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ABSTRACT: 
 
Reduction of speckle noise is one of the most important processes to increase the quality of radar coherent images.  Image variances 
or speckle is a granular noise that inherently exists in and degrades the quality of the active radar and SAR images.  Before using 
active radar and SAR imageries, the very first step is to reduce the effect of Speckle noise.  Most of speckle reduction techniques 
have been studied by researchers; however, there is no comprehensive method that takes all the constraints into consideration.  
Filtering is one of the common methods which is used to reduce the speckle noises.  This paper compares six different speckle 
reduction filters quantitatively using both simulated and real imageries.  The results have been presented by filtered images, 
statistical tables and diagrams.  Finally, the best filter has been recommended based on the statistical and experimental results. 
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1. INTRODUCTION 

According to Lillesand and Kiefer (2000) remote sensing is the 
science and art of obtaining information about an object, area, 
or phenomenon through the analysis of data acquired by a 
device that is not in contact with the object, area, or 
phenomenon under investigation.  Based on the wavelength in 
which the system works, remote sensing is categorized into two 
different groups, i.e., optical and microwave.  Optical remote 
sensing uses visible and infrared waves while microwave 
remote sensing uses radio waves. 

As a microwave remote sensing, RADAR (Radio Detection 
And Ranging) sends out pulses of microwave electromagnetic 
radiation and measures the strength as well as time between the 
transmitted  and reflected pulses to determine both the type of 
reflector and its distance from the transmitter (Raney, 1998).  
Different pulse intervals, different wavelengths (which ranges 
between less than 1 mm to 1 m), different geometry and 
polarizations can all be used to determine the roughness, 
geometry and moisture content of the earth surface (Henerson 
and Lewis, 1998).  During the past two decades different 
satellites using RADAR sensors have been put into the orbit.  
SEASAT, SIR-A, SIR-B, SIR-C, ERS-1, ERS-2, ALMAZ, 
JERS-1, and RADARSAT are some of satellite missions which 
use RADAR technology.  

A Synthetic Aperture Radar (SAR) system illuminates a scene 
with microwaves and records both the amplitude and the phase 
of the back-scattered radiation, making it a coherent imaging 
process.  The received signal is sampled and converted into a 
digital image.  The field recorded at pixel x, denoted E(x), can 
be written as (InfoSAR Ltd, 2006 ) 
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where the summation ranges over the scatterers, a(s) and )(sϕ  
are respectively the amplitude and phase of the signal received 
from scatterer s, and h is the instrument (or point-spread) 
function. The value of h is near 1 when s is in or near the 
resolving cell corresponding to pixel x, and near zero otherwise.  
Assuming that h is translation-invariant (does not depend on x) 
then it can be written as a one-parameter function h(s-x). 

The detected field E is an array of complex numbers.  The 
square of the modulus of the field at x is called the detected 
intensity at x; the square-root of the intensity is called the 
envelope or the amplitude.  This is not the same as the 
amplitude of the received signal because the received field is 
perturbed by the instrument function. The amplitude of the 
received signal, a(s), is called the reflectivity, and its square is 
called the surface cross-section.  Unfortunately, this is 
contaminated with speckle noise and the goal of all speckle 
noise reduction methods is to recover it.  

In compare to optical remote sensing, radar imaging has some 
advantages.  First, as an active system, it is a day/night data 
acquisition system.  Second, considering the behaviour of 
electromagnetic waves in the range of RADAR wavelength, it 
can be seen that atmospheric characteristics such as cloud, light 
rain, haze, and smoke has little effect on the capability of 
RADAR data acquisition system.  This makes RADAR as an 
all-weather remote sensing system.  Last but not least, as the 
RADAR signals partially penetrate into soil and vegetation 
canopy, in addition to surface information, it can provide 
subsurface information too. 

Inherent with all RADAR imageries is speckle noise which is 
nothing else but variation in backscatter from inhomogeneous 
cells.  Speckle noise gives a grainy appearance to radar 
imageries.  It reduces the image contrast which has a direct 
negative effect on texture based analysis of the imageries 
(Raney, 1998).  Meanwhile, speckle noise also changes the 
spatial statistics of the underlying scene backscatter which in 



 

turn makes the classification of imageries a difficult task 
(Durand et al., 1987).  Obviously, it is seen that to interpret 
RADAR imageries correctly one has to reduce (ideally 
remove!) the effect of speckle noise.  However, as the speckle 
noise reduction/removal process changes the image as well, one 
should use proper filter to keep the image degradation 
minimum.  This paper reviews the speckle noise reduction 
methods and among all studies the effect of mean, median, Lee-
sigma, local region, Lee, Gamma-MAP, and Frost filters with 
different kernel sizes on the SAR imageries.  

 

2. SPECKLE NOISE AND ITS REDUCTION 

Radar waves can interfere constructively or destructively to 
produce light and dark pixels known as speckle noise.  Speckle 
noise is commonly observed in radar (microwave or millimetre 
wave) sensing systems, although it may appear in any type of 
remotely sensed image utilizing coherent radiation.  Like the 
light from a laser, the waves emitted by active sensors travel in 
phase and interact minimally on their way to the target area.  
After interaction with the target area, these waves are no longer 
in phase because of the different distances they travel from 
targets, or single versus multiple bounce scattering.  Once out 
of phase, radar waves can interact to produce light and dark 
pixels known as speckle noise.  Speckle noise in radar data is 
assumed to have multiplicative error model and must be 
reduced before the data can be utilized otherwise the noise is 
incorporated into and degrades the image quality.  Ideally, 
speckle noise in radar images must be completely removed.  
However, in practice it can be reduced significantly.  Reducing 
the effect of speckle noise permits both better discrimination of 
scene targets and easier automatic image segmentation.   
 
Generally speaking, speckle noise can be reduced by multi-look 
processing or spatial filtering (Raney, 1998).  While multi-
looking process is usually done during data acquisition stage, 
speckle reduction by spatial filtering is performed on the image 
after it is acquired.  No matter which method is used to reduce 
the effect of speckle noise, the ideal speckle reduction method 
preserves radiometric information, the edges between different 
areas and spatial signal variability, i.e., textural information.  
As this paper focuses on the effect of spatial filtering, interested 
readers can refer to Raney (1998) for more information on 
multi-look processing techniques.   
 
The spatial filters are categorized into two different groups, i.e., 
non-adaptive and adaptive.  Non-adaptive filters take the 
parameters of the whole image signal into consideration and 
leave out the local properties of the terrain backscatter or the 
nature of the sensor.  These kinds of filters are not appropriate 
for non-stationary scene signal.  Fast Fourier Transform (FFT) 
is an example of such filters.  On the other hand, adaptive filters 
accommodate changes in local properties of the terrain 
backscatter as well as the nature of the sensor.  In these types of 
filters, the speckle noise is considered as being stationary but 
the changes in the mean backscatters due to changes in the type 
of target are taken into consideration.  Adaptive filters reduce 
speckles while preserving the edges (sharp contrast variation).  
These filters modify the image based on statistics extracted 
from the local environment of each pixel.  Adaptive filter varies 
the contrast stretch for each pixel depending upon the Digital 
Number (DN) values in the surrounding moving kernel.  
Obviously, a filter that adapts the stretch to the region of 
interest (the area within the moving kernel) would produce a 

better enhancement.  Mean, median, Lee-Sigma, Local-Region, 
Lee, Gamma MAP, Frost are examples of such filters.  Studying 
the effects of these filters are the subject of this paper therefore 
they are studied in a bit more detailed in the next section.     
 
2.1 Speckle Filtering 

As implicitly mentioned above, speckle filtering consists of 
moving a kernel over each pixel in the image and applying a 
mathematical calculation using the pixel values under the kernel 
and replacing the central pixel with the calculated value.  The 
kernel is moved along the image one pixel at a time until the 
entire image has been covered.  By applying the filter a 
smoothing effect is achieved and the visual appearance of the 
speckle is reduced. 
 
2.1.1  Mean Filter:  The Mean Filter is a simple one and does 
not remove the speckles but averages it into the data.  Generally 
speaking, this is the least satisfactory method of speckle noise 
reduction as it results in loss of detail and resolution.  However, 
it can be used for applications where resolution is not the first 
concern.   
 
2.1.2  Median Filter:  The Median filter is also a simple one 
and removes pulse or spike noises.  Pulse functions of less than 
one-half of the moving kernel width are suppressed or 
eliminated but step functions or ramp functions are retained.   
 
2.1.3  Lee-Sigma and Lee Filters:  The Lee-Sigma and Lee 
filters utilize the statistical distribution of the DN values within 
the moving kernel to estimate the value of the pixel of interest.  
These two filters assume a Gaussian distribution for the noise in 
the image data.  The Lee filter is based on the assumption that 
the mean and variance of the pixel of interest is equal to the 
local mean and variance of all pixels within the user-selected 
moving kernel.  The formula used for the Lee filter is (Lee, 
1981). 
  
 DNout = [Mean] + K[DNin - Mean] (2)  
 
where Mean = average of pixels in a moving window 
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The Sigma filter is based on the probability of a Gaussian 
distribution.  It is assumed that 95.5% of random samples are 
within a 2 standard deviation range.  This noise suppression 
filter replaces the pixel of interest with the average of all DN 
values within the moving kernel that fall within the designated 
range (Lee, 1983). 
 
2.1.4  Local Region Filter:  The Local Region filter divides 
the moving kernel into eight regions based on angular position 
(North, South, East, West, NW, NE, SW, and SE).  For each 
region, the variance is calculated, and then the algorithm 



 

compares the variances of the regions surrounding the pixel of 
interest.  The pixel of interest is replaced by the mean of all DN 
values within the region with the lowest variance. 
 
2.1.5  Gamma-MAP Filter:  The Maximum A Posteriori 
(MAP) filter is based on a multiplicative noise model with non-
stationary mean and variance parameters. This filter assumes 
that the original DN value lies between the DN of the pixel of 
interest and the average DN of the moving kernel.  Moreover, 
many speckle reduction filters assume a Gaussian distribution 
for the speckle noise.  However, recent works have shown this 
to be invalid assumption.  Natural vegetated areas have been 
shown to be more properly modelled as having a Gamma 
distributed cross section.  The Gamma-Map algorithm 
incorporates this assumption and its exact formula is the 
following cubic equation (Frost et al., 1982): 
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where I

)
=  sought value  

 I  = local mean  
 DN = input value  
 σ = the original image variance. 
 
The Gamma-MAP logic maximizes the a posteriori probability 
density function with respect to the original image.  It combines 
both geometrical and statistical properties of the local area 
(Lopes et al., 1990).  The filtering is controlled by both the 
variation coefficient and the geometrical ratio operators 
extended to the line detection (Touzi et al., 1998). 
 
2.1.6  Frost Filter:  The Frost filter replaces the pixel of 
interest with a weighted sum of the values within the nxn 
moving kernel. The weighting factors decrease with distance 
from the pixel of interest. The weighting factors increase for the 
central pixels as variance within the kernel increases. This filter 
assumes multiplicative noise and stationary noise statistics and 
follows the following formula: 
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 where )2/2)(2/4( In σσα =  
 k = normalization constant 

 I = local mean 
 σ =local variance 
 σ = image coefficient of variation value 

  |t| = |X-X 0 | + |Y-Y 0 |, and 
 n = moving kernel size (Lopes et al., 1990). 
 
 

3. EXPERIMENTAL RESULTS 

3.1 Simulated Imagery 

The simulated imagery used for numerical experiment is a 
227x167 pixel image with sharp edges (Figure 1).  A uniformly 
distributed multiplicative noise with mean zero and variance 
0.05 is added to the simulated imagery.  To test the efficiency 
of the filters mentioned above, at the first step a 3x3 kernel is 
used for the filters.  All of the filters are applied to the noise 
contaminated imagery.  Figure 2 shows the noisy as well as the 
filtered image using a 3x3 kernel.   

 

 
In order to evaluate the result of filters quantitatively, the 
following three parameters are defined and calculated: 
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where Ŝ  = noisy image 
   S = original image 
  K = image size 
 
The standard signal-to-noise ratio (SNR) is not adequate to 
evaluate the noise suppression in the case of multiplicative 
noise.  Instead, a common way to achieve this in coherent 
imaging is to calculate the signal-to-noise (S/MSE) ratio, 
defined as (Andrews and Hunt, 1977), (Starck  et al., 1998): 
 

 
 

Figure1. The original simulated image 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 2. (a) Noisy image, (b) Mean, (c) Median, (d) 
Lee-Sigma, (e) Local Region, (f) Lee, (g) Gamma-MAP, 

and (h) Frost filters all with 3x3 kernel  
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This measure corresponds to the classical SNR in the case of 
additive noise.  In SAR imaging one is interested in speckle 
noise suppression while at the same time preserving the edges 
and linear structures of the original image.  Therefore, in 
addition to the above quantitative performance measures, 
another measure is also considered for edge preservation.  More 
specifically, [32] and [33] have defined the parameter β  as: 
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where S∆  and Ŝ∆   are the high-pass filtered versions of  S and 
Ŝ  respectively, obtained with a 3x3 pixel standard 
approximation of the Laplacian operator.  The Laplacian high-
pass filter used here for this purpose is as follows (Gonzalez 
and Woods, 2002):  

 












−
−−

−
=

010
141

010
FilterLaplacian          (8) 

 
Also the operator Γ  denotes: 
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The correlation measure β  should be close to unity for an 
optimal effect of edge preservation.  These three quantities are 
used to evaluate the speckle noise reduction method only when 
synthetic speckled image is used because the original noise-free 
image is needed. 
 
For the filtered images all three quantities, i.e., MSE, SNR, and 
β  are computed.  The results are summarized in Table 3.  It is 
seen that Gamma-Map, Frost, and Lee filters have the best 
results.   
 

β SNR MSE Filter Type 
0.5389 23.0073 135.0792 Denoised Image 
0.7754 24.6988 91.5039 Mean 
0.7062 22.4679 152.9449 Median 
0.8631 27.0347 53.4389 Lee-Sigma 
0.6940 22.5260 150.9129 Local-Region 
0.8645 27.6905 45.9487 Lee 
0.9599 31.1782 20.5826 Gamma-MAP 
0.9096 29.3814 31.1305 Frost  

 
Table. 3 Quantitative evaluation of the filters using a 3x3 kernel 
 
To evaluate the effect of the kernel size on the performance of 
the filters, in the second step, the kernel size is extended to 5x5 
and 7x7 pixels.  The new kernels are used with just Gamma-
Map, Frost, and Lee filters as these filters with the 3x3 kernel 
have shown good results.  Tables 4 to 6 summarize the 
quantitative results of these tests. 

 
MSE 

7 x 7 5 x 5 3 x 3 
Kernel size 

 
Filter Type  

105.5413 69.6235 45.9487 Lee 
42.2455 23.1941 20.5826 Gamma-MAP 
17.0378 18.0322 31.1305 Frost  

 
Table 4. MSE for the filter images with different kernel size 

 
SNR 

7 x 7 5 x 5 3 x 3 
Kernel Size 

 
Filter Type 

24.0790 25.8857 27.6905 Lee 
28.0554 30.6595 31.1782 Gamma-MAP 
31.9991 31.7528 29.3814 Frost  

 
Table 5. SNR for the filtered images with different kernel size 

 
β 

7 x 7 5 x 5 3 x 3 
Kernel  Size 

 
Filter Type  

0.9417 0.9307 0.8645 Lee 
0.9662 0.9728 0.9599 Gamma-MAP 
0.9186 0.9293 0.9096 Frost  

 
Table 6. β  for filtered images with different kernel size 

 
These Tables show that by increasing the kernel size, Frost 
filter performs better than the other two filters from MSE and 
SNR point of view.  However, from β  point of view, Gamma-
MAP filter shows a better performance than the other two 
filters.                  
 
3.2 Real َُSAR Imagery 

The real imagery used for numerical experimentation is a 
340x360 pixel raw SAR image from Death Valley located at 

N0503116 ′′′°  and W036336 ′′′° .  The spatial resolution of this 
SAR image is 25 m and Figure 7.a shows it.  All of the filters 
mentioned in the section 2 are applied to this image with 
different kernel size (Figure 7).   
 
For the purpose of evaluating the performance of the filters 
quantitatively, two quantities of Mean and Standard Deviation 
(Std) are used.  Based on these two quantities, the best 
performance filter is selected if the Mean of filtered image is 
close to the original image while the Std of filtered image has 
the minimum value.   
 
Table 8 shows the numerical values of Mean and Std for the 
raw and filtered images with different kernel size.  Moreover, 
the changes of these two parameters with respect to the 
corresponding values for the raw imagery as well as the value 
of Mean/Std value haven been given too.   Figure 9 and 10 
show these results graphically.  Figure 11 summarizes Figures 9 
and 10 and shows Mean versus Std for both the raw and filtered 
images.  Based on Table 8 and Figure 11, it is seen that 
Gamma-MAP, Frost and Lee filters with a 5x5 kernel have 
yielded the best results.  On the other hand, in spite of the fact 
that Mean and Median filters reduce the value of Std, 
unfortunately, they dramatically change the value of Mean in 
compare to the Mean value for the raw image. 



 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 7. (a) The raw image, (b) and (c) Mean filter with 3x3 
and 5x5 kernel s respectively, (d) and (e) Median filter with 
3x3 and 5x5 kernels respectively, (f) Lee-Sigma filter, (g) 
local region filter, (h) Lee filter with 3x3 kernel, (i) Gamma-
MAP filter, and (j) Frost filter  all with 3x3 kernel 
                 

 
Mean Std Mean/Std Change 

in Mean 
Change in 

Std 
Raw 87.35 35.572 2.456 0 0 

Mean 3x3 88.258 26.683 3.308 0.908 -8.889 
Mean 5x5 88.078 24.451 3.602 0.728 -11.121 

Median 3x3 85.665 27.255 3.143 -1.685 -8.317 
Median 5x5 86.029 24.583 3.500 -1.321 -10.989 

Lee-Sigma 3x3 86.82 27.279 3.183 -0.53 -8.293 
Lee-Sigma 5x5 86.069 25.086 3.431 -1.281 -10.486 

Local Region 3x3 86.369 29.48 2.930 -0.981 -6.092 
Local Region 5x5 85.487 26.274 3.254 -1.863 -9.298 

Frost 3x3 87.315 30.014 2.909 -0.035 -5.558 
Frost 5x5 87.578 27.195 3.220 0.228 -8.377 
Lee 3x3 87.431 27.662 3.161 0.081 -7.91 
Lee 5x5 87.154 25.597 3.405 -0.196 -9.975 

Gamma MAP3x3 85.984 26.291 3.270 -1.366 -9.281 
Gamma MAP5x5 87.586 24.415 3.587 0.236 -11.157  

 
Table 8. Mean, Std for raw and filtered images 

 

 
 

Figure 9. Mean values for raw and filtered images 
 

 
 

Figure 10. Std for raw and filtered images 
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Figure 11. Mean versus Std for raw and filtered images 
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4. CONCLUSIONS AND REMARKS 

Radar imageries are useful sources of information for 
roughness, geometry, and moisture content of the Earth surface.  
As an active, day/night, and all-weather remote sensing system, 
RADAR imageries can provide us information from both 
surface and subsurface of the Earth. 
 
Inherent with RADAR imageries is speckle noise which gives a 
grainy appearance to the imageries.  Speckle noise reduces the 
image contrast and has a negative effect on texture based 
analysis.  Moreover, as speckle noise changes the spatial 
statistics of the images, it makes the classification process a 
difficult task to do.  All of these show that to get information 
out of RADAR imageries one should first remove/reduce the 
effect of speckle noise.  
 
Generally speaking there are two techniques of 
removing/reducing speckle noise, i.e., multi-look process and 
spatial filtering.  Multi-look process is used at the data 
acquisition stage while spatial filtering is used after the data is 
stored.  No matter which method is used to reduce/remove the 
speckle noise, they should preserve radiometric information, 
edge information and last but not least, spatial resolution.  
These are the conditions that any speckle noise reduction 
technique should meet.          
 
Spatial filters are mainly categorized into two general groups, 
i.e., non-adaptive and adaptive filters.  Non-adaptive filters are 
those which neglect the local properties of the terrain 
backscatter or nature of sensor.  However, adaptive filters 
accommodate the change in the local properties of the terrain 
backscatter or the nature of sensor. 
 
This paper reviewed the effect of applying six different 
adaptive filters on a simulated image as well as a real SAR 
imagery.  To test the effect and performance of the filters, as the 
original and noisy image were available for the simulated 
image, one can use Mean Square Error, Signal to Noise ratio 
and β  parameter (which shows the edge preserving strength of 
the filters).  These three measures are able to evaluate the 
performance of filters quantitatively when both the original as 
well as noisy image are available.  A good filter shows lower 
Mean Square Error, higher Signal to Noise Ratio, and a β  
closer to one.  
 
However, in cases when the original image is not available, one 
can use only two parameters of Mean and Standard Deviation 
of noisy and filtered images to perform the filter assessment.  A 
good filter has a lower difference between Means of the original 
and filtered images while preserving a low Standard Deviation 
for the filtered image. 
 
In both simulated and real imageries it is seen that regardless of 
the kernel size, Mean, Median and Local Region filters perform 
poorly.  This sounds a reasonable result as these filters do not 
take all the statistical characteristics of the image into 
consideration.  In case of simulated imagery it is seen that the 
Gamma-MAP filter with a 3x3 kernel has the lowest MSE and 
highest SNR and β  in compare to other filters with the same 
kernel.  However, Frost filter with a 7x7 kernel has the lowest 
MSE and highest SNR.  The numerical results show that 
Gamma-MAP filter performs much better for preserving the 
edge information. 

 
In the case of real SAR imagery, the Gamma-MAP, Frost, and 
Lee filters with a 5x5 kernel show better results as the 
differences of their Means from the Mean of original image is 
low while they all have low Standard Deviation.      
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