the image into smaller scenes before 
classification takes place in order to provide spectrally similar 
classes to be classified independently. Integration after 
classification or post-classification sorting is based on the problem 
that a single class of objects may be assigned to more than one 
classes due to the fact that a particular class can show different 
spectral characteristics. Integration of ancillary data during 
classification mainly has two approaches; first and the most 

obvious approach, Logical channel method introduced by Strahler 
et al. (1978), aims to increase the number of attributes or channels 
of information used in the classification. The second is classifier 
modification, which involves changing a priori probabilities 
according to areal composition of the expected product based on 
image statistics, ancillary data or a known relationship between 
classes and ancillary data (Harris and Ventura, 1995; Mesev, 
1998).  

Logical channel approach is advantageous for being simple and 
time saving compared to others. However without any 
modification or adjustment of conventional sampling routines 
before class statistics generation, method has obvious limitations. 
Logical channel approach covering simple addition of ancillary 
data as input into classification intuitively lacks the ability to 
handle data of different form and ranges. These limitations may 
cause problems in generating class statistics, furthermore; training 
samples selected conventionally based on spectral signatures can 
not sufficiently represent class properties associated with ancillary 
data.  
Eiumnoh and Shresta (1997) attempted to explore the effect of 
Digital Terrain Model in accuracy of image classification by 
simply adding it as a component into classification in a logical 
channel manner, they achieved certain amount of improvement. A 
study by Richetti (2000) involves the use of slope map to add 
information to classification for geological purposes. Logical 
channel and stratification methods were applied and compared to 
spectral classification. Results demonstrated increase in accuracy 
for logical channel method.  



In this study, a method based on logical channel approach is 
presented. Limitations introduced by logical channel method are 
relieved through adjustment of training set so as to provide 
additional sensitivity to ancillary data. Method is applied on a 
selected rural land to extract land cover information. 
 
Data and Study Area 

A region that shows variety both in morphology and land cover is 
selected near Ankara in central Anatolia. Morphological structure 
is uneven dominated by volcanic mountainous terrain with 
dissected stream valleys; besides there also exist flat regions. 
Superior land cover classes in the region belong to the typical 
continental environment of central Anatolia. Native vegetation is 
mainly rangelands (Anderson et al. 1976), they are composed of 
common steppe vegetation species in central Anatolian regions 
where typical continental climate is prevalent. The native shrubs 
and brushes of the study area are steppe species of maximum 2-
meter height, distributed densely in the terrain. Herbaceous 
rangelands of the study area are poorly vegetated lands with 
herbaceous plants of maximum 20-30 cm height. In some areas, 
herbaceous rangelands are mixed with the native shrubs and 
brushes of the study area. Moving through north, particular areas 
are dominated with trees composed mainly of coniferous and 
partially of deciduous tree species. Apart from the natural land 
cover, particular land use classes are present in the study area; 
those are primarily agricultural, residential, industrial and 
transportational.  

A subscene of Landsat 7 ETM of May 2000 including bands 
1,2,3,4,5,7 is the primary source of the data analysis. Ancillary 
data is composed of Digital Terrain Model (DTM), slope and 
aspect of the study region.  

A group of data is set apart from the classification and used for 
obtaining ground truth information only. Those data are; IRS 
panchromatic image with 5 m resolution, forest map form General 
Directorate of Forest, digital land cover and land use map from 
General Directorate of Rural Affairs, aerial photograph stereo 
pairs and field observation data.  
 
Preliminary Data Processing 

1/25000-scaled topographical map served as a basis to 
georeference all available data. Remotely sensed data used in the 
study are free of systematic errors but they have unsystematic 
errors due to alterations in altitude and attitude. Geometric 
correction is made via Ground Control Points (GCPs) obtained 
from topographical map. This procedure is followed by image 
rectification. 

A 30x30 meter DTM was produced from 10-meter interval 
contours digitized from 1/25000-scaled topographical map. 
Consequently, derivatives of DTM; slope and aspect map with 
30x30 meter cell size were generated.  
 
Classes 

Classification level denotes the level of thematic detail for 
classification. Since the level of classification is dependent on the 
sensor system and image spatial resolution, the level of 
classification for the study was set taking the image’s information 
capability into account. Primary data source for the study; Landsat 
7 ETM with 30x30 meters resolution is appropriate for performing 
a first level classification (Jensen, 1996). 

The land cover and land use categories in the study area are 
composed of five Level I classes which are; 

• Urban and Built-up Land 
• Agricultural Land 
• Range Land 
• Forest 
• Water Bodies 

From the five Level I classes in the study area, two were excluded. 
These classes are Urban or built-up land and water bodies. 
Whereas land cover information can be directly interpreted by 
means of spectral characteristics of an image, additional 
information sources are needed to reinforce the image data in 
order to identify whether the area mentioned is an area associated 
with human activities (Lillesand and Kiefer, 1994). The data is 
usually a thematic map or information regarding the type of use of 
a specific area or construction and often becomes more critical 
than the spectral data. Since the remotely sensed imagery is the 
primary data source for this study, surpass of an ancillary data is 
unacceptable. Other reason for excluding built-up land class is 
related to artificial human effect. Human factor when exceeded a 
trade-off between required development area and present suitable 
area, is often challenging. Land use associated with human 
activities can be practiced anywhere even unusual, regardless of 
the topographical restrictions, but dependent on other parameters 
instead. The reason why water bodies were excluded from the 
analysis is; clear water bodies with distinct and unambiguous 
spectral signatures are the most easily extracted information class 
within a multispectral image, hence there is no need to support 
classification of such water bodies with additional information. 

As a consequence, land cover classes remained are; (1) 
Agriculture, (2) Range Land and (3) Forest. At this point, 
rangelands in the study area were reevaluated, because; rangelands 
of the area obviously consist of two contextually different 
categories, which are herbaceous rangeland and shrub rangeland. 
A subdivision for rangeland category is made although it may 
violate Level I of generally acknowledged classification schemes 
(Anderson et al., 1976; CORINE, 1993). As a consequence of this 
subdivision; ultimate list of land cover ended up with four classes; 

• Agriculture 
• Rangeland-shrub (Range-shrub) 
• Rangeland-herbaceous (Range-herb) 
• Forest 

 
 

METHOD 
 
Image classification for this study aims to convert spectral data 
into four land cover classes. A conventional supervised 
classification algorithm; maximum likelihood is selected. 
Maximum likelihood classifier clusters pixels into information 
classes by means of training data based on probability distribution 
models for the cases of interest. (Favela and Torres, 1998). 
Maximum Likelihood classifier is the most commonly used 
supervised method and is supposed to provide better results 
compared to the other supervised methods (Foody et al.,1992;  
Maselli et al., 1995). 

This study attempts to integrate topographical information into 
conventional supervised classification through particular 
adjustment on the training data. A five-phased methodological 



framework was proposed for developing a procedure for the 
integration (Figure 1). 
 

 
 

Figure 1: General Framework of the Study 
 
First phase: Procedures involved basically involves 
understanding class spectral characteristics. A certain time was 
devoted to understanding visual components of land cover classes 
in the study area making use of particular band combinations and 
other reference data. Training samples were selected for all classes 
overall the image, ensuring that they are good representatives of 
each information class. Selected training set was tested both for 
seperability and representativity, if not satisfied with the results; it 
was modified and tested again. This procedure continued since a 
balance between sample size and sample error was supplied. A 
Training Set Dendogram is used to obtain the results of a 
hierarchical analysis of the class signatures in graphic form 
(Figure 2). The spectral seperability of signatures were tested by 
“Transformed Divergence”. 
 

 
Figure 2: Seperability of Initial Training set by means of Transverse 

Divergence measurement (1) Agriculture, (2) Range-shrub, (3) Range-
herb, (4) Forest 

Class spectral signatures compose the initial training set for the 
multispectral image data. However, this set is not used for training 
the classification procedure, rather it serves as prior information 
for the later redefinition of training data. 
 
Second phase: Quantification of the relationship between land 
cover classes and topographical parameters; elevation, slope and 
aspect is involved. Dependening on the significant relationships, 
ancillary topographical data that may contribute to improvement 
of classification accuracy is determined.  

Four land cover classes and the topographical parameters were 
tested for correlation.  Land cover data involves training samples 
of land cover classes; agricultural land, range-shrub, range-herb., 
and forest. Those samples have been collected randomly from all 
over the study area and are spectrally good representatives of their 
associated classes, so, they formed an adequate test set. 
Topographical data merely involves the pixel values spatially 
corresponding to spectral training samples.  

Point Biserial Analysis is performed for quantifying the 
correlation between topographical parameters (interval scale) and 
land cover classes (dichotomous scale). The correlation 
coefficients obtained ranged between minimum of 0.02 to 
maximum positive of 0.65, and maximum negative of 0.41 (Table 
1); where 0 denotes there is no correlation, 1 is perfect correlation 
and -1 is perfect negative correlation. 

 
Topographic 
Parameter 

Land cover 
class 

Correllation 
Coefficient 

Elevation agriculture 0.62 
Slope  agriculture 0.65 
Aspect agriculture 0.02 
Elevation range-shrub -0.34 
Slope  range-shrub 0.48 
Aspect range-shrub -0.11 
Elevation range-herb. -0.41 
Slope  range-herb. 0.08 
Aspect range-herb. 0.06 
Elevation forest 0.1 
Slope  forest -0.5 
Aspect forest 0.24 

 
Table 1: Point Biserial Correlation coefficients for four land cover 

classes and topographical data 
 

The result of the point biserial correlation analysis indicated the 
relation between specific land cover classes and the topographic 
parameters. The significance test verified that correlation 
coefficients greater than approximately 0.30 are significant. 
Significance level, often called the p value is the probability that a 
statistical result as extreme as the one observed would occur if the 
null hypothesis were true.  

As a consequence of the point biserial correlation analysis; aspect 
parameter with very low correlation coefficient was incidentally 
excluded from the remaining part of the study. Elevation and slope 
data were quantified for use as ancillary input for classification. 
 
Third phase: Ancillary topographical data; elevation and slope 
were examined for topographical signatures selection. A 
procedure similar to that performed in the first phase was carried 
on. However, this time the aim is to define the representative sets 



of values that topographically characterize classes of interest. 
Selection of class topographical signatures is aimed just the same 
as selection of class spectral signatures; however, selection of 
topographical signatures is rather different than selection of 
spectral signatures because, they cannot be collected via visual 
interpretation. Topographical samples are gathered by selecting 
the elevation and slope pixels that spatially correspond to nimage 
pixels satisfying the ranges of values characterizing the spectral 
signatures. The reason for using the pixels satisfying the minimum 
and maximum ranges for spectral signatures instead of the original 
spectral training set was the need for collecting unbiased samples 
that better represent the topographical distribution. 

Frequency histogram is a valuable supplement in defining 
elevation or slope ranges where classes were most likely to occur. 
Data ranges representing class topographical signatures were 
determined with the help of histogram graphics. Histograms were 
truncated by removing the observations at the two tails of the 
histogram so as to exclude deviated region of the distribution 
profile. By this way, minimum and maximum ranges for 
topographical attributes associated with four classes were 
statistically refined. Box plot of the elevation (Figure 3) and slope 
(Figure 4) point up the different ranges of elevation and slope that 
characterize the land cover classes. 
 
Fourth phase: Redefinition or adjustment of training sets in this 
phase is critical. The effect of ancillary topographical parameters 
on classification accuracy is tested by means of two products; one 
is derived from spectral data and the other from both spectral and 
the topographical data. This is accomplished by classifying the 
multispectral image data by training set involving class spectral 
signatures only, to yield Product 1 (P1) and; classifying 
multispectral image data and topographical data by means of 
training set involving both class spectral and topographical 
signatures to yield Product 2 (P2). Also a third product is 
generated (P3) to represent a conventional logical channel 
approach where multispectral data and topographical data are 
classified by means of training set involving class spectral 
signatures only. 

Two training sets were generated to satisfy the afore mentioned 
criteria; Training Set 1 (T1); involving class spectral signatures 
only and Training Set 2 (T2); involving both class spectral and 
class topographical signatures.  

The question is “is it possible to manually select training samples 
that would also represent topographical signatures, without 
deforming the class spectral signatures?” Answer to this question 
is possibly no, because collecting samples that can satisfy 
topographical signatures and do not change the characteristics of 
spectral signatures is manually impractical. Therefore an 
automated selection procedure was adopted. 

In order to implement automated selection, all of the samples were 
transferred to a database table and two queries one of which is for 
T1 and other for T2 were performed with respect to minimum and 
maximum ranges previously defined both for spectral and 
topographical signatures. This yielded two training sets T1 and T2 
with class spectral statistics, mean and variance almost identical 
where; T2 represents topographical signatures as well. If this was 
not achieved, it would be hard to state that the difference in 
between Product 1 and Product 2 is due to topographical effect. 
 

 
Figure 3: Box plot of elevation signatures data range 

 

 
Figure 4: Box plot of slope signatures data range 

 
 
Fifth phase: Maximum likelihood classification is performed to 
yield P1 (Figure 5), which is the result of classification of spectral 
data by means of Training 1 (Training set for spectral data only), 
second to yield P2 (Figure 6), which is the result of classification 
of both spectral and topographical data by means of Training 2 
(Training set for spectral and topographical data) and to yield P3, 
which is the result of classification of spectral data and additional 
topographical data by means of Training 1. 
 
Accuracy Assessment 

A certain amount of difference is identified between the products. 
However to understand the precise amount of disparity between 
the products, and their association with the real world; accuracy 
assessment of the products are needed. 

Error matrix is an effective way to represent the accuracy of 
classification; it provides both inclusion (commission error) and 
exclusion (omission error) for each class. Products were tested 
with the ground truth. Table 2 is the error matrix for Product 1, 
Table 3 is the error matrix for Product 2 and Table 4 is the error 
matrix for Product 3. 

Product 2 accomplishes overall accuracy of 73.6%; 10% greater 
than Product 1. The improvement can be observed in each single 
class. Product 3 provides slight amount of improvement in 
accuracy compared to Product 1.  

 



 

Figure 5: Product 1: Classification Product of bands used as input 
and trained by T1 (Training set for bands) 

 

Figure 6: Product 2: Classification Product of bands, DTM and 
slope used as input and trained by T2 (Training set for bands, DTM and 

Slope) 
 

Class GT 1 GT 2 GT 3 GT 4 Total Accuracy 

1 120 41 34 3 198 60.6% 

2 97 514 125 11 747 68.8% 

3 170 265 710 3 1148 61.8% 

4 0 44 0 43 87 50.5% 

total 387 864 869 60 2180  

accuracy 31.0% 64.5% 81.7% 0 %   

Overall Accuracy  63.6%  Khat Statistic  41.6% 

Table 2: Error matrix for Product1; (1) Agriculture, (2) range-shrub, (3) 
range-herb., (4) Forest 

Class GT 1 GT 2 GT 3 GT 4 Total Accuracy 

1 187 19 32 1 239 78.2% 

2 25 646 107 14 792 81.5% 

3 175 730 730 2 1070 68.2% 

4 0 0 0 43 79 54.4% 

total 387 864 869 60 2180  

accuracy 48.3% 74.7% 84.0% 71 %   

Overall  Accuracy  73.6%  Khat Statistic  58.8% 

Table 3: Error matrix for Product 2; (1) Agriculture, (2) range-shrub, (3) 
range-herb., (4) Forest 

Class GT 1 GT 2 GT 3 GT 4 Total Accuracy 

1 127 35 33 2 197 64.4% 

2 91 520 117 11 739 70.4% 

3 169 265 719 4 1157 62.1% 

4 0 44 0 43 87 50.5% 

total 387 864 869 60 2180  

accuracy 32.8% 65.3% 82.7% 0%   

Overall  Accuracy  64.7%  Khat Statistic  43.2% 

Table 4: Error matrix for Product 3; (1) Agriculture, (2) range-shrub, (3) 
range-herb., (4) Forest 

 

CONCLUSION 
 
In this study, a method primarily based on integrating ancillary 
data into classification procedure as a component is presented. 
The results of the classification with the integration of 
topographical data verified that the method yielded a reasonable 
amount of improvement in classification where conventional 
logical channel approach provided only slight amount of increase 
in total accuracy. 

Highest improvement is obtained for agriculture and lowest for 
forest. Classes, when put into sequential order to comprehend 
relative improvement due to integration of topography show the 
same sequence with the classes listed sequentially by means of 
their correlation with topographical parameters. The case presents 



precious information that magnitude of class-topography 
correlation is highly related to the degree of accuracy of classes. 
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