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ABSTRACT

In this article, we present a new algorithm for the detectionof objects in satellite images. Our method requires a learning
of the specific structures we wish to detect but no “a priori knowledge” about them. Indeed, the user just has to provide
example images of the different objects he wants to find in large images. This algorithm combines an angular local
descriptor and a radial one. These descriptors are rotationinvariant and provide coefficients using the Fourier analysis
on some well-chosen unidimensional signals in the image. These features are computed in the learning images and an
euclidan distance is applied for comparison with the same features computed in the images used for detection. The
efficiency of these features is compared to the first Zernickemoments on a roundabout database extracted from high-
resolution SPOT images in various urban areas.

1 INTRODUCTION

1.1 Goals of the work

During the last decades, the imaging satellite sensors (op-
tical, synthetic aperture radar, and other sensors) have ac-
quired huge quantities of data. Now, the storage of im-
age archives is getting even more enormous, due to the
data collected by a new generation of high-resolution satel-
lite sensors. In order to increase the actual exploitation of
satellite observations, it is very important to set up systems
which are able to selectively access the information con-
tent of image archives. We are interested in this paper to
increase the ability of the state-of-art systems of indexation
to detect specific structures in satellite images. Most of
the actual methods of object detection use a-priori knowl-
edge about the objects. It results in time-costly adapata-
tions when the user wants to detect other types of objects.
We need in fact a method which requires no rules, but im-
age examples of the objects the user wants to detect.

1.2 State of art

Few works have focused on the object detection in satel-
lite images at the resolution of 2,5 meters by pixel. So,
a brief state of art of very generic methods of object de-
tection is presented here. These methods have been devel-
oped for a wide variety of applications like scene analysis,
chromosome classification or target identification. Most
of these methods define a set of features to represent the
image while reducing its dimensionality (Walker, 2000).
After the features have been computed, they are used with
a classification rule to set a label to the image. Depending
on the application, the invariance of the features to certain
kind of transformations (rotation, scale changes, etc.) isre-
quired. Here is a brief description of the main approaches
which seem relevant for our problem.

1.2.1 Object recognition with rotation invariant mo-
ments The algebric invariant features are defined as ra-
tios or powers of moments of the image function. As they
are classic examples, the Zernicke moments are presented
in section 3, and the Hilbert moments are quoted here. Let

I(x, y) be the image function, the Hilbert moment of order
p + q, (p, q ≥ 0) is defined by:

mpq =

∫

R2

xpyqI(x, y)dxdy

The seven invariant features of Hu are calculated from these
values (Choksuriwong, 2005), they are invariant by trans-
lation, rotation, and scale changes. The value ofmpq corre-
sponds to the projection ofI(x, y) on the polynomial basis
xpyq. This basis is not orthogonal, which implies that it is
time expensive to reconstruct the image from them. More-
over, it implies that the information contained in thempq

is redundant. That is why the Zernicke moments appear to
be more interesting and will be presented in more details
later in this paper.

1.2.2 Object recognition with points of interest This
method consists in extracting points of interest (for exam-
ple with the Harris detector), and calculating rotation in-
variant features at these points (Mikolajczyk, 2003; Dorko,
2004; Lowe, 2004). At the location of the points of inter-
est, the features are computed by deriving the local grey
level values onto order three. To derive the local grey val-
ues in a rotation invariant way, the direction of derivation
has to be the direction of the gradient. To detect an ob-
ject, the points in the learning image are matched with the
points of the test image. A strong point of this method is
that it is robust to modifications of the background and to
occultations. However, the information which is extracted
from the object is very local because the features are only
computed in a very small area near the points of interest.

1.2.3 Graph of attributes In this approach, the image
is first reduced to a set of primitive shapes (segments and
arcs for example). Then, from this simplified representa-
tion of the image, we build a graph whose nodes are the
primitive shapes and arcs are spatial relationships between
them (angle of intersection, distance, etc.). From the learn-
ing of images of a structure such as a roundabout, we can
build the corresponding graph which will be used for the
detection in the images. This method may be used for
roundabout and bridge detection (Erus, 2005; Brun, 2005).
A lot of information is extracted from the structure of the



objects, which makes this method promising. But such
a system requires complicated graph matching algorithms
and seems thus difficult to set up.

1.3 Presentation of the work

The method presented in this paper is based on the use of
a new local descriptor which extract features on a circu-
lar region of an image. Being given a point which defines
the center of the circular region of analysis, the descriptor
analyses the pixels on a few circles, and on some radii of
the circles. The center of the example images must coin-
cide with the center of the objects. The descriptor is cal-
culted in the center of each example image, and extracts
a vector of features. Then, the features are calculted for
each point of the image in which we want to detect the
objects, and are compared with the features of the example
images. This descriptor will be called the RAFA descriptor
(Radial and Angular Fourier Analysis). We test the RAFA
descriptor on a database of roundabouts in optical SPOT5
images at 2,5 meters of resolution. In fact, the occurrence
of roundabouts in european urban areas is rather high, and
their variability is not too important, which makes it is easy
to evaluate this descriptor on that kind of object. We com-
pare the efficiency of this descriptor with the Zernicke mo-
ments which are often used as rotation-invariant features
for object detection. We will note that the performances of
the RAFA descriptor are better than the performances of
the Zernicke moments for this database.

2 PRESENTATION OF THE RAFA DESCRIPTOR

Many methods of object detection based on a learning pro-
cess use local descriptors which extract vectors of features
at given points of the image. These vectors of features are
then compared with reference vectors in order to detect the
objects. The method presented here relies on a new local
descriptor which is rotation invariant and extracts geomet-
rical characteristics of the objects. The descriptor we de-
scribe here contains in fact one descriptor which extracts
features about the repartition of the pixels on concentric
circles, and one descriptor which extracts features about
the repartition of pixels on the radii of these circles.

2.1 Angular descriptor

For a given point O, let us considerN circles of radius
kR/N of center O and theN unidimensionnal signals given
by the value of the grey level pixels on these circles. The
Fourier transform of each of these signals is calculated and
only the modules of thep first coefficient are kept so that
the features may be rotation-invariant. Let us note them:
V1, V2, V3, ..., VN for each circle, whereVi = (ci

1, c
i
2, ..., c

i
p).

The featurescj
i are then normalized by the quantity de-

fined by
√

∑p

i=1

∑N

j=1(c
j
i )

2. Thus, if the image function

I(x, y) is multiplied by a factorλ, the features remain un-
changed. To compare two objects, all the features extracted
from each circle are put in a single vector and the euclid-
ian distance is used to measure thier similarity. An other
interesting way to compute a distance between two set of

Figure 1: Explicative diagram of the angular descriptor.
V1, V2, V3 are the vectors of features extracted on the
unidimensional signals defined by the circles.

angular features is to compute the edition distance between
the two vectors. It provides a kind of scale invariance.
The length of the circumferences of the different circles
being different, the length of the different signals are dif-
ferent, and, if we use this method of distance computation,
it may be appropriate to interpolate all the different signals
to the same length before computing the features. With our
database, the performance of the results did not appear to
be significantly better with the edition distance than with
the euclidian distance. To improve the robustness of this
descriptor, we can also, instead of keeping directly the grey
value of a pixel of angleθ, get a ponderated mean of the
value of the pixels which have an angleθ and a radius be-
tween[r − R/2N, r + R/2N ]. The parameters that have
to be fixed by the operator are: the number of circles, the
radius of the biggest circle, the number of Fourier coeffi-
cients which are kept. The good choice of these parameters
is crucial for the efficiency of this descriptor.

2.2 Radial descriptor

The previous descriptor extracts geometrical features only
on concentric circles, and thus does not give information
about the relationship between pixels which are at different
distances to the center of the circles. In order to make up
for this shortcoming, we introduce an other descriptor. For
an image with a given point O, we draw M segments wich
have a length R ( the length of the biggest circle of the pre-
vious section), of anglesk2π/M with one of their extrem-
ity in O. We then calculate the Fourier transform of the uni-
dimensional signals obtained by considering the grey value
of the circles from the point O to the other extremity. Both
the real and the complex part of the coefficients are kept.
M vectors of features are thus computed:V1, V2, ..., VM ,
one for each radius, whereVi = (ci

1, c
i
2, .., c

i
n). The coef-

ficientscj
i are then normalized by the quantity defined by:

√

∑n

i=1

∑M

j=1(c
j
i )

2. Thus, if the image functionI(x, y) is
multiplied by a factorλ, the features remain unchanged. To
compare two objects, the best alignment is computed be-
tween the vectorsV 1

1 , V 1
2 , V 1

3 , ..., V 1
M andV 2

1 , V 2
2 , V 2

3 , ..., V 2
M

so that the features extracted by this radial descriptor may
be as rotation-invariant as possible. Thus, to calculate the



Figure 2: Explicative diagram of the radial descriptor. W1,
W2, W3, W4 are the vectors of features extracted on the
unidimensional signals defined by the four radius.

distance, the following expression is used:

min
translationsπ on [1,M ]

(

n
∑

i=1

M
∑

j=1

(cj

1,π(i) − cj
2,i)

2)

To improve the robustness of this descriptor, we can also,
instead of keeping directly the grey value of a pixel of ra-
diusr and of angleθ, get a ponderated mean of the value
of the pixels which have a radiusr and an angle between
[θ − π/N, θ + π/N ]. The parameters that have to be fixed
are: the number of radius and the number of Fourier coef-
ficients which are kept.

2.3 Discussion about the descriptors

The descriptor is rotation-invariant, and invariant if thegray-
level fonctionI(x, y) is multiplied by a constant factorλ.
The descriptor is rather noise-robust because we just keep
the first Fourier coefficients. However, the number of coef-
ficients we keep is high. For example, if we use for the an-
gular descriptor four circles with five coefficients for each
circle, and for the radial descriptor eight radius with four
coefficents for each segment, we then have already 52 co-
efficients. Moreover, the radius of the biggest circle is a
very critical parameter, because the zone of analysis has to
fit rather precisely the shape of the object. Otherwise, the
circles and the radius will intersect other objects, this will
result in additional noise. The center of the object must
also be determined rather precisely, because both the ra-
dial and angular descriptors are not translation invariant.
To detect an object in the image, we then have to calcu-
late the descriptor in each point of the image. And for the
learning stage, we have to make the center of the object
coincide with the the center of the example image.

3 ZERNICKE MOMENTS

3.1 Definition of the Zernicke moments

The Zernicke moments are calculated by projecting the
image fonctionI(x, y) on a set of complex polynomials
which form a complete orthogonal set over the interior of
the unit circle (Khotanzad, 1990; Choksuriwong, 2005).
Let the set of these polynomials be denoted by{Vmn(x, y)}.
The form of these polynomials is:

Vmn(x, y) = Vmn(r, θ) = Rmn exp(jmθ)

wheren is a positive integer or zero, andm is a positive
or negative integer subject to constraint|m| ≤ n. Rnm(ρ),
the radial polynomial, is defined by:

Rnm(ρ) =

n−|m|
2

∑

s=0

(−1)s(n − s)!

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
ρn−2s

The Zernicke moments are the projection of the image func-
tion onto these orthogonal basis functions:

Anm =
n + 1

π

∫

x

∫

y

f(x, y)V ∗
nm(ρ, θ), x2 + y2 ≤ 1

For a digital image, the integrals are replaced by summa-
tions to get:

Anm =
n + 1

π

∑

x

∑

y

f(x, y)V ∗
nm(ρ, θ), x2 + y2 ≤ R2

Now, if we consider a rotation of the imageI(r, θ) through
angleα: Iα(r, θ), with the equation:

Iα(α, θ) = I(r, θ − α)

We find that:

Aα
nm = Anm. exp(−jmα)

And if we take the modules, we get:

|Aα
nm| = |Anm|

So, the modules of the moments are rotation-invariant, and
we can keep them as features of the image. We can also
notice thatA∗

nm = An,−m and thus|Anm| = |An,−m|,
and so we just keep the|Anm| coefficients, for0 ≤ m < n.

3.2 Reconstruction of an image

Bearing in mind the fact that the Zernicke moments are the
coefficient of the decomposition of the image on a polyno-
mial basis, we can evaluate the quality of the reconstruc-
tion of the image when we keep a certain number of co-
efficients. Let us notef(x, y) the image function (whose
value is included in [0,255]), andfN (x, y) the image func-
tion reconstructed withN moments:

fN (x, y) =

N
∑

n=0

∑

m<n

(AnmVnm(ρ, θ))

We define a rate of error reconstructionTN by

TN =

∑

x,y(|fN (x, y) − f(x, y)|)
∑

x,y f(x, y)

On the roundabout database, we notice that, if we keep
more than 65 coefficients,TN < 0.1, we thus have a good
reconstruction. The figure 2 shows the reconstruction of a
roundabout with an increasing number of moments.
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Figure 3: (a): image of a roundaboutc©CNES. Then, re-
construction with (b): 10, (c): 30, (d): 50, (e): 70 and (f):
90 coefficients.

(a)

(b)

Figure 4: (a): clean roundaboutc©CNES. (b): noisy round-
about c©CNES.

4 EXPERIMENTAL RESULTS

4.1 Presentation of the database

We have set up a database of 230 roundabouts extracted
from SPOT5 images at 2,5 meter of resolution. Some round-
abouts are quite isolated, but other roundabouts are not
very clear and appear wih a lot of noise and other objects
around them (cf Fig.4).

4.2 Qualitative results: detection of the roundabouts
in SPOT5 images

4.2.1 Procedure Being givenN example images of round-
abouts and an image where we want to detect roundabouts,
we extract one vector of features for each example image
at the center of the image. Then we extract the features
with our descriptor at every pixel of the image and we cal-
culate a distance with the reference vectors by computing
a ponderated mean with the k nearest reference vectors. To
visualise the efficiency of the descriptor, we generate im-
ages where the value of the grey level is all the more high
than the distance is low (cf Fig.5).

4.2.2 Results The results depend a lot on the noise and
the environment of the roundabout in the image which make



it more or less difficult to detect. But it depends also on
the good choice of the parameters, and on the learning
database. If all these conditions are satisfied, we note that
the results are quite good. However, as the algorithm com-
putes the features in every pixel, the calculus can take a
significant time, depending on the number of circles, the
number of radius, and the size of the image. The algorithm
takes approximatly ten minutes for a512×512 image with
a processor of 1,6 GHz for 5 circles and 8 radius.

4.3 Quantitative results: classification of example im-
ages

Even if the detection results of the previous sections in
large images are useful to evaluate qualitatively the per-
formances of the RAFA descriptor, it is rather difficult to
obtain quantitative results in this way because it is neces-
sary to take into account the localisation of the detection
and thus to set a precise metric. An easier way to get quan-
titative results is to perform a classification directly on the
small example images of roundabouts.

4.3.1 Procedure We divided the database of roundabouts
in two sets: a learning set (85% of the roundabouts of the
database) and a test set (15% of the roundabouts of the
database). In the test set, we added 150 images of urban
areas in which there are no roundabouts. We compute a
vector of features for each image and we compare the test
vectors to the learning vectors by computing a ponderated
mean of the k nearest learning vectors. We make the tresh-
old vary and we calculate the rate of false alarms and of
false rejections.

4.3.2 Results Results are shown on figure 6. We can
see that the performances of the RAFA descriptor are better
than those of the Zernicke moments with a similar number
of features (respectively 64 and 70). Indeed, the equal er-
ror rate of the RAFA descriptor is 17%, whereas the equal
error rate of the Zernicke moments is 40%. However, a fea-
tures selection would probably increase the performances
while reducing the number of features.

5 CONCLUSION

We presented in this paper a new local descriptor in order
to detect objects after a specific learning from example im-
ages of the structure. This descriptor computes characteris-
tics about radial and angular distribution of the pixels, and
extracts geometric information about the object. This de-
scriptor is invariant by rotation and by multiplication of the
image function by a constant factor. However, due to the
fact that this relies on a strong hypothetis about the shape
of the object, the presence of other objects in the zone of
analysis or important variations of the size of the object
deteriorate the results. The performance of this descriptor
is compared to an other local descriptor which is also ro-
tation invariant. The evaluation is done with a database of
roundabouts extracted from SPOT5 images of urban areas
at 2,5 meters of resolution. On this database, we note that
the results of our descriptor is better than those of Zernicke

Figure 5: result of detection in a SPOT5 imagec©CNES.
The three darkest spots correspond to the three clearest
roundabouts. So they can be detected with a well chosen
threshold. However, they are other crossroads in this im-
age which can be interpreted as roundabouts but they are
not detected by the RAFA descriptor.
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Figure 6: (a) rate of false alarms and of false rejections
with the RAFA descriptor (67 coefficients). (b) rate of false
alarms and of false rejections with the 70 firsts Zernicke
moments.

moments, and that the detection results are quite satisfac-
tory, bearing in mind the simplicity of the approach. The
method presented here si the begining of a work whose aim
is to interpret satellite images. The objects detected in the
image are seen as a collection of discrete items. Models
like LDA (Latent Dirichlet Allocation) can deal with such
collections of discrete items while conserving essential sta-
tistical information and give an explicit representation of
an image (Blei, 2003).

We thank Mr Alain Giros from the CNES for providing us
the images we used in this paper to evaluate our algorithms.
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