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ABSTRACT: 
 
Accurate geocoding of Earth observing (EO) satellite imagery is one major prerequisite to monitor the Earth’s environment. The 
quality of the obtained geocoded images depends on the accuracy of the sensor model parameters and the accuracy of the used 
height information. As for monitoring applications automated image processing chains are desired this paper concentrates on the 
automatisation of the required measurement ground control points (GCPs). Moreover, several methods to make least squares 
adjustment a robust estimator are presented. To improve the performance of the robust estimation with respect to the reduction of 
computational effort and reduction of number of GCPs needed, the use of the median absolute deviation is introduced. 
The presented general geocoding workflow and the proposed enhancements are tested using an ENVISAT-ASAR scene of the 
highly active Neovolcanic Zone of Southern Iceland. This test site, prone to natural hazards like volcanic eruptions and massive 
glacial torrents is equipped with a network of artificial corner reflectors enabling a detailed verification of the proposed approach. 
 
 

1. INTRODUCTION 

Accurate geocoding of Earth observing (EO) satellite imagery 
is one major prerequisite to monitor the Earth’s environment. 
On the one hand, multi-temporal or/and multi-sensor analyses 
are very sensitive to registration errors. On the other hand, only 
a rigorous geocoding procedure which can model topographic 
effects and the sensor specific imaging geometry allows the 
combination of EO data with other information sources like e.g. 
cadastral information. Therefore only those rectification 
processes are addressed which are based on mathematical 
sensor models utilizing additional height information. 
 
The quality of the obtained geocoded images depends on the 
accuracy of the sensor model parameters (like e.g. position and 
orientation of sensor) and the accuracy of the used height 
information. This paper concentrates on the first aspect, namely 
the refinement of the sensor model parameters. These 
parameters in general are optimized using ground control point 
(GCP) measurements and least squares adjustment (LSA) 
techniques. The commonly used height information sources are 
digital elevation models (DEMs). A lot of further information 
about the quality aspects of such DEMs can be found in the 
web, e.g. (Wise, 2000). 
 
Largely automated image processing chains are required for 
monitoring or near real-time applications. Therefore, any user 
interaction, like the time and cost consuming and often 
inaccurate manual ground control point measurement, should be 
avoided anyhow. On the other side it is a well known 
characteristic of LSA techniques that erroneous measurements 
have a great influence on the results obtained. Thus the 
parameter refinement based on the provided GCP´s should be 
capable to detect erroneous point information.  

 
Chapter 2 sketches a general DEM based geocoding workflow. 
In chapter 3 the proposed enhancements to an automated 
geocoding processing chain and in chapter 4 the obtained 
results are presented. 
 
2. AUTOMATED GEOCODING PROCESSING CHAIN 

2.1 General geocoding workflow 

Figure 1 summarizes a general DEM based geocoding 
workflow. The processing presented here is more or less 
straight forward. Automated procedures are marked in green 
colour whereas interactive or iterative procedures are marked in 
red. 
 
The processing starts at the left top with the import and 
preparation of the original EO satellite data. This includes on 
the one hand the extraction of the image data itself (“Image 
Raster Data”). Secondly, sensor model parameters (“Orbit & 
Sensor Parameters”) are extracted from the meta information. 
Depending on the type of the sensor at least three different 
physical sensor models can be distinguished: 

1. Perspective sensors (e.g. frame or digital cameras), 
2. Optical line scanners (opto-mechanical or 

pushbroom) and 
3. Synthetic Aperture Radar (SAR) sensors. 

 
For each of these physical models the respective mathematical 
framework is well established (e.g. Raggam & Almer, 1990). A 
more recent and generic mathematical model is the use of so-
called rational polynomial coefficients (RPCs; Dial & 
Grodecki, 2002). 
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Figure 1.  General DEM based geocoding workflow 
 
To achieve optimum rectification accuracy, the sensor model 
parameters have to be refined in order to achieve “Adjusted 
Sensor Parameters”. This processing step requires ground 
control point (GCP) measurements. Several proposed 
approaches to circumvent this interactive task are presented in 
the next sub section. Basically all methods end up with a list of 
dedicated points with known ground and image coordinates. 
 
Assuming a sufficient number of GCPs these measurements are 
then fed into a least squares adjustment (LSA) scheme (Raggam 
& Almer, 1990, Hellwich & Ebner, 2000, Gutjahr & Raggam, 
2000, Dial & Grodecki, 2002). 
 
It is a well known characteristic of LSA that it is very sensitive 
with respect to erroneous point information. Some so-called 
robust estimation techniques which try to handle this problem 
are summarized in the corresponding sub section. 
 
On the right top of Figure 1 the import and preparation of the 
required DEM is indicated. Finally the optimized sensor 
parameters and the prepared DEM are used to gecode the 
satellite image. 
 
2.2 Automated GCP retrieval 

Several approaches are presented in literature to circumvent the 
time and cost consuming and often inaccurate manual ground 
control point measurement. 
 
The first method uses so-called control point chips (Raggam & 
Villanueva Fernandez, 2003). These represent small image 
subsets around manually identified GCPs and are extracted 
from a reference scene and stored in a database. In every 
follow-on scene all suitable chips are then identified by 

applying image matching techniques. Basically this method 
works for all EO sensor types. 
 
The crucial point is the image matching because the results 
depend heavily on the similarity of the two images. Secondly, 
for the reference scene the identification of GCPs has to be 
done manually at least once. 
 
In case of SAR EO satellites the SAR backscatter can be 
simulated utilizing an available DEM (Small et. al., 2000). In 
the simulated SAR image interest points (IPs) can be 
determined. These IPs can then be found in the real SAR scene 
again by utilizing image matching techniques. The applicability 
of this method depends on the quality of the SAR scene and the 
roughness of the topography of the imaged area. 
 
Alternatively, a very efficient and relatively simple method is 
the automated detection of corner reflectors (CRs) in SAR 
scenes (Gutjahr et al., 2005). Of course this method requires the 
set-up and maintaining of a CR network. 
 
2.3 Robust parameter estimation 

In the previous section several methods to automate the GCP 
acquisition were presented. In any case the parameter 
refinement based on the provided GCPs should be capable to 
detect erroneous point information caused by matching or 
detection errors. 
 
Such techniques are commonly known as robust estimation 
which means that they are robust with respect to the presence of 
gross errors in the data. In this context, gross errors are defined 
as observations which do not fit to the stochastic model of 
parameter estimation. LSA as mentioned in the previous section 
is not a robust estimation technique: false observations can lead 
to completely false results and might even prevent convergence 
of the adjustment (Rottensteiner, 2001). 
 
The LSA is based on the minimization of the squared sum of 
the individual residuals iv : 
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iv Min=∑       (1) 

 
As an alternative to this non robust criterion, the so-called L2-
norm, the minimization of the absolute sum of the residuals, the 
so-called L1-norm, can be used 
 
 

iv Min=∑       (2) 

 
Adjustment techniques based on this L1-norm are robust in the 
above mentioned sense but computationally more complex. 
Moreover in the presence of pure random errors the 
performance of the L2-norm is superior to that of the L1-norm 
(Kraus, 1997). 
 
The so-called random sample consensus (RANSAC) algorithm 
(Fischer & Bolles, 1981) is based on the principle of hypotheses 
generation and verification. The following steps have to be 
performed: 

1. Choose a minimum set of the GCP measurements. 
2. Determine the refined parameters from the minimum 

set of observations. Thus, the mathematical model 
must be invertible. 

3. Check the other GCPs based on the prediction errors. 



 

4. If the number of accepted GCPs is high enough, then 
stop, else go to step 1. 

 
The set of GCPs can be chosen randomly. If an estimate for the 
percentage of gross errors is available in the data, the number of 
trials required for finding a correct subset of the observations 
with a pre-defined probability can be estimated. RANSAC is 
well-suited for problems where the number of parameters is 
small. 
 
Another way to make the LSA a robust estimator is to eliminate 
possibly wrong measurements iteratively on the basis of a 
statistical test. The so-called data snooping (Kraus, 1997) is 
based on the normalized residuals. Alternatively, the individual 
residuals can be tested against the overall RMS value of the 
residuals. In both cases an iterative strategy is applied to 
determine all erroneous GCP measurements:  

1. Find the global solution using all GCP measurements. 
2. Test the residuals. 
3. Eliminate the measurements which are most likely to 

be gross errors. Stop if no such observations occur. 
4. Determine the global solution omitting all rejected 

observations and go to step 2. 
 
A last option which should be mentioned here is the so-called 
Danish method (Krarup et al., 1980). Again it is an iterative 
solution where the weights of the individual measurements iw  
are defined after each LSA step by: 
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where  σ  = a-priori standard deviation of the measurements 
 α , β  = suitable chosen constants 
 c  = multiplication factor determining the probability  
 level (e.g. 2.5c =  corresponds to 98.76 percent) 
 
2.4 Robust parameter estimation based on MAD 

More or less all methods presented in the previous section may 
fail if one or more of the following condition is true: 

• Only a small number of point measurements is 
available. 

• The number of parameters to be refined is large. 
• The percentage of erroneous GCP measurements is 

high. 
 
Thus a modified version of the Danish method is proposed here 
which uses the median absolute deviation (MAD) of the point 
residuals as quality criterion (Huber, 1981). Similar to (3) after 
each LSA iteration the weights of the measurements are defined 
by: 
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where  s  = estimation of the standard deviation 
 α , β  and c  = analogous to (3) 
 

Here the estimation of the standard deviation based on the 
MAD according to: 
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where  iy  = individual measurements 
The multiplication factor yielding the estimate of the standard 
deviation from the MAD is the inverse of the normal 
cumulative distribution function evaluated at the probability 
level of 75 percent. 
 

3. TESTDATA 

3.1 Testsite 

Mýrdalsjökull is the fourth largest Icelandic ice cap with an 
expanse of approx. 590 km² (Jaenicke et al., 2006). It is located 
at the south coast of the island and the south-eastern end of the 
highly active Neovolcanic Zone (NVZ). Morphologically the 
ice cap can be divided into a plateau, where the ice forms a 
contiguous cover down to about 1300 – 1000 m a.s.l., and the 
peripheral zone below, where the ice cap splits into separate 
outlet glaciers. 
 
The glacier ice covers the approximately 100 km² large caldera 
of the active central volcano Katla that last erupted in 1918. 
Besides the usual volcanic hazards, the volcano-ice interaction 
during eruptions leads to enormous melt water torrents, 
devastating large areas in the surroundings of the glacier. 
 
Considering the eruption cycle of this subglacial volcano 
(dormant phase max. 80 years, min. 13 years) and the 
significant increase in seismic activity over the recent years, a 
fresh outbreak releasing huge glacial torrents is expected in the 
near future (Larsen, 2000). At the last major event in 1918 the 
glacier’s discharge reached peak rates of 300.000 m³/s 
(Tómasson, 1996). 
 
Due to this hazardous character Mýrdalsjökull is monitored by 
SAR remote sensing since 1994. Currently ENVISAT-ASAR 
acquires data continuously over the test site. 
 
3.2 Image data 

The ENVISAT-instrument is a side looking C-band SAR 
antenna operating at a wavelength of 5.6 cm. Due to its beam 
steering capability the ASAR instrument can acquire images in 
seven different swathes (IS1 – IS7), covering an incidence 
angle range from 15 to 45 degrees. The swathes IS 2 (incidence 
angle 21.5°) and IS 5 (incidence angle 37.5°) are continuously 
acquired over the ice cap. This allows the monitoring of the 
subglacial volcanic activities with a temporal repetition of up to 
nine days including ascending (asc) and descending (desc) 
orbits. 
 
In this study an ENVISAT scene acquired on an ascending orbit 
in the antenna mode IS 2 with vertical transmit-and-receive 
(VV) polarisation was used. The scene was recorded on 2004-
06-20 at about 10:20 p.m. local time. 



 

3.3 Corner reflectors 

In view of the upcoming ERS-Tandem mission corner reflectors 
were set up around the test sites Mýrdalsjökull (Figure 3) and 
Hekla in 1995 (5 ascending, 5 descending at each site). The 
third test site Vatnajökull was equipped in 1997. 
 
All CRs are located in areas with low surface roughness. The 
spatial separation between the reflectors for the ascending and 
descending satellite passes is 150 m at minimum to avoid 
interferences of the backscattered signal (Figure 2). 
 
Due to the same orbit constellation of the ERS-1/2 and 
ENVISAT satellites the CRs can be fully used as ground 
reference for both missions. 
 

 
Figure 2.  Location of the reflectors M4 at Mýrdalsjökull test 

site. The CR related to the descending orbit is in the 
foreground, the ascending CR in the middle ground (red arrow). 
 

4. RESULTS 

The proposed automated geocoding processing chain including 
the automated detection of CRs and the robust parameter 
estimation based on the MAD was applied to the above 
mentioned ENVISAT scene. To show the advantages of this 
approach the same GCPs were used in a LSA scheme where the 
individual residuals are tested against the overall RMS value of 
the residuals. Due to the limited number of GCPs only time and 
range parameters (comprising 4 unknowns) were refined. 
 
Table 1 summarizes the individual image residuals of all 
detected CRs. The units are in pixels of the single look complex 
image (SLC). In addition the root mean square error (RMS) and 
the mean of the individual residuals are shown. Obviously, the 
CRs M1 and M5 do have a different behaviour than the other 3 
CRs which are more or less consistent. 
 

ENV_2004_06_20 Image residuals 
Units: SLC pixels Azimuth Range 
M1 -29.91 -329.84 
M2 -6.07 7.21 
M3 -5.98 7.13 
M4 -6.04 6.87 
M5 -25.80 -204.35 
RMS 18.27 173.61 
Mean -14.76 -102.60 

 
Table 1.  Initial GCP residuals 

 

If the individual residuals were tested against the overall RMS 
value of the residuals the automated GCP removal could not 
detect the erroneous CRs and no GCP was removed 
automatically. Thus the LSQ converged with zero mean but the 
RMS values remained high (Table 2).  
 

ENV_2004_06_20 Image residuals 
Units: SLC pixels Azimuth Range 
M1 -16.59 -96.66 
M2 5.02 -124.33 
M3 6.14 8.92 
M4 12.03 -49.18 
M5 -6.59 12.59 
RMS 10.26 74.10 
Mean 0.00 0.00 

 
Table 2.  Adjusted GCP residuals without MAD criterion 

 
The results of the robust LSA by re-weighting the GCP based 
on the MAD are shown in Table 3. 
 

ENV_2004_06_20 Image residuals 
Units: SLC pixels Azimuth Range 
M1 -23.88 -337.29 
M2 -0.04 -0.03 
M3 0.05 0.09 
M4 -0.01 -0.06 
M5 -19.77 -211.77 
RMS 0.04 0.06 
Mean 0.00 0.00 

 
Table 3.  Adjusted GCP residuals with MAD criterion 

 
According to their large individual residuals the GCPs M1 and 
M5 were down-weighted and excluded from the RMS and mean 
calculation. Thus they did not contribute to the final adjustment 
results. As above the LSA converged with zero mean but with a 
dramatically better RMS.  
 

5. CONCLUSIONS 

In this paper a general geocoding workflow was presented. As 
largely automated image processing chains are required for 
monitoring applications, alternatives to the time intensive and 
often inaccurate manual GCP measurement are described 
Secondly, several methods to make least squares adjustment a 
robust estimator were presented. The proposed modifications to 
the so-called Danish methods yielded dramatically better results 
than the tested alternative approach. 
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Figure 4.  Shaded relief of the Mýrdalsjökull test site with the locations of the corner reflectors. 
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