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ABSTRACT: 
 
The fusion of high-spectral but low spatial resolution multispectral and low-spectral but high spatial resolution panchromatic satellite 
images is a very useful technique in various applications of remote sensing.  Recently, some studies showed that wavelet-based 
image fusion method provides high quality of the spectral content of the fused image. However, most of wavelet-based methods have 
a spatial resolution of the fused result less than the Brovey, IHS, and PCA fusion methods. In this paper, we   introduce a new 
method based on the curvelet transform which represents edges better than wavelets. Since edges play a fundamental role in image 
understanding, one good way to enhance spatial resolution is to enhance the edges. Curvelet-based image fusion method provides 
richer information in the spatial and spectral domains simultaneously. We performed IKONOS image fusion. This new method has 
reached an optimum fusion result.    
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1. INTRODUCTION 

In many remote sensing and mapping applications, the fusion  
of multispectral and panchromatic images is a very important 
issue.  
 
Many image fusion techniques and software tools have been 
developed. The well-known methods are, for example, the 
Brovey, the IHS(Intensity, Hue, Saturation) color model, the 
PCA(Principal Components Analysis) method, and wavelet 
based method(Ranchin et al.2000).  
 
Assessment of the quality of the fused images is another 
important issue. Wald et al. (1997)  proposed an approach with 
criteria that can be used for evaluation the spectral quality of the 
fused satellite images.  
 
If the objective of image fusion is to construct synthetic images 
that are closer to the reality they represent, then, according to 
the criteria proposed by Wald et al.(1997)., the Brovey, IHS, 
and PCA fusion methods meet this objective. However, one 
limitation of such methods is some distortion of spectral 
characteristics in the original multispectral images. Recently 
developments in wavelet analysis provide a potential solution  
to these drawbacks. For example, Nunez et al.(1999)  developed 
an approach to fuse a high-resolution panchromatic image with 
a low-resolution multispectral image based on wavelet 
decomposition. Ranchin and Wald designed the ARSIS concept 
for fusing high spatial and spectral resolution images based on 
the multiresolution analysis of two-band wavelet transformation.  
 
Wavelet-based image fusion method provides high spectral 
quality of the fused satellite images. However, the fused image 
by Wavelets have much less spatial information than those by 
the Brovey, IHS, and PCA methods. The spatial information of 
fused image is an important factor as much as the spectral 
information in many remote sensing applications. In particular, 
this improves the efficiency of the image fusion application, 

such as unsupervised image classification. In other words, it is 
necessary to develop advanced image fusion method so that the 
fused images have the same spectral resolution as the 
multispectral images and the same spatial resolution as the 
panchromatic image with minimum artifacts. 
  
Recently, other multiscale systems have been developed, which 
include in particular ridgelets (Candes, 1999) and curvelets 
( Candes et al, 1999;Starck et al,2002), and these are very 
different from wavelet-like systems. Curvelets and ridgelets take 
the form of basis elements which exhibit very high directional 
sensitivity and are highly anisotropic. Therefore,  the curvelet 
transform represents edges better than wavelets, and is well-
suited for multiscale edge enhancement(Starck et al,2002).   
 
In this paper, we introduce a new image fusion method based on 
the curvelet transform. The fused image using curvelet-based 
image fusion method represents almost the same detail as the 
original panchromatic image because curvelets represent edges 
better than wavelets, and the same colour as the original 
multispectral images because we use the wavelet-based image 
fusion method naturally in our algorithm. Therefore, this new 
method is an optimum method for image fusion. We develop a 
new approach for fusing IKONOS pan and multispectral images 
based on the curvelet transform.  
 
The structure of this paper is as follows. The next section 
describes the theoretical basis of the ridgelets and curvelets. 
Then, a new image fusion approach for IKONOS pan and 
multispectral images based on the curvelet transform is 
presented. This is followed by a discussion of the image fusing 
experiments. Next, the experimental results are analysed. 
Furthermore, the proposed method is compare with the previous 
methods developed for image fusion, such as the wavelet 
method and the IHS method.  
 



 

2. CONTINUOUS RIDGELET TRANSFORM 

The  two-dimensional continuous ridgelet transform  in 2
R  can  

be defined as follows(Candes, 1999; Starck et al, 2002). We 
pick a smooth univariate function :R Rψ →  with sufficient 
decay and satisfying the admissibility condition  
 

                              
2 2ˆ ( ) / dψ ξ ξ ξ < ∞�                          (1) 

 
which holds if, say, ψ has a vanishing mean ( ) 0t d tψ =� .  We 

will suppose that ψ is normalized so that 2 2ˆ ( ) 1
0

dψ ξ ξ ξ
∞ − =� . 

For each 0a > , each b R∈  and each [0, 2 )θ π∈ , we 

define the bivariate ridgelet 2 2
, , :a b R Rθψ →  by  
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A ridgelet is constant along lines 1 2cos sinx x constθ θ+ = . 

Transverse to these ridges it is a wavelet. 
 

Given 2 2( )∈f L R , we define its ridgelet coefficients by  
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If 1 2 2 2( ) ( )∈ ∩f L R L R , then we have the exact reconstruction 
formula 
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and a Parseval relation 
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Hence, much like the wavelet or Fourier transforms, the identity 
(4) expresses the fact that one can represent any arbitrary 
function as a continuous superposition of ridgelets. Discrete 
analogs of (4) and (5) exists; see (Candes, 1999) or (Donoho, 
2000) for a slightly different approach.  
 
2.1 Radon Transform 
 
A basic tool for calculating ridgelet coefficients is to view 
ridgelet analysis as a form of wavelet analysis in the Radon 
domain.  

The Radon transform  2 2: ( )R L R
2 ([0, 2 ],π→ L

2 ( ))L R   is 
defined by  
 

       1 2 1 2 1 2( , ) ( , ) ( cos sin )Rf t f x x x x t dx dxθ δ θ θ= + −�       (6) 

 

where δ  is the Dirac distribution. The ridgelet coefficients 

( , , )a bf θℜ of an object f  are given by analysis of the Radon 

transform via 
 

             1/ 2( , , ) ( , ) (( ) / )a b dtf Rf t a t b aθ θ ψ−ℜ = −�           (7) 

 
Hence, the ridgelet transform is precisely the application of a 1-
dimensional wavelet transform to the slices of the Radon 
transform where the angular variable θ is constant and t is 
varying.  
 
2.2 Ridgelet Pyramids 
 

Let Q denote a dyadic square  1 12 1 2[ / , ( ) / )s s
Q k k= + ×  

2 22 1 2[ / , ( ) / )s s
k k + and let Q be the collection of all such 

dyadic squares. We write Qs for the collection of all dyadic 

squares of scale s . Associated to the squares QsQ∈  we 
construct a partition of energy as follows. With ω  a nice 

smooth window obeying 
1 2,

2
1 1 2 2( , ) 1k k x k x kω − − =� , we dilate 

and transport ω  to all squares Q  at scale s , producing a 

collection of windows ( )
Q

ω such that the 2s
Q

ω , QsQ∈ , make 

up a partition of unity. We also let QT donote the transport 

operator acting on functions g via 
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With these notations, it is not hard to see that  
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and, therefore, summing the above equalities across squares at a 
given scale gives  
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The identity (9) expresses the fact that one can represent any 
function as a superposition of elements of the form  

, ,Q Q a bT θω ψ ; that is, of ridgelet elements localized near the 

squares Q . For the function , ,Q a bT θψ is the ridgelet 

, ,Q Q Qa b θψ with parameters obeying 

 

2 sa aQ
−= ,   1 22 cos 2 sins sb b k kQ θ θ− −= + + ,   Qθ θ=  

 

and, thus, , ,Q Q a bT θω ψ  is a windowed ridgelet, supported near 

the square Q , hence the name local ridgelet transform.  
 
The previous paragraph discussed the construction of local 

ridgelets of fixed length, roughly 2 s− ( s fixed). Letting the 



 

scale s vary defines the multiscale ridgelet dictionary  

, ,{ :Q
a b sθψ ≥

0
, Q , 0, , [0, 2 )}ss Q a b R θ π∈ > ∈ ∈ by  

 

, , , ,Q Q

Q
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that is, a whole pyramid of local ridgelets at various lengths and 
locations. This is, of course, a massively overcomplete 
representation system and no formula like (9) is available for 
this multiscale ridgelet pyramid, because it is highly 
overcomplete.  
 
2.3 Discrete Ridgelet Transfrom(DRT) 
 
A basic strategy for calculating the continuous ridgelet 
transform is first to compute the Radon transform ( , )Rf tθ and 
second to apply a one-dimensional wavelet transform to the 
slices ( , )Rf θ ⋅ . 
 
A fundamental fact about the Radon transform is the projection-
slice formula(Deans, 1983) :  
 

             2ˆ ( cos , sin ) ( , ) i tf Rf t e dtπ ωω θ ω θ θ −= � .        (10) 

 
This says that the Radon transform can be obtained by applying 
the one-dimensional inverse Fourier transform to the two-
dimensional Fourier transform restricted to radial lines through 
the origin.  
 
This of course suggests that approximate Radon transforms for 
digital data can be based on discrete fast Fourier transforms. In 
outline, one simply does the following, 
 

1. 2D-FFT 
Compute the two-dimensional Fast Fourier Transform 
(FFT) of f . 

2. Cartesian to polar conversion 
Using an interpolation scheme, substitute the sampled 
values of the Fourier transform obtained on the square 
lattice with sampled values of f̂ on a polar lattice: that 
is, on a lattice where the points fall on lines through the 
origin. 

3. 1D-IFFT 
Compute the one-dimensional Inverse Fast Fourier 
Transform (IFFT) on each line; i.e., for each value of 
the angular parameter. 
 

The use of this strategy in connection with ridgelet transform 
has been discussed in the articles( Deans, 1983 ; Donoho, 1998). 
  

3. DIGITAL CURLET TRANSFORM 

The idea of curvelets (Candes et al, 1999;Starck et al, 
2002;Starck et al, 2003) is to represent a curve as a super-
position of functions of various lengths and widths obeying the 

scaling law 2
width length≈ . This can be done by first 

decomposing the image into subbands, i.e., separating the 
object into a series of disjoint scales. Each scale is then 
analysed by means of a local ridgelet transform.  
 

 
 Figure 1.  Ridgelet transform flowgraph. Each of the 2n  radial 
lines in the Fourier domain is processed separately. The 1-D 
inverse FFT is calculated along each radial line followed by a 1-
D nonorthogonal wavelet transform. In practice, the 1-D 
wavelet coefficients are directly calculated in the Fourier space. 
 
Curvelets are based on multiscale ridgelets combined with a 
spatial bandpass filtering operation to isolate different scales. 
This spatial bandpass filter nearly kills all multiscale ridgelets 
which are not in the frequency range of the filter. In other words, 
a curvelet is a multiscale ridgelet which lives in a prescribed 
frequency band. The bandpass is set so that the curvelet length 
and width at fine scales are related by a scaling law 

2
width length≈ and so the anisotropy increases with decreasing 
scale like a power law. There is very special relationship 
between the depth of the multiscale pyramid and the index of 
the dyadic subbands; the side length of the localizing windows 
is doubled at every other dyadic subband, hence maintaining the 
fundamental property of the curvelet transform which says that 

elements of length about - / 22 j serve for the analysis and 

synthesis of the j th subband 1
[2 , 2 ]

j j+ . While multiscale 
ridgelets have arbitrary dyadic length and arbitrary dyadic 

widths, curvelets have a scaling obeying 2
width length≈ . 

Loosely speaking, the curvelet dictionary is a subset of the 
multiscale ridgelet dictionary, but which allows reconstruction. 
 
The discrete curvelet transform of a continuum function 

1 2( , )f x x  makes use of a dyadic sequence of scales, and a bank 

of filters 
0 1 2( , , , )P f f f∆ ∆ �  with the property that the 

passband filter s∆ is concentrated near the frequencies 

2 2 2
[2 , 2 ]

s s+ , e.g., 
 

2s s f∆ = Ψ ∗ ,    � 2
2

ˆ( ) (2 )s
s

ξ ξ−Ψ = Ψ  

 
In wavelet theory, one uses a decomposition into dyadic 

subbands 1[2 , 2 ]s s+ . In contrast, the subbands used in the 



 

discrete curvelet transform of continuum functions have the 

non-standard form 2 2 2[2 , 2 ]s s+ . This is non-standard feature of 
the discrete curvelet transform well worth remembering.  
 
With the notations of section above, the curvelet decomposition 
is the sequence of the following steps.  
 

• Subband Decomposition. The object f  is decomposed 
into subbands 
 

0 1 2( , , , )f P f f f∆ ∆� � . 

          
• Smooth Partitioning. Each subband is smoothly 
windowed into “squares” of an appropriate scale (of 

sidelength -2 s
� ) 

          

    ( ) QsQs f fs Qω∆ ∆ ∈�  

         
 •  Renormalization. Each resulting square is renormalized 
to unit scale  

          

                                1( ) ( )
Q Q Q

g T fsω−= ∆ ,   QsQ∈ . 

         
 • Ridgelet Analysis. Each square is analysed via the discrete 
ridgelet transform.  

 

In  the  definition,  the  two  dyadic  subbands  2 2 1[2 , 2 ]s s+  and  
2 1 2 2[2 , 2 ]s s+ +  are merged before applying the ridgelet trans-

form. 
 
3.1 Digital Realization 
 
In developing a transform for digital n by n data which is 
analogous to the discrete curvelet transform of a continuous 
function 1 2( , )f x x , we have to replace each of the continuum 
concepts with the appropriate digital concept mentioned in 
section above. Recently, Starck et al.(2002) showed that “ à  
trous” subband filtering algorithm is especially well-adapted to 
the needs of the digital curvelet transform. The algorithm 
decomposes an  n by n image I as a superposition of the form 
 

                      

1

( , ) ( , ) ( , )
J

j

J
I x y c x y x yjω

=

= + �              (11) 

where 
J

c is a coarse or smooth version of the original image 

I and 
j

ω represents “the details of I ” at scale -2 j , see  

(Starck et al, 1998)  for more information. Thus, the algorithm 
outputs 1J + subband arrays of size n n× .[The indexing is 
such that, here, 1j = corresponds to the finest scale(high 
frequencies).] 
 

 
Figure 2.  Curvelet transform flowgraph. The figure illustrates 
the decomposition of the original image into subbands followed 
by the spatial partitioning of each subband(i.e., each subband is 
decomposed into blocks). The ridgelet transform is then applied 
to each block . 
 
3.2 Algorithm 
 
Starck et al.(2002) presented a sketch of the discrete curvelet 
transform algorithm: 
 
      1)  apply the à  trous algorithm with J scales; 
 

2)  set   1 minB B= ; 

3) for 1, ,j J= �  do 

a) partition the subband 
j

ω with a block size 
j

B  

and apply the digital ridgelet transform to each 
block; 

b)  if j modulo 2 =1 then 
1

2
j j

B B
+

= ; 

c) else 
1j j

B B
+

= . 

 

Note that the coarse description of the image 
J

c is not 

processed. Finally, Figure 2. gives an overview of the 
organization of the algorithm. 
 
This implementation of the curvelet  transform is also redundant. 
The redundancy factor is equal to 16 1J + whenever J scales 
are employed. Finally, the method enjoys exact reconstruction 
and stability, because this invertibility holds for each element of 
the processing chain. 
 

4. THE IMAGE FUSION METHOD BASED ON THE 
CURVELET TRANSFORM 

 



 

We  now give the specific operational procedure for the 
proposed curvelet-based image fusion approach. The 
operational procedure is a generic one, although IKONOS 
images were taken as an example in order to illustrate the 
method.  
 

(1) The original IKONOS pan and multispectral images are 
geometrically registered to each other.   

           

         (2) Three new IKONOS pan images 1I , 2I ,and 3I are 

produced,  whose histograms are specified according to 
the histograms of the multi-spectral images R, G, and B, 
respectively.  

          
         (3) By using well-known wavelet-based image fusion 

method, we obtained fused images 1I +R, 2I +G, and 

3I +B, respectively. 

          

        (4) 1I , 2I ,and 3I are decomposed into 1J +  subbands, 

respectively, by applying “ à  trous” subband filtering 

algorithm. Each decomposed image includes 
J

c which is a 

coarse or smooth version of the original image and 

j
ω which represents “the details of I ” at scale -2 j .  

          

        (5) Each  
J

c  is replaced by fused image which obtained 

from (3). 
         
        (6) The ridgelet transform is then applied to each block. 
         
        (7) Curvelet coefficients (or ridgelet coefficients) are 

modified in order to enhance edges in the fused image. 
         

       (8) The Curvelet reconstructions are carried out for 1I , 2I , 

and 3I , respectively. Three new images ( 1F , 2F , and 3F ) 

are then obtained, which reflect the spectral information of 
the original multi-spectral images R, G, and B, and also 
the spatial information of the pan image.  

   

       (9) 1F , 2F , and 3F are combined into a single fused image 

F . 
 
In this approach, we can obtain an optimum fused image which 
has richer information in the spatial and spectral domains 
simultaneously. Therefore, we easily can find out small objects 
in the fused image and separate them. This is the reason why 
curvelets-based image fusion method is very efficient for image 
fusion.  
 

5. EXPERIMENTAL STUDY AND ANALYSIS 

 
5.1 Visual analysis 

Since the curvelet transform is well-adapted to represent pan 
image containing edges and the wavelet transform preserves 
spectral information of original multispectral images, the fused 
image has high spatial and spectral resolution simultaneously.  
 

From the fused image in Figure 3, it should be noted that both 
the spatial and the spectral resolutions have been enhanced, in 
comparison to the original images. The spectral information in 
the original panchromatic image has been increased, and the 
structural information in the original multispectral images has 
also been enriched. Hence, the fused image contains both the 
structural details of the higher spatial resolution panchromatic 
image and the rich spectral information from the multispectral 
images. Compared with the fused result by the wavelet, the 
fused result by the curvelets has a better visual effect in 
IKONOS image fusion in Figure 3.  
 

   
            (a)                               (b)                            (c) 
 Figure 3. (a) Original IKONOS colour images  (b) Wavelet-
based fusion result  (c) Curvelet-based fusion result   
  
5.2 Quantitative analysis 

In addition to the visual analysis, we extended our investigation 
to a quantitative analysis. The experimental result was analysed 
based on the combination entropy, the mean gradient, and the 
correlation coefficient, as used in Shi et al.(2003). 
 

Method C.E M.G C.C 

Original 
Images 
(R,G,B) 

9.5632 
20.9771 
22.2667 
21.6789 

 
 
 

Image 
fused by  
Wavelet 

(F1, F2, F3 ) 

22.3452 
22.7275 
23.7696 
23.9975 

0.9261 
0. 9196 
0.8690 

Image 
fused by  
Curvelet 

(F1, F2, F3 ) 

26.9948 
25.8385 
26.9576 
28.4971 

0.9457 
0.9463 
0.9289 

Image 
fused by  

IHS 
(F1, F2, F3 ) 

16.5482 
23.4475 
23.6813 
23.7283 

0.9692 
0.9951 
0.9581 

         Table 1. A comparison of image fusion by the wavelets, 
the curvelets, and IHS methods. 

 
Table 1 presents a comparison of the experimental results of 
image fusion using the curvelet-based image fusion method, the 
wavelet-based image fusion method, and IHS method in terms 
of combination entropy, the mean gradient, and the correlation 
coefficient.  
 
The combination entropy (C.E.) represents the property of 
combination between images. The larger the combination 
entropy of an image, the richer the information contained in the 
image. In Table 1, the combination entropy of the curvelet-
based image fusion is greater than those of other methods. Thus, 
the curvelet-based image fusion method is better than the 
wavelet and IHS methods in terms of combination entropy.   
 
The mean gradient (M.G.) reflects the contrast between the 
details variation of pattern on the image and the clarity of the 



 

image. And the correlation coefficient (C.C.) between the 
original and fused image shows the similarity in small size 
structures between the original and synthetic images. In Table 1, 
the mean gradient and the correlation coefficient of the curvelet-
based image fusion method are grater than those of the wavelet-
based image fusion method. As previously stated, if the object 
of image fusion is to construct synthetic images which are 
closer to the reality they represent, then the curvelet-based 
image fusion method meet this objective very well. This is one 
of the main advantages of using the curvelet transform for 
image fusion.  
 
Based on the experimental results obtained from this study, the 
curvlet-based image fusion method is very efficient for fusing 
IKONOS images This new method has reached an optimum 
fusion result. 
 

6. CONCLUSIONS 

We have presented a newly developed method based on the 
curvelet transform for fusing IKONOS images. In this paper, an 
experimental study was conducted by applying the proposed 
method, and also other image fusion methods, for fusing 
IKONOS images. A comparison of the fused image from the 
wavelet and IHS method was made.  
 
Based on the experimental results respecting the four indicators 
– the combination entropy, the mean gradient, and the 
correlation coefficient, the proposed method provides a good 
result, both visually and quantitatively, for remote sensing 
fusion.  
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