DMC – PPS and new Features

Christoph Dörstel
Presentation Outline

- Introduction
- Air Borne Sensor Management
- Post Processing
- Outlook
- Summary
Mission Planning

- Transform contract items into most economical mission plan

- Typically requirements defined for:
 - Image Scale or resolution on ground (GSD) or altitude above ground
 - Resulting mapping accuracy
 - Shadow length or sun angle
 - Maximum length of flight line
 - ...

- Typical input:
 - Topographic maps
 - Vector information of project boundaries or infrastructure
 - Elevation information (3D)
 - ...

ISPRS Hannover Workshop 2005
Mission Planning
Mission Planning

- What makes a good mission plan?
 - Full project area coverage
 - Checked for overlap between images and strips (3D)
 - Restricted areas?
 - ...
 - Considers sensors and aircraft specifics
 - Min / max aircraft speed
 - Minimum sensor release cycles
 - ...
 - Considers geometric block stability
 - Cross strip layout or/and IMU
 - Control information needed
 - ...
 - In general
 - Best economical choice
 - Start point for overall Project plan / tracking / accounting …
Photo Flight

- Ready, steady, go …?

- Prepare Mission
 - Define final flight route
 - Load planned mission onto Sensor Control System (ASMS)
 - …

- A closer look into the Aircraft
 - Camera and Navigation Control (ASMS / Pilot Display / Telescope)
 - Imaging Sensor(s) (DMC / RMK-Top)
 - Positioning Sensors (Trimble GPS / Applanix IMU)
 - Stabilized sensor mount (T-AS)
 - …

- The crew

<table>
<thead>
<tr>
<th></th>
<th>Navigation</th>
<th>Select next strip</th>
<th>Start/stop exposure</th>
<th>Change altitude</th>
<th>Monitor sensor</th>
<th>Invalidate strips/photos</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Photo Flight

- In the Aircraft
 - Quality Check in the Air
 - Invalidate function based on video Thumbnails (ASMS-QC)
 - Check image histograms / exposure settings (FDSV)
 - Mission overview based on Thumbnails (AOPV)

- New ASMS Functionality
 - Exposure Range
 - Serial mode
 - Video Contrast
 - Store mission files onto FDS

- ... External Drift control
 - ... Feed T-AS angular position into POS (Gimbal information)
Exposure Range

- Maintain Mission Plan right in the air
- Split planned flight lines

- Define:
 - Number of exposures to cut off
 - Number of strips to correct

- Features:
 - Easy to operate
 - Pilot guided to new line start/end
Serial Mode

- Free serial exposure controlled by v/h

- Define:
 - Overlap
 - Number of images

- Support for:
 - Unplanned exposures
 - Re-fly parts of a strip
 - Usefull for RMK-A
External Drift Control

- Use POS IMU trajectory for drift control
- Image alignment adjustable to track direction

True Track

Desired Track
Mission Report

- Mission successful …?

- First Mission Quality Report
 - Check planned vs. actual situation
 - Mosaik of mission area
 - Project overview based on Video thumbnails

- Prepare Shipping (outbound mission)
 - ASMS Mission information has been copied to FDS already!
 - Field data copy process (Copy data to less expensive disk drives)
What’s the Idea?

- Bulk Processing

- Create 1 distortion free virtual, central perspective image out of the 8 camera heads

Flexible output:

- Various image products (Format, Compression, Pixel resolution, …)
- Rescue original sensitivity measurements (LUT optional)

How does that work?

- Calibration of all Camera Heads mandatory:
 - Geometry
 - Radiometry

- Defined relative position of the 8 cameras in the mount

BUT:

- Camera housing is not stable
- Sensor sensitivity depends on environmental conditions
For each exposure

- Tie point measurements and computation of platform geometry
- Adjustment of sensor sensitivity based on environmental measures and patches along seam line

Tie point measurements
- x,y coordinates in images space

Camera position
- x,y,z and κ are fix for each camera (mechanical design)

Online Calibration (Geometry)
- Adjustment models x,y movement into φ,ω

Online Calibration (Radiometry)
- gain/offset adjustment for each camera
Usage of DMC virtual images

- Central perspective images
- Fixed interior orientation
 - 13768 x 7680 pixel (row, column)
 - 12 µm pixel size (quadratic)
 - Nominal focal length
 - PAN 120.0000 mm
 - MS 25.2632 mm (120/4.75)
- Distortion free images
- For direct use in all photogrammetric standard software
Summarize DMC Post Processing

- Central perspective images for direct use in standard photogrammetric software suites
- DIA to generate LUT
- Final Processing:
 - Run sample images
 - Generate LUT
 - Run sample image with LUT
 - Check images
 - Bulk process images

- BUT
- Processing is still time consuming
 - 2000 images a 2.5 min per image → 5500 min ~ 91h
Sample Configuration
PPS Next Version

PPS Version 4.5.0

Key – Features

- 4 Band High Resolution images
 (no JPEG 2000 compression possible)
- Distributed Processing
- Advanced Settings

... and some more “minor” changes