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ABSTRACT: 
 
Meteorological forcing is often identified as a major source of error in hydrological modeling. Traditionally, observations are 
through meteorological network that often yield incomplete and inaccurate process coverages since observations only are at point 
scale and at fixed intervals. Particularly in distributed hydrological modeling, however, commonly full coverages over space and 
time at high resolutions are required and boosted the exploration and use of Remote Sensing images. A number of meteorological 
satellites have been launched over the past decade and application of retrieval products in hydrology is often regarded innovative 
since a high potential to improve modeling results is claimed.  Generally, retrieval products are based only on observations from 
single channel and single sensors. Nowadays, there is a shift from ‘single input-single output’ regression type based retrievals 
towards ‘multiple input-multiple output’ inversion type retrievals. Despite many efforts, accuracy of rainfall estimates are still 
considered low and estimates are expected to yield a better accuracy only when averaged over large areas of 0.250X0.250, 10 X 10 or 
even larger and for periods of few days or even a month. As such the existing algorithms effectiveness is questionable and they still 
require much improvement to deliver rainfall estimates at accuracy and resolutions hydrological models require. The objective of 
this study is to review ‘state-of-the art’ image based rainfall retrieval algorithms and to demonstrate their setbacks and strengths. 
Preparing a list of the available algorithms, however, is not the main focus of the study as this already has been presented by other 
researchers even though recently developed algorithms require revision. In this study, algorithms are categorized into Infrared (IR)-, 
Microwave (MW)-, and combined IR-MW- based approaches. The physical premise of the algorithms is discussed as well us sources 
of uncertainties that are categorized into two:  those that relate to the complexity of cloud behavior and rainfall dynamics and those 
that relate to the Top-Down sensing procedure of satellites. This study also looks forward into the potential contribution of the 
upcoming Global Precipitation Measurement (GPM) mission to further improve hydrological modeling. The Meteosat Second 
Generation (MSG) and Tropical Rainfall Measurement Mission (TRMM) satellite images are utilized as a case study to formulate 
the relationships between images based variables and images based indices with surface rainfall observations in the Upper Blue Nile 
Basin. It is illustrated that the cold cloud duration retrieved from images and the 10.8µm brightness temperatures of cloud tops carry 
effective information for rainfall retrieval. However, formulation of a single best equation for the Upper Blue Nile basin requires 
additional information, for instance topographical information. 

 
1. INTRODUCTION  

The availability of remote sensing images with relatively 
high resolutions has resulted in an increased utilization of 
images for a wide range of land surface applications. These 
applications include rainfall-runoff relations, soil moisture 
estimations and flood simulations but also meteorological 
applications such as rainfall estimations. For the latter, the 
electromagnetic radiation measured by satellite based sensors 
is converted to reflectance and brightness temperature values 
that relate to atmospheric properties and variables of interest. 
Satellites can be in orbit or geostationary and may use a 
range of spectral bands such as Visible (VIS), Water Vapor 
(WV), Infrared (IR) and/or Microwave (MW). Currently, the 
latter are only limited to orbiting satellites. Commonly 
geostationary satellites produce images at high temporal 
resolution while earth orbiting satellites, that acquire low 
temporal resolution images, produce more direct 
observations on cloud profiles.  
 
Since the late 1960s, a plethora of image based rainfall 
retrieval algorithms emerged by the demand of various 
applications to accurately estimate rainfall. Reviews on the 
available algorithms are given by Barrett and Martin [1991]; 
Kidder and Vonder Haar [1995]; Petty [1995]; Levizzani et 
al. [2002] where reviews illustrate a) image based rainfall 
retrieval procedures are relatively complex and b) algorithms 
often have poor performance. This mainly attributes to 

difficulties to capture the spatial-temporal variability of 
rainfall formation, for instance, that from convective 
systems, and to limitation of sensors to directly observe 
variables that govern rainfall formation in cloud systems. In 
this respect, through remote sensing image commonly only 
approximate or “proxy” variables are observed that generally 
only have a weak and indirect relation to rainfall 
distributions as observed at the land surface.  In addition, 
satellite systems view from the top of the atmosphere 
downwards to the land surface and not upwards that would 
intrinsically be a more logical approach for rainfall 
observations [see Barrett and Beaumont (1994)].  
 
In this study, the physical basis of the rainfall retrieval 
algorithms is reviewed and the sources of uncertainty within 
the context of hydrologic applications are discussed. For this, 
the algorithms are categorized into IR-based, MW-based and 
combined IR-MW based approaches. The Meteosat Second 
Generation (MSG) and Tropical Rainfall Measurement 
Mission (TRMM) satellite images are utilized as a case study 
to formulate the relationships between images based 
variables and images based indices with surface rainfall 
observations in the Upper Blue Nile Basin. For this purpose, 
rainfall observations of 34 ground based stations in the basin 
are used.   
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2.2 2. PHYSICAL BASIS FOR RAINFALL RETRIEVAL 

The most commonly utilized parts of the electromagnetic 
wave spectrum for rainfall retrieval are the thermal IR and 
the MW channels. These channels carry complementary 
information that caused development of combined IR-MW 
based approaches.  Although the VIS and the WV channels 
are not utilized frequently, these channels have a potential to 
generate additional and complementary information on cloud 
characteristics. Nowadays, there is a growing interest to 
combine observations from various channels and sensors for 
rainfall retrieval.  
 
2.1 Infrared based approaches  

In the IR-based approaches, the cloud top temperature is 
commonly used as a key variable to infer rainfall rates 
although such temperature only is to be seen as a proxy 
variable. The effectiveness of cloud top temperatures for 
rainfall retrieval purpose is based on the premise that 
relatively cold clouds are to be associated with high and thick 
clouds that are assumed to produce relatively high rainfall 
rates; see figure 1. The figure also shows the IR observations 
are available at high temporal resolution (here 15 minutes) 
that is from geostationary satellite.   
 
Rainfall retrieval procedures that apply cloud top IR 
brightness temperatures can be based on indexing cloud 
systems, bi-spectral analysis, tracking life history, and cloud 
model. Cloud indexing [see Todd et al. (1995); Adler et al. 
(1993); and Liming Xu et al. (1999)] apply indices that are 
retrieved from images or from synoptic observations where 
indices include cloud type as defined by image texture, cloud 
area, and cold cloud duration (CCD). The physical premise 
for the bi-spectral algorithms [see Lovejoy and Austin, 
(1979); Tsonis et al. (1996); and Tsintikidis et al. (1999)] is 
that cloud systems which do not produce rain can be 
identified from observations in the VIS channel while cloud 
systems that produce rain can be identified from observations 
in the IR channel. Cloud life history procedures [see Griffith 
and Woodley (1978); Levizzani et al (2002); Negri et al. 
(1984) and Vicente and Scofield (1996)] assume that rainfall 
rates increase from zero to a maximum for cloud growth 
phases while rates decrease for cloud dissipation phases. In 
cloud model approaches generally some coarse scale cloud 
physics is introduced for the retrieval procedure. A well 
known example is the Convective Stratiform Technique 
(CST) [see Adler and Negri (1988); Anagnostou et al. 
(1999); Reudenbach et al. (2001)]. 
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Figure 1: Observed IR brightness temperature (Tb) and daily 
rainfall (D/Berhan station, Ethiopia) 
 

Microwave channel based approaches 

In MW approaches, observations provide information on the 
entire cloud profile generally through the proxy variable 
brightness temperature that has to be seen as an integrated 
variable over a cloud depth. MW based approaches are based 
on the concept that emitted radiation in the microwave 
frequencies is affected by atmospheric hydrometeors such as 
cloud and precipitation droplets that cause augmentation of 
radiation due to emission and attenuation of radiation due to 
absorption and scattering. Information from MW channels is 
much more direct as compared to information from IR 
channels although in MW approaches rainfall at the land 
surface cannot be retrieved directly. Commonly, in 
meteorology, orbiting satellites carry MW channels where 
images become available at resolutions of once or twice per 
day. 
 
Wilheit et al. [1994] classified the MW rainfall retrieval 
algorithms as described in the first Precipitation Inter-
comparison Project (PIP-1) into: mostly empirical, mostly 
physical and highly physical, see table 1. It was stated that 
the classification is arbitrary and even the mostly empirical 
algorithms could be considered more physically based than 
the IR based algorithms.    
 
Table 1: Classification of algorithms for the microwave 
channel based rainfall retrieval approaches 

Type of 
algorithm 

 

Remarks 
 

Empirical Observe the anomalous depression of 
short wave brightness temperature by 
frozen precipitation aloft and translate 
it into surface rain rate. 

Mostly 
empirical 

Use radiative transfer models to select 
brightness temperatures or functions 
of brightness temperatures to regress 
against ground truth. 

Mostly 
physical  

Arbitrary distribution of 
hydrometeors is used as an input to 
radiative transfer models. The output 
of the model is compared to observed 
brightness temperatures to infer rain 
rate.    
The problem here is lack of 
information on details that are 
important for microwave radiative 
transfer models, for e.g. scattering by 
ice. 

Highly 
physical 

Uses storm scale hydrodynamic 
models including hydrometeor 
microphysics to generate the 
hydrometeor profile input to the 
radiative transfer models. Accuracy 
depends on the appropriateness of 
initial conditions and the realism of 
the hydrometeors produced.                    

 

The physically based approaches are expected to be more 
applicable under various climatic settings without much 
adjustment than that required for the empirical algorithms. 
The Authors of this article also share this idea. Therefore, the 
procedure for the MW based empirical algorithms is not 
discussed in this paper. However, the general procedure for 
most of the physically based algorithms is outlined hereafter. 
By these algorithms, first a cloud model is applied to 
simulate cloud microphysical properties. The simulation 



 
 

outputs then serve as inputs to a radiative transfer model that 
is used to develop a cloud-radiation database. The objective 
is to associate vectors of multi-frequency brightness 
temperature (TB) values to each of the profile sets that 
represent the state of the atmosphere. The next step, which is 
an inversion procedure, is to retrieve liquid/ice water content 
profiles from the cloud-radiation database based on observed 
brightness temperature (T

B

BB

2.3 

) values.  
 

Combined IR-MW approaches 

The need to improve the performance of IR- and MW-based 
rainfall retrieval approaches resulted in the development of 
combined approaches that benefit from the strengths of both 
data sources. Such algorithms combine and benefit from the 
availability of IR images at high temporal resolutions with 
MW images that carry the relatively direct information on 
cloud and rainfall characteristics. This has resulted in the 
emergence of several algorithms such as multi-variate 
probability matching and variance constrained multiple 
regression [see Marzano et al (2004, 2005)]; statistical 
regression [see Miller et al. (2001)] but also algorithms based 
on Artificial Neural Networks (ANN) [see Hsu et al. (1997, 
1999); Sorooshian et. al. (2000), and Hong et. al. (2005)] .  
Figure 2 shows the ANN structure as developed for the 
PERSIAN algorithm. 
 

 
Figure 2: The modified counter propagation ANN [Hsu et al. 
(1999)]. x1, x2…xn etc refer to satellite  image derived 
variables. 
 
3. ISSUES RELATED TO RAINFALL RETRIEVALS 

3.1 Rainfall dynamics 

Characteristics and complexity of rainfall dynamics as well 
as limitation of satellite based sensors to observe cloud 
behavior at scales relevant for rainfall formation, to a large 
extent, contribute to the rainfall retrieval approaches poor 
performance. The wide range of spatial and temporal scales 
of the cloud dynamics and rainfall formation introduces 
complexity that cause that rainfall retrievals from images are 
uncertain with respect to location, extent and intensity. The 
regional and seasonal dependence of the rainfall formation 
also causes uncertainty although to a different scale. For 
instance, an algorithm verified for observations at the start of 
a rainy season, when convective cells dominate, can have a 
significant bias when tested for the middle of the rainy 
season or for other regions for which other factors such as 
advection of humid air may dominate. As such it is also 
necessary to evaluate the effectiveness of seasonal and 

geographic location based relationship between image based 
proxy variables and observed surface rainfall rates [see Todd 
et al. (1995)]. Clouds often do not simply grow or dissipate 
without splitting or merging with the surrounding clouds, see 
figure 3. This also adds complexity to rainfall retrieval 
processing such as, for instance, the life-history methods 
which track the clouds over space and time. 

 
 
            a) 10:00 UTC         b) 11:00 UTC 
 
 

 
             c) 11:30 UTC     d) 12:30 UTC 
 
Figure 3: Growth of clouds as observed for the Upper Blue 
Nile basin on August 22, 2005 by MSG. Note: values are 
brightness temperatures (K) for the 10.8 μm channel and the 
white color indicates relatively thick and high clouds. 
 
The significant difference in the amount and pattern of 
rainfall from the two major cloud types that produce rainfall, 
i.e. convective and stratiform clouds, requires studying these 
cloud types differently. Such practice based on remote 
sensing observations is an ongoing research topic. Passive 
MW remote sensing is considered better than IR remote 
sensing to identify convective and stratiform precipitation. 
Figure 4 shows convective rainfall cells embedded in 
stratiform clouds as retrieved from TRMM images. However, 
the distinction between the two precipitation systems is non-
unique but also low image resolutions introduce additional 
difficulty. For instance, Hong et al [1999] showed that the 
area covered by convective/stratiform clouds change as the 
spatial resolutions of the images change. Although stratiform 
precipitation always occur more frequently than convective 
precipitation, mixed rainfall areas increase gradually as the 
resolution decreases.  
 



 
 

 
 
Figure 4: Rainfall rate in the Upper Blue Nile basin from 
TRMM PR observations August 27, 2005. (Source: TRMM 
online data access) 
 
3.2 The top-down observation 

The most logical way to observe rainfall is upwards from the 
earth’s surface to the cloud system instead of downwards 
from the satellite orbits to the cloud systems. This difference 
in view point introduces uncertainties to all the available 
satellite image based rainfall estimation algorithms.  
 
IR-based approaches: IR-based approaches are based on 
observations of cloud top surfaces since radiation, in this part 
of the electromagnetic wave spectrum, does not penetrate 
deep into the clouds. This makes rainfall retrieval 
‘inferential’ in a sense that rainfall is inferred from cloud top 
temperatures. Figure 1 proves that the relation between cloud 
top temperature and daily rainfall depth is weak and often it 
is the case that not all cold clouds produce rain while also 
rain does not always fall from cold clouds. Thus, this indirect 
approach often results in poor accuracy of pixel based 
rainfall estimates. In literature, it is stated that rainfall 
estimates often require aggregation over a coarse spatial 
domain, for instance larger than 10X10 and low temporal 
resolutions of days to improve accuracy, such as, applied for 
the GPI method. In addition, the detection of false rainfall 
signals from cold clouds that do not produce rainfall and the 
difficulties with warm rain that is to be associated to stratus 
clouds cause inaccuracies and thus uncertainties in the 
approaches. Images in the visible channel provide useful 
information on cirrus clouds since these clouds are less bright 
compared to clouds that produce rain.  However, these 
images are only available during day time and are affected 
by the position of the sun and thus require geometric 
corrections.   
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a) For D/Sina meteorological station. 
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b) For D/Birhan meteorological station.  
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c) For Adet meteorological station.  

Figure 5: Daily Rainfall vs. daily minimum IR brightness 
temperature observations for August, 2005. 
 
Figure 5 and 6 illustrate that both Tmin and CCD carry 
relevant information that could be related to daily rainfall 
amount.  As it is shown in figure 5, power law relationship 
between daily rainfall and daily minimum brightness 
temperature (Tmin) observations can be established. 
Although the R2 value, also known as the coefficient of 
determination that ranges between 0 and 1, is not very low, 
the relationship between the two variables is not very strong. 
Also the observed scattering indicates that the relation is non 
unique since single brightness temperatures can be related to 
unequal daily rainfall depths. Nevertheless, the minimum 
brightness temperature is indicative towards daily rainfall 
amounts.  For instance, for the considered stations, Tmin of 
less than 210 K is most likely associated to a rainfall amount 
higher than 10 mm while Tmin of greater than 230 K 
corresponds to a rainfall amount of lower than 5 mm.  
 
The Cold Cloud Duration (CCD) is used as one of the indices 
for retrieval of daily rainfall amounts from images. A major 
limitation with the CCD is that rainfall amount is related only 
to the cloud duration. However, such assumptions could fail 
when convective clouds of high rainfall intensity occur over 
a short period of time. In addition, results from this approach, 
similar to other IR based approaches, are affected by the 
applied temperature threshold that varies with season and 
geographic position. In this study, the CCD values are 
computed based on a brightness temperature threshold of 160 
K. It should however be understood that the threshold is 
affected by many factors and also changes over meso-scale 
spatial domains and season. However, several cloud indexing 
approaches use a constant threshold.  Figure 6 shows the 2R  
value is low when the relationship between observed daily 
rainfall and CCD values is established for combined 
observations from six stations than that when the relationship 
is based on observations from single station. Such could 



 
 

partly indicate the effect of geographic position on the 
relationship between satellite observations and surface 
rainfall.  
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a) D/Sina 
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b) D/Birhan 
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c) Adet 
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d) Six stations in the Upper Blue Nile Basin 

Figure 6: Observed daily rainfall vs. daily CCD  
 

Table 2 shows the least square based regression equations 
and performance indicators for rainfall estimation based on 
Tmin and/or CCD as explanatory variables. The performance 
of the applied regression equations is evaluated in terms of 
the Relative Error (RE), Root mean Square Error (RMSE) 
and the Relative variance (Rvar). RE is the ratio of the 
absolute error to the average of the observed data while Rvar 
is the ratio of the variance of the estimates to that of the 

observations. The desired value for RE is close to zero and 
that for Rvar is close to one. As it is shown in table 2 the 
errors of the estimates are relatively high and are about half 
of the averages of the observations. For the stations at 
D/Birhan and D/Sina, the Rvar and the RMSE become closer 
to the desired value when the estimates are based on both 
Tmin and CCD as compared to when only one of the two 
variables is considered. For the station at Adet, although the 
Rvar becomes closer to one when only Tmin is used, the 
RMSE becomes lower when both Tmin and CCD are used. 
 
 

 
Figure 7:  Contour map of observed daily rainfall (mm) 
overlain on CCD (in fraction of a day) map for August 13, 
2005. 
 
Table 2: Performance assessment of rainfall retreival 
equations 
 
Station Equation RE RMSE 

 
Rvar 

23.889*CCD-0.8494 0.66 
 

6.82 
 

0.32 
 

2*1024*Tmin-10.104 0.55 
 

7.00 
 

0.16 
 

D/Birhan 

35.28+15.55*CCD-
0.15*Tmin 

0.64 
 

6.59 0.37 
 

32.959*CCD+4.2181 0.56 
 

10.74 
 

0.32 
 

4*1027*Tmin-11.398 0.48 
 

10.25 
 

0.54 
 

D/Sina 

72.82+16.81*CCD-
0.3*Tmin 

0.57 
 

9.92 
 

0.61 
 

13.858*CCD+1.727 0.53 
 

5.28 
 

0.22 
 

5*1035*Tmin-14.962 0.53 
 

5.58 
 

0.71 
 

Adet 

54.72+3.42*CCD-
0.22*Tmin 

0.48 
 

4.60 
 

0.41 
 

16.147*CCD + 2.4117 0.71 
 

9.59 
 

0.02 
 

6*1022*Tmin -9.4653 0.64 9.30 0.11 
44.56+6.95*CCD-
0.18*Tmin 

0.68 
 

8.10 
 

0.22 
 

Six 
stations 

30.64+12.66*CCD-
0.19*Tmin+0.006*Elv 
 

0.62 
 

7.44 
 

0.34 
 

 
Hydrological modeling requires spatial rainfall inputs at the 
scale of model elements. This requires formulation of a 
single relationship that is applicable to all elements that 
makeup the land surface model domain.  Table 3 shows such 
equations for the Upper Blue Nile catchment based on 



 
 

rainfall observations for the month of August 2005 from six 
stations. The performance indicators values in table 3 
illustrate that formulation of a single best equation for the 
entire spatial domain requires additional explanatory 
variables such as for instance elevation (Elv.) in order to 
yield better performance. 
 
Table 3: Performance assessment of a single best rainfall 
retrieval equation 
 

Equations RE RMSE Rvar 
D/Birhan 

0.68 6.79 0.22 

D/Sina 

0.62 12.17 0.18 

Adet 

44.56+6.95*CCD-
0.18*Tmin 

0.52 4.8 0.39 

D/Birhan 

0.68 6.69 0.36 
D/Sina 
0.54 10.68 0.27 

Adet 

30.64+12.66*CCD-
0.19*Tmin+0.0056*
Elv 
 

0.55 5.07 0.69 

 
 

 
Figure 8: MSG observations for August 15, 2006 at 12:00 
UTC (observations are presented in eight bit counts) 
 
In Figure 8, the dots refer to combinations of VIS, IR and 
WV counts. The relatively small scatter allows identification 
of a general trend. This explains that additional and effective 
information is carried by the VIS and WV observations. The 
IR observations are mainly indicative of the cloud 
temperatures that relate to cloud top height whereas the VIS 
and WV observations are indicative to, respectively, the 
cloud thickness and the mass of water stored in the cloud. In 
the same figure, the WV count is associated to different 
combinations of VIS and IR counts. It is shown that 
combinations of all counts are non-unique and as such 
various combinations can be identified. In our opinion, this 
implies that also rainfall retrievals cannot be seen as very 
reliable but instead such retrievals must be interpreted as 
being very uncertain.  
 
MW-based approaches: Characteristic to most MW-based 
approaches is that observations commonly are from orbiting 
satellites and thus only 1 or 2 images become available on a 

daily basis. Obviously, this very poor temporal resolution 
restricts cloud tracking over time and across space that 
introduces much error and uncertainty in retrieval 
procedures. Performance of Passive MW rainfall retrieval 
algorithms also is affected by assumptions that are weak but 
that are necessary in the retrieval procedure. For instance, the 
assumption that rainfall is homogeneously distributed over 
pixel elements of relatively large scale is weak and is often 
termed and referenced to as the beam filling problem [see 
Kummerow (1998)]. Since observations are affected by 
radiation from sources such as land surfaces and large water 
surfaces, a distinction is commonly made between the 
algorithms for ocean and land surfaces. For oceans, the low 
and uniform emissivity of the water surface allows the 
change in brightness temperature (TB) due to the presence of 
precipitation drops to be easily detected. As such, algorithms 
for water surfaces depend on the emission mode at 
frequencies lower than 20 GHz. However, observations over 
the land surface are affected by the highly variable land 
surface emissivity and as a result retrievals are mainly based 
on the scattering process as observed by frequencies higher 
than 60 GHz. It is shown in figure 9 that the 85 GHz channel 
gives information only on properties of snow and graupel. It 
is the backscattering by large ice and graupel that has a major 
effect on modulating T

B

BB’s at large frequencies. However, the 
brightness temperatures appear to be strongly related to 
liquid precipitation processes due to the high correlation 
between ice mixing ratios and rain rates. This introduces 
uncertainties in the presence of clouds that produce relatively 
few, if any, ice above the freezing level, for instance the 
collision-coalescence produced rainfall [see Petty (1995)]. 
Thus retrieval algorithms based on emission are expected to 
give the most direct estimate on surface rainfall rates while 
the scattering based algorithms provide relatively indirect 
estimates.  
 

 
Figure 9: Relationship between observations from passive 
MW frequencies and cloud phases [Modified after Mugnai et 
al. (1992) Cited in Barrett and Beaumont (1994)]. 
 
Combined approaches: The premise of combined IR-MW 
based approaches is that retrieval algorithms benefit from 
both the high temporal resolution of IR observations from 
geostationary satellite and the relatively direct nature of MW 
observations from the low earth orbiting satellites. These 
approaches, however, demand spatially and temporally 
coincident data from the two data sources which is rarely the 
case. Consequently, this leads to displacements in position of 



 
 

retrieved rainfall distributions over space that often is 
referred to as satellite-ground misregistration. One of the 
research challenges to these approaches is which method to 
use for the integration of observations from different sources. 
Miller et al. [2001] concluded that a simple regression leads 
to a bias due to a dominance of the zero and light rainfall 
observations.  The use of ANN has obtained research 
attention; however, the non-unique relation between remote 
sensing observations and rainfall observations poses 
challenge to a simple neural network [see Bellerby et al. 
(2000)].  
 

4. CHALLENGES FOR IMPROVEMENT 

The physical basis of satellite image based rainfall retreival 
approaches is presented. It is shown that the approaches have 
major limitations since relations between observations and 
surface rainfall rates are indirect. The limitations are also due 
to the complexity of the rainfall dynamics and its variability 
with season and location. Because of poor performance, 
retrieval procedures that use single channel and single sensor 
observations are not sufficient for hydrological applications. 
A further research is required to evaluate the effectiveness of 
multi-channel and multi-sensor based rainfall retrieval 
procedures. Remote sensing techniques such as segmentation 
and classification can be helpful to identify the different 
types of raining clouds. 
   
4.1 The Global Precipitation Measurement (GPM) 
mission 

NASA and JAXA conceived a new mission called the Global 
Precipitation Measurement (GPM) mission for the year 2010 
as a result of the success of TRMM mission [see Smith et al. 
(2004)]. The mission is anticipated to improve precipitation 
observation from space by providing accurate measurements, 
increased sampling frequency, increased spatial resolution 
and better coverage of the earth compared to the present 
precipitation observation era. The core satellite of the GPM 
mission will carry Dual frequency Precipitation Radar (DPR) 
and a multi-channel passive microwave rain radiometer 
called the GPM Microwave Imager (GMI), see figure 10. 
 
In addition to the core satellite, eight satellites in 
constellation are expected to carry a variety of multi-channel 
passive MW radiometers. The DPR provides measurements 
that are sensitive to fluctuations in rain drop size distributions 
while the high resolution MW radiometers mitigate 
heterogeneous beam filling problem of the current passive 
MW measurements. The GPM satellites will also provide 
unprecedented sampling frequency of eight observations per 
day. Clearly it is expected that, this increased sampling 
frequency will result in an improvement of the combined IR-
MW based rainfall retrievals by the large number of MW 
observations per day. 
 
In addition, observations from the European Global 
Precipitation Measurement (EGPM) mission [see Mugnai et 
al. (2004)] will serve as a calibration standard for: (1) the 
light/warm/drizzle rainfall portions of the liquid spectrum (2) 
the domains pole ward of the 65 degrees parallel beyond 
which the GPM core satellites does not measure, and (3) light 
to moderate snowfall which will not be detectable by the 
DPR.  

 
 

a) 
 

 

 
 

b) 
Figure 10: (a) Constellation of GPM satellites (b) and GPM 
Microwave Imager (GMI) and  Dual frequency Precipitation 
Radar (DFR) beam structure and footprint.  
(source: http://gpm.gsfc.nasa.gov) 
 
4.2 

4.3 

Cloud models 

The water content that precipitates at the cloud bottoms is 
one of the outputs from cloud models. The model-simulated 
cloud water content can be related to surface rainfall rates 
through equations that describe for instance the evaporation 
and fall velocity of the water drops. Inputs to cloud models 
are, among others, hydrometeor and temperature profiles 
through the cloud layers. As outlined in the previous 
sections, among image based variables are IR brightness 
temperatures that are indicative of cloud heights. 
Georgakakos and Bras [1984] developed a one-dimensional 
(1D) cloud model that utilizes cloud top IR brightness 
temperatures as its inputs for rainfall forecasting.  French and 
Krajewski [1994] and Andrieu et al. [2003] revised the 1D 
model so that it uses ground based radar observations of 
cloud water content as inputs. Further research challenges are 
to evaluate the effectiveness of the approach for geographic 
positions where radar observations are unavailable and to 
revise the equations so that WV and MW brightness 
temperatures serve as model inputs. Such improvements are 
expected to enhance the performance of the 1D model for 
rainfall simulations.   
 

Scale issues 

Common to all the rainfall retrieval approaches is also the 
scale issue. Up-scaling and downscaling of the ground 
observations and satellite rain estimates for calibration and 
verification purposes introduces uncertainty. The temporal 
and spatial resolutions of the geostationary IR images and the 
orbiting MW images are not equal and as such combining the 
information from these images requires collocation of the 
data in both time and space. This problem also prevails when 
multi-spectral MW images from the low earth orbiting 
satellites alone are used. This requires de-convolution of the 
low frequency images.  
 

http://gpm.gsfc.nasa.gov/


 
 

To the hydrologic community, an important research 
challenge is to quantify scaling effects due to sampling, 
retrieval and assimilation of satellite rainfall retrieval into 
hydrologic models. In recent literature, such issues have 
gained attention [see Astin [1997]; Bellerby and Sun [2005]; 
Lee and Anagnostou [2004].   
 
 

5. CONCLUSION 

The physical basis of images based rainfall retrieval 
approaches and the reason for the poor performance of the 
approaches are discussed. The poor accuracy of the rainfall 
retrievals to a large extent is explained by the non-unique 
relationship between the satellite observations and the 
surface rainfall rates. A simple case study on the Upper Blue 
Nile basin showed that the daily CCD and Tmin carry 
effective information on rainfall production in cloud systems 
that land surface rainfall rates can be retrieved.  The idea that 
a single best relation based only on CCD and Tmin for the 
entire Blue Nile is found questionable and inclusion of 
additional variables such as for instance elevation data is 
suggested. To be more conclusive, however, further study 
based on data from several stations is required. Development 
and evaluation of the effectiveness of a ‘Multiple input-
multiple output’ type approach is regarded a challenging 
research topic however, such an approach is expected to 
improve the accuracy of retrievals. It is recommended to 
introduce physics into the estimation algorithms by using 
cloud models. This is expected to overcome the major 
limitation of the black-box approaches. 
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