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ABSTRACT:

Into an archaeological GIS, stored information is in spatio-temporal multi-modal form. Dates are estimated according to excavation
data. Localizations are determined by several tools such as GPS, radar,. . . All of these imply some uncertainty, for which fuzzy logic
becomes a common use. By representing data by fuzzy number depending on specific modalities, we obtain fuzzy spatio-temporal
data. In this paper, we propose to illustrate the interest of fuzzy data representation in archaeology.
As Roman streets in Reims usually form segments of lines, we apply the fuzzy Hough transform to those fuzzy multi-modal data to
estimate their presence in accordance with given periods. According to experts, we propose to visualize in GIS archaeological data and
simulations obtained by merging this fuzzy information.

1 INTRODUCTION

According to Burrough and McDonnell (Burrough and McDon-
nell, 1998), the management of data quality into a GIS is funda-
mental for data exploitation and the trust on results we have. Ge-
ographic Information Systems (GIS) usually store multi-modal
data and employ them in spatial and image analysis. Archaeo-
logical data often stem from excavations and group date, local-
ization, etc. Localizations are determined by several tools. Each
tools imply some imprecision. Furthermore, the past localization,
and the actual localization could be different due to soil move-
ments. Dates generally spring from expert interpretations or esti-
mations, depending on the excavation context. As numerical rep-
resentations of linguistic period codification vary in accordance
with experts, data are subject to part of uncertainty. Moreover,
except for localizations, data are lacunar.

The Fuzzy Sets theory, introduced by Zadeh (Zadeh, 1965), pro-
poses a formalism to represent uncertain knowledge. A review
of methods to manage data quality in geographic information are
proposed in (Goodshild and Jeansoulin, 1997). The use of Fuzzy
Logic tends to become classical in GIS (Altman, 1994). In ar-
chaeology, the modeling by fuzzy sets of uncertain data is not
classical. In this paper, excavations data are fuzzified to take care
about their uncertain aspect. So stored multi-modal data become
after the fuzzification process fuzzy multi-modal data. We illus-
trate the interest in archaeology of the fuzzy data representation
by a simulation.

Using the fuzzy logic and the fuzzy Hough transform (FHT), we
propose a simulation process of Roman streets prediction into the
archaeological SIGRem project (Pargny and Piantoni, 2005), an
archaeological GIS dedicated to Roman periods of Reims, using
”BDRues” geodatabase. Data contain three kinds of information
: the localization, the orientation, and the date. FHT is a classical
method for detecting straight lines in images. Because Roman
streets in Reims form segment of lines, we propose to use it on
“BDRues”. We apply FHT on each fuzzy feature of excavation
data, and we merge the information contained into the three FHT
accumulators into a new one. The application gives an estimation
of the potential presence of Roman streets for a given period.

Using this fusion function, we visualize the results into a GIS
software.

In this paper, we present the archaeological data and their fuzzy
representation. The management of archaeological data using
fuzzy logic and possibility theory within archaeological environ-
ment is explained. We propose a simulation process on fuzzy
multi-modal data using a merging function. Finally, the results of
the simulation are exposed.

2 ARCHAEOLOGICAL DATA

2.1 Multi-modal and uncertain data

Conolly and Lake (Conolly and Lake, 2006) emphasize the im-
portance of storing the error associated with data. In fact, our
excavation data contain at least the localization and usually the
date and the information about the orientation.

The first one depends on tools and methodologies used by ar-
chaeologist during excavations. For example, data localizations
acquired with ancient tools during the 18th Century are less pre-
cise than nowadays with GPS. Likewise the GPS localization is
subject to lack of precision. Even if the localization is perfect,
the coordinates represent the present localization. And year after
year, objects could have been shift by soil movements or local
transport, which could only be estimated. Thus the localizations
present part of uncertainty.
Dates generally stem from experts interpretations or estimations,
depending on the excavation context. Furthermore, numerical
representations of linguistic periods codification vary in accor-
dance with experts.
When we have an information about orientation, this one is gen-
erally issued from expert analysis on materials found during ex-
cavations. Unfortunately, there is no record of error range.

Even if all those features are important for us some of them are
sometimes missing. Thus we also have to deal with lacunar data.

Many papers as (Devillers and Jeansoulin, 2006) deal with the
quality of information in GIS. The literature discusses imprecise



reasoning (Guesgen and Albrecht, 2000). Altman (Altman, 1994)
proposes to use Fuzzy Set theoretic approaches for handling im-
precision in spatial analysis. This approach is applied to under-
stand phenomena as road traffic, dynamic processes, or contam-
ination of soil (Dixon, 2005, Dou et al., 1999, Dragicevic and
Marceau, 2000, Mitra et al., 1998). The use of fuzzy logic be-
comes classical to manage uncertain data in simulation processes
(Goodshild and Jeansoulin, 1997) in GIS.

As explain before, the multiplicity of sources and the confidence
in data imply that archaeological data are multi-modal and uncer-
tain. We propose to manage those data using fuzzification pro-
cesses. For example, a fuzzy localization is associated to the ac-
tual localizations of excavations extracted from our geodatabase
(similar case for date and orientation).

2.2 Fuzzy representation

In this work, some models of representation by fuzzy numbers
are used illustrated by Figures 1, 2 and 3. In Figure 1, we pro-
pose to associate a fuzzy localization (fLocep) to an excava-
tion point ep. Near the excavation point coordinates, the fuzzy
membership function is equal to one and decreases when dis-
tance to ep grows up. Figure 2 presents a model for the fuzzy
orientation (fOrienep), where the fuzzy membership function
decreases when the angle difference with the stored orientation
grows up. Figure 3 illustrates the fuzzy period [bd, ed] (fDateep).
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Figure 1: Fuzzy membership function fLocep
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Figure 2: Fuzzy membership function fOrienep
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Figure 3: Fuzzy membership function fDateep

This association of fuzzy numbers to each feature of our exca-
vation data allows us to manage them with their uncertainty into
simulation process.

During Roman age, cities where built in accordance with a regu-
lar grid arrangement of streets. So Roman streets had the partic-
ularity to be close to lines. In the next section, we propose to use
the fuzzy Hough transform (FHT) (Han et al., 1994) concept to
simulate city maps according to Roman periods.

3 SIMULATION INTO A ARCHAEOLOGICAL GIS

3.1 Presentation of the simulation

One of the most powerful methods for the detection and recogni-
tion of patterns with known simple geometrical shapes (as lines)
in images is the Hough transform (HT) (Duda and Hart, 1972,
Hough, 1962, Illingworth and Kittler, 1988). HT could be gen-
eralized and unsupervised for detecting natural shapes (Bonnet,
2002). To take care of noise and quantization error, the binary as-
pect of the decision making can be smoothed as proposed by Han
et al. (Han et al., 1994) using their extension of HT to the fuzzy
logic (fuzzy Hough transform - FHT). For each candidate in the
image, they define a fuzzy neighborhood within which each point
contributes to the potentiality of line presence.

Our application has to work with fuzzy multi-modal data. Data
contain three features (localization, orientation and date). Roman
streets usually form segment of lines. We propose to apply FHT
to the geodatabase. This constraint implies to use three FHT: one
for the localization, one for the orientation and the last one for
the correspondence of dates with the given period. As only one
valuation is wanted by experts, we need to fusion the three FHT
results to build the final estimation. The application estimates
Roman streets for a given period and permits us to visualize them
into a GIS.

3.2 Principle of the fuzzy Hough transform

We briefly introduce the principle of Hough transform (Hough,
1962, Duda and Hart, 1972). Surveys of HT can be found in
(Illingworth and Kittler, 1988, Leavers, 1993). HT was originally
defined to detect straight lines in binary images. It is a mapping
from image space to parameter space which is represented by an
accumulator array. In the case of straight lines, the accumulator
array dimensions are (ρ, θ) where θ is the angle of the straight
line and ρ its distance to the origin (see in Fig 4).
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Figure 4: Hough transform principle



Each point of interest votes, incrementing the accumulator array
cell corresponding to each line potentially going through it. If
lines are present in the image we can detect them by finding cells
with greatest scores.

Han et al. (Han et al., 1994) propose with the Fuzzy Hough trans-
form to detect lines in images with noise, or quantization error.
FHT takes into consideration points and their neighborhood. Han
et al. use a fuzzy set to build a neighborhood matrix of the stud-
ied point. This matrix determines the value of the increment of
the counter function FHTAcc.

In our application, FHT is not used with images but with multi-
modal data stored in a geodatabase. In the next section, a method
to determinate Roman streets according to a given period is pro-
posed, and this method uses FHT with fuzzy multi-modal data.

3.3 Three fuzzy Hough transforms accumulators to estimate
Roman Streets according to a period

The goal of the simulation is to estimate the potentiality of streets
presence in antique Reims (Durocortorum) according to a specific
period. Roman streets have the particularity to be most of time
linear. The idea is to apply fuzzy Hough transform to each feature
using their associated fuzzy numbers.

Excavation points are the points of interest. Data are character-
ized by three features, thus three FHT are needed. The first one
(FHTLoc) is devoted to the localization, the second one to the
orientation (FHTOrien) and the last one to the correspondance
with a given date (FHTDate).
For an excavation point ep, in presence of all features, each point
p ∈ support(fLocep) votes for all lines (ρ, θ) going through it
with θ ∈ support(fOrienep).
The value of the vote in the accumulator FHTLocAcc of
FHTLoc is fLocep(p). For FHTOrien, the increment in
FHTOrienAcc is equal to fOrienep(θ). To obtain the street
for the given period gp, the counter function FHDateAcc of
FHTDate is increased by max(min(gp, fDateep)).
When we do not have the orientation, then we vote for all lines
going through p in FHTLoc and FHTDate. If the information
about date is missing, then only FHTLocAcc and
FHTOrienAcc are incremented. Next the vote processes, each
counter cell is normalized by the maximum of the associated
counter function results.

To generate maps based on fuzzy multi-modal data, we need to
merge those three FHT. The next section deals with the choice of
the merging function.

3.4 A fusion function to visualize simulation into a GIS

In this section the three FHT (FHTLoc, FHTOrien and
FHTDate) are considered as fuzzy sets. The associated mem-
bership functions are the FHT accumulators (FHTLocAcc,
FHTOrienAcc and FHTDateAcc).

In fusion of information context, merging uncertain data is a clas-
sical problem. Dubois and Prade (Dubois and Prade, 2004) re-
mark that the choice of a fusion mode depends on the nature of
the items to merge and the representation framework.

A review of traditional aggregation and fusion operators can be
found in (Detyniecki, 2000). Classical operators as t-norm, t-
conorm in fuzzy context (for Zadeh the Min and Max) consider
the order of data has no importance (symmetric function). Fur-
thermore, t − norm and t − conorm admit a neutral value and
an absorbent element.

In our context, each feature is of importance but does not have
the same influence. In fact, FHTDateAcc cell values could be
more important than FHTLocAcc.

Thus we need a merging function with no neutral value and no an-
nihilator, and the function is not symmetric. In classical merging,
by extending the arithmetic mean, the weighted mean can solve
this problem. In fuzzy context, the fusion function correspond-
ing to the weighted mean is a parameterized Choquet function
(Choquet, 1953). The merging function is defined as follows:

final = λ ∗ FHTLocAcc

+µ ∗ FHTOrienAcc

+ν ∗ FHTDateAcc,

where the weights λ, ν and µ are non negative and λ+ν+µ = 1.

The weights (λ, µ, ν) value depends on applications and/or ex-
perts goals. Using this function, the three FHT could be reduced
to one fuzzy set Final (the associated membership is final).
Thus, we apply an α-cut to select the lines (potential presence of
streets). We use an other function to reduce line to fuzzy segment.

This simulation process is used to estimate the potential of Ro-
man streets presence for periods defined by users. The next sec-
tion presents results obtained by the method, which are compared
with maps delivered by experts for the same period.

4 RESULTS

Into the SIGRem project (Pargny and Piantoni, 2005), we use the
method to estimate the potential presence of streets at the Third
Century BC in Reims.

The weights (λ, µ, ν) of final are empirically evaluated as (3/13,
1/13, 9/13) in the application. This affectation permits to give
three times more importance to date correspondence compared
with localization, and three times more importance to localization
in comparison to orientation.

The comparison between simulated maps (as Figure 5) and maps
from experts (as Figure 6), validates the method. In these figures,
simulated streets and streets defined by experts are most of the
time similar.

Figure 5: Simulated map of Reims during the third century

5 CONCLUSIONS AND FUTURE WORK

Archaeological GIS store excavation data. The localizations or
orientations depend on tools, soil movements, transport, etc. The
dates are only estimation given by experts. Thus excavation data
include a part of uncertainty.



Figure 6: Map defined by experts of Reims during the third cen-
tury

Management of uncertainty is fundamental to simulation pro-
cesses in archaeology. Because archaeological data are uncer-
tain on many way, fuzzy logic help us to manage them with their
uncertainty. We apply fuzzy set representation to multi-modal ar-
chaeological data in a simulation process. This simulation aims
to estimate the potentiality of a street presence.

Our simulation for Roman streets presence estimation, builds three
FHT for localization, orientation and correspondence to a given
date and aggregates multi-modal information by fusion. Our con-
tribution improves the Fuzzy Hough Transform taking into ac-
count both the multi-modality and the inaccuracy and uncertainty
of data. Comparison between simulated maps and maps from ex-
perts validates our method.

In our future work, by using our street presence estimator and
information stored in GIS, we will study the fuzzy matching pro-
cess between digitized image of ancient maps and archaeological
data issued from excavations.
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