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ABSTRACT:

Traditional spectral classification of remote sensing data applied on per pixel basis ignores the potentially useful spatial information
between the values of proximate pixels. Although spatial information extraction has been greatly explored, there have been limited
attempts to enhance classification by combining spectral and spatial information. This improvement would arise from the hypothesis
that a pixel is not independent of its neighbors and, furthermore, thatits dependence can be quantified and incorporated into the
classifier.
This study aims to explore the potential of utilizing texture spatial variability usinggeostatistics and Grey Level Co-occurrence Matrix
(GLCM) texture measures. Different texture layers derived from geostatistics method, namely fractal dimension, semivariogram, mado-
gram, rodogram, pseudo-cross variogram and pseudo-cross madogram, were incorporated for the land cover classification of tropical
rainforests in East Kalimantan, Indonesia. Texture layers of grey level co-occurrence matrix (GLCM) channels, i.e. variance, contrast,
dissimilarity, and homogeinity, were also used for the classification. Two classification methods, using Support Vector Machine and
Minimum distance were applied for image classification.
Landsat 7 ETM images combined with textural information is used for land cover classification of tropical rainforest area. Band 5 of
Landsat data was used to compute texture layers using the GLCM and geostatistics methods. This band was chosen because it has the
highest variance of training data compared to other spectral bands.
The results were compared to find out how the extra information given bythe texture enhances the classification. According to the
accuracy assessment using error matrix, combinations of image and texture data performed better with81% of accuracy compared to
those of image data only with76% of accuracy.

1 INTRODUCTION

Mapping of forest cover is an ultimate way to assess forest cover
changes and to study forest resource within a period of time. On
the other hand, forest encroachment is hardly stopped recently
due to excessive human exploitation on forest resources. The for-
est encroachment is even worse in the tropical forest, which is
mostly located in developing countries, where forest timber is a
very valuable resource. The needs for the updated and accurate
mapping of forest cover is an urgent requirement in order to mon-
itor and to properly manage the forest area.

Remote sensing is a promising tool for mapping and classifica-
tion of forest cover. A huge area can be monitored efficiently
at a very high speed and relatively low cost using remote sens-
ing data. Interpretation of satellite image data mostly applies a
per pixel classification rather than the correlation with neighbor-
ing pixels. Geostatistics is a method, that may be used for image
classification, as we can consider spatial variability among neigh-
boring pixels (Jakomulska and Clarke, 2001). Geostatistics and
the theory of regionalized variables have already been introduced
to remote sensing (Woodcock et al., 1988).

This work attempts to carry out image classification by incor-
porating texture information. Texture represents the variation
of grey values in an image, which provides important informa-
tion about the structural arrangements of the image objects and
their relationship to the environment (Chica-Olmo and Abarca-
Hernandez, 2000). The work aims to explore the potential of
pixel classification by measuring texture spatial variability using
geostatistics, fractal dimension, and conventional GLCM meth-
ods. This is encouraged by several factors, like:(1) texture fea-
tures can improve image classification results, as we include extra

information; (2) image classification on forest area, where visu-
ally there are no apparent distinct objects to be discriminated (e.g.
shape, boundary) can take into benefit the use of texture variation
to carry out the classification; and(3) texture features of land
cover classes in forest area, as depicted on Figure 1 are quite dif-
ferent visually even if the spectral values are similar; therefore the
use of texture features may improve the classification accuracy.

2 STUDY AREA

The study focuses on a forest area located in Labanan concession
forest, Berau municipality, East Kalimantan Province, Indonesia
as described on Figure 2. This area geographically lies between
1◦ 45’ to 2◦ 10’ N, and 116◦ 55 and 117◦ 20’ E.

The forest area belongs to a state owned timber concession-holder
company where timber harvesting activity is carried out, and the
area mainly situated on inland of coastal swamps and formed by
undulating to rolling plains with isolated masses of high hills and
mountains. The variation in topography is a consequence of fold-
ing and uplift of rocks, resulting from tension in the earth crust.
The landscape of Labanan is classified into flat land, sloping land,
steep land, and complex landforms, while the forest type is often
called as lowland mixed dipterocarp forest.

3 DATA AND METHOD

3.1 Data

Landsat 7 ETM of path 117 and row 59 acquired on May 31, 2003
with 30 m resolution was used in this study. The data were ge-
ometrically corrected using WGS 84 datum and UTM projection
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Figure 1: Different texture of land cover classes represented on the study area

Figure 2: Study area represented using combination of Band
453 in RGB channel. Important land cover classes are marked
here, namely Logged over Forest (a), Dense Forest (b), Burnt
Area/Open Forest (c), and Clear Cut Forest/Bare Land(d)

with an RMS error of less than 1.0 pixel. Subsequently, atmo-
spherically corrections on the satellite data were conducted using
ATCOR module (Richter, 1996). A subset of the Labanan con-
cession area (512 × 512 pixels) was used for the classification
in order to optimize effort and time for forest cover classification
and validation.

During dry season 531 sampling units collected on September
2004, 364 units were used to train the classification and 167 units
were used as test dataset. Five forest cover classes were identi-
fied, namely logged over forest, clear cut forest/bare land, dense
forest, and burnt areas/open forest.

3.2 Method

Grey Level Co-Occurrence Matrix. The grey-level co-occur
rence matrix (GLCM) is a spatial dependence matrix of relative
frequencies in which two neighboring pixels that have certain

grey tones and are separated by a given distance and a given an-
gle, occur within a moving window (Haralick et al., 1973).

The GLCM texture layers could be computed from each band of
Landsat data. To provide the largest amount of texture informa-
tion, the following strategy was adapted in selecting the satellite
band for computing the GLCM texture layers. Covariance ma-
trix showing the variance of each land cover class for each band
was computed and the band corresponds to the highest mean vari-
ance of forest classes was selected. Compared to other spectral
bands, Band 5 of Landsat ETM has the highest mean variance
value as summarized on Table 1. Using a window size of5 × 5
at every pixel and grayscale quantization level of 64, four GLCM
layers were derived from the Landsat image, using variance, ho-
mogeneity, contrast, and dissimilarity as defined by Haralick et
al. (1973).

Geostatistics Features. To incorporate Geostatistical texture
features in the classification, semivariogram was computed in the
neighborhood of every pixel. Generally, spatial variabilityγ(h)

increases gradually with distance separating the observations up
to a maximum value (the sill) representing the maximum spatial
variance. The distance at which the sill is reached represents the
range of variation, i.e., the distance within which observations
are spatially dependent. Respectively, the size of moving win-
dow used to extract texture information of spectral data has an
important role to provide an accurate estimation of semivariance,
which eventually effects the classification accuracy. This work
uses 5×5 and 7×7 moving windows to derive geostatistics tex-
ture layers.

Semivariogram is an univariate estimator, which describes the re-
lationship between similarity and distance in the pixel neighbour-
hood.Z(x) andZ(x+h) are two values of the variableZ located
at pointsx andx + h. The two locations are separated by the lag
of h. The semivariogram values are calculated as the mean sum
of squares of all differences between pairs of values with a given
distance divided by two as described in the following equation
(Carr, 1995).

γ(h) =
1

2n

n∑

i=1

(Z(xi) − Z(xi + h))2 (1)

wheren is number of pairs of data.

Another spatial variability measure is the madogram, which in-
stead of measuring squares of all differences takes the absolute
values (Deutsch and Journel, 1998; Chica-Olmo and Abarca-Hernandez,
2000).

γ(h) =
1

2n

n∑

i=1

|Z(xi) − Z(xi + h)| (2)



Land Cover Class Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

Logged Over Forest 3.49 3.03 8.46 23.56 50.98 0.70 15.46
Burnt Areas/Open Forest 2.59 1.76 2.59 24.19 18.46 0.46 5.04
Road Network 65.68 165.39 332.63 74.12 386.45 1.91 294.98
Clear Cut Forest/Bare Land 2.70 5.20 2.90 33.52 32.49 0.83 8.70
Dense Forest 2.92 1.56 1.49 1.82 11.08 0.49 4.73
Hill Shadow 2.62 2.78 2.58 40.28 30.32 0.57 6.63

Mean Variance of total classes 13.33 29.95 58.44 32.91 88.30 0.83 55.92

Table 1: Variance matrix of forest cover classes training data

By calculating square root of absolute differences, we can derive
a spatial variability measure called rodogram as shown in the fol-
lowing formula (Lloyd et al., 2004).

γ(h) =
1

2n

n∑

i=1

|Z(xi) − Z(xi + h)|
1

2 (3)

Alternatively, three multivariate estimators quantify the joint spa-
tial variability (cross correlation) between two bands, namely pseudo
cross variogram, and pseudo cross madogram were also com-
puted. The pseudo-cross variogram represents the semivariance
of the cross increments, and calculated as follows.

γ(h) =
1

2n

n∑

i=1

(Y (xi) − Z(xi + h))2 (4)

The pseudo-cross madogram is similar of the pseudo-cross vari-
ogram, but again, instead of squaring the differences, the absolute
values of the differences area taken, which leads to a more gener-
ous behavior toward outliers (Buddenbaum et al., 2005).

γ(h) =
1

2n

n∑

i=1

|Y (xi) − Z(xi + h)| (5)

Using Band 5 of Satellite data, the spatial variability measures
were computed and median values of semivariance at each com-
puted lag distance were taken, resulted in the full texture layers
for each calculated spatial variability measure. These texture lay-
ers were then put as additional input for the classification.

Fractal Dimension. Fractal is defined as an object which are
self-similar and show scale invariance (Carr, 1995). Fractal dis-
tribution requires that the number of objects larger than a speci-
fied size has a power law dependence on the size. Every fractal is
characterized by a fractal dimension (Carr, 1995).

Given the semivariogram of any spatial distribution, fractal di-
mension(D) is commonly estimated using the relationship be-
tween the fractal dimension of a series and the slope of the corre-
sponding log-log semivariogram(m) plot (Burrough, 1983; Carr,
1995).

D = 2 −
m

2
(6)

4 RESULTS & DISCUSSION

4.1 Results

Before Geostatistics texture layers were derived, we observed
whether there is textural variation among different classes. Using

training data, semivariogram of land cover classes on the study
area was sequentially computed for lag distance (range) of 30
pixels, as presented on Figure 3.
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Figure 3: Variogram plot of training data shows the spatial vari-
ability of land cover classes on the study area, i.e. logged over
forest (red), burnt areas/open forest (blue), clear cut forest/bare
land (yellow), dense forest (green), hill shadow (purple)

As shown in Figure 3, semivariance computed for every lag dis-
tance may provide useful information for data classification as
those values of each forest class revealed spatial correlation for
lag distance of less than 10 pixels. However, there is an excep-
tional case for dense forest class, which shows spatial variabil-
ity on larger lag. This may be a problem for computing semi-
variance for this particular class as the calculation of per pixel
semivariance on large lag distance is computationally expensive.
Compromising with other forest classes, texture layers were com-
puted using 5×5 and 7×7 moving windows. Using different spa-
tial variability measures explained before, semivariance values
for each pixel were calculated and median of these values was
used, resulting in texture information of the study area. The re-
sults of Geostatistics texture layers are described on Figure 4.

Classification of satellite image was done using following data
combinations:(1) ETM data;(2) ETM data and GLCM texture,
and; (3) ETM data and Geostatistics texture. Two classification
methods, using minimum distance algorithm and Support Vec-
tor Machine (SVM) method were applied for the purpose of the
study.

The SVM method is originally a binary classifier, that is based
on statistical learning theory (Vapnik, 1999). Multi-class image
classification using the SVM method is conducted by combin-
ing several binary classification to segmenting data with the sup-
port of optimum hyperplane. The optimum performance of this
method mainly affected by a proper set up of some parameters
involved in the algorithm. This study, however, was not trying
to optimize the SVM classification, therefore those parameters
were arbitrarily determined. For the classification, Radial Basis
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Figure 4: Different texture layers derived from spatial variability measures of Geostatistics Method



Function kernel was used,γ in kernel and classification proba-
bility threshold were respectively,0.143 and0.0, while penalty
parameter was100.

The motivation of using those two methods for classifying spatial
and texture data was in order to study the performance of texture
data given two completely different algorithms in the classifica-
tion. The classification results are summarized on Table 2.

Applying the SVM and Minimum Distance in the classification,
the results showed that74% and76% of accuracies were achieved
when Band 3,4,5 of Landsat image and multipectral Landsat data
(i.e. Band 1-5,7) were used in the classification, respectively.
Furthermore, multispectral bands of Landsat data were used to
perform classification using texture data.

The GLCM texture layers have slightly improved the classifica-
tion accuracies, when variance, contrast, and dissimilarity were
used in the classification. The GLCM texture classification per-
formed by the SVM resulted in81% of accuracy when combina-
tion of ETM data and all the GLCM texture layers were applied.

Geostatistics texture layers, on the other hand, performed quite
satisfactorily, resulting more than80% of accuracies when frac-
tal dimension, madogram, rodogram and combination of those
texture layers were used in the classification. The classification
resulted in81.44% of accuracy and kappa of0.78 when image
data, fractal dimension, madogram and rodogram were classified
by the SVM method, the results were depicted on Figure 5.

Figure 5: The final classification result image

Indeed, the SVM performed better than Minimum Distance, when
texture data was used, it has already been proven that the SVM
performed well dealing with large spectral data resolution, such
as hyperspectral, as reported by several recent studies (Gualtieri
and Cromp, 1999; Pal and Mather, 2004, 2005).

4.2 Discussion

Geostatistics texture layers performed quite well in the classifica-
tion. However, semivariogram and pseudo-cross semivariogram
texture layers were not giving satisfactory classification results
when those layers were classified by Minimum Distance method.
This is due the nature of semivariogram and pseudo-cross semi-
variogram, which calculate the mean square of semivariance for
all observed lag distance, either using monovariate or multivariate
estimators. This, eventually may reduce the classification accu-
racy because of the presence of data outliers.

Combined with madogram and rodogram, the classification re-
sulted in higher accuracies with the SVM and Minimum Distance
method methods. This is obvious as madogram, calculating the
sum of absolute value of semivariance for all observed lag dis-
tance, and rodogram, computing the sum of square root of those
semivariance, have ’softer’ effect to the presence of outliers com-
pared to those of semivariogram.

This study observed that by changing the size of moving win-
dow from5 × 5 into 7 × 7 has slightly improved the classifica-
tion accuracy. This is because the scale of land cover texture is
similar with the the7 × 7 window size; therefore, this window
size provides more texture information than the other. However,
computation of texture layer using larger size of moving window
is absolutely not efficient in terms of time, thus to initially find
the optimum size of moving window may be an alternative to re-
duce efforts and time for the computation of geostatistics texture
layers. Selection of proper size of moving window will provide
better texture information resulted from spectral image data.

In general, additional texture layers for image classification, ei-
ther derived from the GLCM or Geostatistics, have effectively
improved the classification accuracy. Although, this study found
that by applying different GLCM texture layers as well as Geo-
statistics layers in a single classification process considerably im-
proved classification accuracy, one should be very careful to ap-
ply the same method for different types of data. The selection of
classification algorithm depends on the data distribution.

5 CONCLUSIONS AND FUTURE WORK

This study found that texture layers derived from the GLCM and
Geostatistics methods have improved classification of spatial data
of Landsat image. Texture layers are computed using the moving
window method. Selection of the moving window size is very
important since extraction of texture information from spectral
data is more useful when texture characteristics corresponds to
the observed land cover classes are already known.

Support Vector Machine as well as Minimum Distance algorithm
were performed well in the classification elaborating texture data
as additional input of Landsat ETM data. Moreover, the SVM
resulted on average higher accuracies compared to those of Min-
imum Distance Method.

The authors observed that for future work, it is also possible to
compute Geostatistics texture layer with adjustable moving win-
dow size, depending on the size of texture polygon for certain
land cover class being observed. This may be an alternative to
extract better texture information from spectral data.
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Min. Distance SVM
OAA (%) Kappa OAA (%) Kappa

ETM Data
ETM 6 Bands 76% 0.71 76% 0.71
ETM Band 3,4,5 74% 0.69 74% 0.71

ETM 6 Bands, Geo-Texture Windows 5×5
ETM 6 Bands, Fractal 76% 0.71 81% 0.77
ETM 6 Bands, Madogram 77% 0.72 78% 0.74
ETM 6 Bands, Rodogram 76% 0.71 80% 0.76
ETM 6 Bands, Semivariogram 57% 0.48 77% 0.72
ETM 6 Bands, Pseudo-Cross Semivariogram 47% 0.36 77% 0.72
ETM 6 Bands, Pseudo-Cross Madogram 76% 0.71 75% 0.71
ETM 6 Bands, Fractal, Madogram, Rodogram 77% 0.72 81% 0.77

ETM 6 Bands, Geo-Texture Windows 7×7
ETM 6 Bands, Fractal 76% 0.71 79% 0.75
ETM 6 Bands, Madogram 78% 0.73 80% 0.76
ETM 6 Bands, Rodogram 76% 0.71 81% 0.77
ETM 6 Bands, Semivariogram 50% 0.39 77% 0.73
ETM 6 Bands, Pseudo-Cross Semivariogram 47% 0.37 76% 0.71
ETM 6 Bands, Pseudo-Cross Madogram 76% 0.71 76% 0.71
ETM 6 Bands, Fractal, Madogram, Rodogram 78% 0.73 81% 0.78

ETM 6 Bands, GLCM
ETM 6 Bands, Variance 77% 0.72 77% 0.72
ETM 6 Bands, Contrast 77% 0.72 75% 0.70
ETM 6 Bands, Dissimilarity 72% 0.67 77% 0.73
ETM 6 Bands, Homogeinity 62% 0.54 77% 0.72
ETM 6 Bands, Variance, Contrast, Dissimilarity, Homogeinity 63% 0.55 81% 0.77

Table 2: Overall Accuracy Assessment (OAA) of the Classification
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