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ABSTRACT 
A major goal of seafloor habitat mapping is to provide techniques that predict the distribution of species from physical and biotic 
parameters that define where species live. An area of seafloor comprising of rocky reef and sand habitats was surveyed with both a 
single beam acoustic ground discrimination system (AGDS) and sidescan sonar. Comparisons are made between predicted classes 
assessed from AGDS measurements and the digitised layer of the sidescan mosaic. The application of discriminate analysis to create 
a classification rule for the rocky reef areas revealed that 83% of the classification could be predicted by depth and hardness. These 
results can be used to improve classification of single beam acoustic data in the near-shore depth zone in the range 15-25 meters. 
 
 

1. INTRODUCTION 
 

 

One of the key endeavours of seafloor habitat mapping is to 
develop techniques, based on remote sampling, that predict the 
distribution and abundance of species and resources from 
physical and biotic parameters that define where species live 
(Bax & Williams, 2001). Quantification of reef area and 
complexity of shallow rocky reef substratum provides important 
information for describing the patterns and distribution of 
available habitat for many commercially fished species, such as 
abalone (sp. Haliotis rubra). The structure and size of reefs and 
the spacing of patches of reef habitat are important in 
determining abundances of local fish populations and their rates 
of change. 
 
One approach to understanding and predicting reef pattern is to 
relate its distribution to physical descriptors collected using 
acoustic technology. However, application of this approach is 
limited because the gradients are locally defined.   It may be 
possible to improve seabed habitat maps with simpler, more 
general biophysical data.  The locations of reef systems are 
determined by exposure, geology, erosion and deposition and 
other factors that are largely unknown in detail. They all interact 
with a complexity that is difficult to untangle without detailed 
spatial and temporal measurements. If we are able to understand 
what influences the distribution of reef we may be able to 
estimate values at unsampled locations and predict uncertainty 
in our estimates. The scales of variability and distribution 
patterns must first be understood before any models for 
predicting reef distribution can be generated. 
 
For many years, GIS in the marine environment has been driven 
by remote sensing (both aerial and satellite) to assess coastal 
terrestrial habitats and to delineate shallow seabed habitat 
boundaries (Finkbeiner et al, 2001; Mumby et al., 1997; 
Malthus and Karpouzli, 2003). Habitat boundary information 
can only be determined from a limited depth range in airborne 
sensors to 8-10 m limiting the ability to map habitats outside the 
immediate coastal strip. Therefore, the applicability of optical 
remote sensing for seabed mapping is restricted, because of 
factors such as depth limitations, wind disturbance and sun glint. 
While aerial remote sensing may provide continuous coverage 
in shallow depths, the numbers of identifiable habitats are fewer 
than can be defined through acoustic surveys. Acoustic 
techniques (single beam acoustics and sidescan sonar) are 
attracting considerable attention for habitat mapping because 

they offer the potential to provide comparatively rapid and 
relatively accurate assessment of seabed properties (e.g. 
Greenstreet et al, 1997; Collins and McConnaughey, 1998; 
Foster-Smith et al., 1999). 
 
Normal incidence acoustic ground discrimination systems 
(AGDS) can be used to obtain a variety of information about 
the reflective characteristics of the seabed. Such systems send 
pulses of sound at a particular frequency (usually within 30 –
200kHz) that reflects from the seabed and a transducer records 
the echo (Siwabessy et al, 2004). This produces a continuous 
string of points along a transect, each point containing 
georeferenced information on the depth and derived parameters, 
such as the hardness and roughness of the seabed. A 
fundamental limitation of single beam acoustic sounder based 
systems arises from the limited spatial coverage provided by the 
sounder beam. While along-track coverage is essentially 
continuous, between-track coverage is limited by beam 
geometry to be a small fraction of the water depths requiring 
interpolation between transects to produce continuous maps.  
 
Sidescan sonar isonifies a swath of the seafloor and produce a 
high-resolution georegistered image of the seabed (Brown et al, 
2005). The image provides information on the sediment texture 
and the distribution of patterns on the substrata. The image, 
whilst giving excellent information of topographic features has 
little measurable data on sediment characteristics or depth. 
There is no simple correlation between the reflected acoustic 
energy (or backscatter) recorded by sidescan sonar systems and 
bottom type, making interpretation of sidescan sonar images 
mainly descriptive and qualitative. 
 
Cost and logistics limit the quantity of sidescan data that can be 
collected for shallow water habitats. AGDS would become a 
more valuable tool for habitat mapping if it were able to be used 
to accurately interpolate the distribution of reef pattern or 
conversely small sample areas of AGDS could be taken with 
sidescan to provide a source of information for pattern 
validation. Although sidescan methods are not theoretically 
limited to a given depth range several practical considerations 
generally preclude boat operations in the very near shore (0-15 
m).  Wave height, submerged rocks, kelp canopy all present 
serious obstacles to data collection.  Although airborne 
techniques can provide information on this near shore zone, the 



technique lacks the ability to collect information of depth and 
substrate information.  Laser and multispectral sensors can 
provide this information but the techniques and data are costly 
and difficult for small research centres to collect and process.  
 
There are many factors affecting reef pattern and distribution, 
with the dominant influences due to wave energy, exposure and 
geology. Therefore, our predictions do not attempt to explain all 
spatial variability. In this study, we combined the general nature 
of applied multivariate statistics to test the ability of the 
physical parameters available to us to map the spatial pattern of 
reef in one coastal area. The objectives of this study were to (1) 
understand the relationships between hardness, roughness and 
depth with reef distribution, (2) identify the physical parameters 
that define the reef boundary using applied multivariate 
statistics and (3) estimate the effectiveness of the prediction by 
comparing the accuracy of the map to a digitized layer from the 
sidescan imagery collected within the study area.  
 

2. METHODS 
 
2.1 Study area 
 
The Tasmanian commercial fishery for blacklip abalone 
(Haliotis rubra) and greenlip abalone (H. laevigata) contributes 
a significant component of the total Australian abalone catch, 
with annual landings of around 2590 tonnes in 2003 (Tarbath et 
al. 2003).  The catch consists primarily of blacklip abalone 
(approximately 95%), which is fished throughout the State. One 
study site was selected for this research on the east coast of 
Tasmania at Friendly Beaches, which is typical blacklip abalone 
habitat (Figure 1). The area is characterised by nearshore patchy 
reef distribution with large offshore reef system. A feature of 
the reef morphology within the study area is the presence of a 
broad area of sand between the intertidal zone and the inner 
edge of the reef.  This reflects the geomorphology of the region, 
which is dominated by granite headlands (Sharples, 2000) 
mixed with long sandy beaches. 
 
 

 
 
Figure 1. Location of the study site in Tasmania Australia, 
showing acoustic transects and interpreted polygon on sidescan 
sonar image 
 
2.2 Sidescan Survey 
 

A GeoAcoustics Dual Frequency sidescan sonar was used to 
collect information for this study from the FRV Challenger. 
Transects were run perpendicular to shore with 25% overlap 
between parallel beam footprints.  Image scale is defined by the 
pixel dimensions (eg 1x1m) and is ultimately dictated by 
sounding density.  Sounding density is related to the size of the 
beam footprint on the seafloor and the motion of the vessel 
(Bennell, 2005). As distance between the sonar transducer and 
the seafloor (range) increases, beam width also increases, 
resulting in increased footprint size and decreased horizontal 
resolution. The images were mosaiced using SonarWeb 
software. The sidescan mosaic was imported into ArcGIS 8.3 as 
a geotiff file. The data were interpreted by eye and two discrete 
habitat classes’ reef and sand were digitised into shape files.  
 
2.3 Single Beam Acoustic Survey 
 
An ES60 echo-sounder with a 120 KHz single beam transducer 
was mounted on the side of a vessel underneath the GPS 
receiver in a survey seven days prior to the sidescan data 
collection. This equipment was connected to a laptop running 
ArcMap 6.0 GIS software and Simrad acoustic logging software. 
Geographic positioning data collected with a RACAL 
differential reference station and a Trimble Z Surveyor station 
onshore provided a correction message, with the estimated 
horizontal positional error of 3-5 metres.  The corrected GPS 
message was combined using the time stamp from the acoustics 
data.  Transects were performed across 15-25 m depth range in 
parallel (onshore-offshore) transects spaced at 50 m intervals 
resulting in 15 transects with an average profile length of 1000 
m. Ten transects were sub-sampled for this study comprising of 
one thousand four hundred and eighty three points. Vessel 
speed was maintained at an average of 12km per hour (6 knots). 
Where possible transects were extended beyond the actual 
sampling area to avoid disturbances in the acoustic signal 
associated with boat manoeuvring within the survey area. 
ArcPad (ESRI) was employed in the field to display a transect 
spacing plan and using real-time GPS, ensured that the transect 
lines were being followed as accurately as possible. The single 
beam acoustic echogram was displayed in Echoview software 
(SonarData Pty Ltd).  Data were imported into WEKA 
(Waikato Environment for Knowledge Analysis) for 
visualisation.  
 
2.4 Acoustic variables 
 
The acoustic system sends out a pulse of directed sound 
ensonifying a region of the seafloor that scatters sound back to 
the source to infer seabed depth, roughness and hardness 
(Kloser et al, 2001). Depth is calculated by knowing the time of 
echo return with associate angle of arrival whilst hardness and 
roughness are inferred from the strength and variability in time 
and space of the backscattered signal as a function of angle 
(Basu and Saxena, 1999). The resolution of the sampling is 
related to the sounding range, frequency, reception and 
processing method. The sample interval was two pings per 
second although a GPS point was recorded only every second. 
Using ArcGIS 8.3 a spatial join was performed linking the 
acoustic points with the interpreted polygon and assigning to 
the acoustic point the class value of the polygon (1-reef, 2-sand). 
The acoustic data set was then subsetted into two parts, the 
training and test data sets. The model is created using the 
training data set and by applying the model to the test data set it 
can be used as an evaluation on how good the predictions are 
relative to the known values in the test dataset.  
 
2.5 Discriminant analysis 



 
Discriminant analysis is a method of predicting a classification 
based on known values of the variables. The technique is based 
on how close a set of measurement variables are to the 
multivariate means of the levels being predicted (Hastie et al, 
2001). Based on the discriminant analysis of the training data 
set, the mahalanobis distance to each class cluster is computed. 
Based on this distance a probability can be calculated providing 
the likelihood that the sample is classified with a class label. 
The quality of model fit was assessed by comparing the 
accuracy of predicted classes with those interpreted from the 
sidescan image by a process of stepwise variable addition. The 
contribution of individual variables to the accuracy of 
prediction was assessed using the magnitude of the ratio of 
variances between consecutive stepwise additions to the model 
(F-ratio statistic).    
 
 
2.6 Interpolation of predicted surface  
 
To derive continuous hardness and depth surfaces at 2m cell 
resolution Ordinary kriging in the Geostatistical analyst of 
ArcGIS was applied. Spatial Analyst was used to apply each of 
the formula generated from the LDA to generate the probability 
surfaces. The raster calculator was used to generate a final 
predicted surface of rocky reef and sand. 
 

3. RESULTS 
 
The acoustic data were visually explored using WEKA 
(University of Waikato) software. It became clear which 
variables in the acoustic data showed a relationship with class 
distribution when coloured using the class label derived from 
the sidescan reference. Figure 2 shows a scatter plot of depth 
and hardness coloured according to the class label, showing that 
reef and sand form two clearly separable clusters. 
 

 
 
Figure 2. Scatter plot visually showing differences in two 
classes using hardness and depth (Class 1 [blue] rocky reef, 
Class 2 [red] sand). 
 
Using ArcGIS the acoustic samples were divided into two data 
sets using the create subset command; the training data set 
contained 60% of all samples to build a predictive model and 
the test data set contained 40% of all samples to validate the 
model. Linear discriminant analysis (LDA) was applied on the 
training data set using depth, roughness and hardness as 
continuous variables to describe the nominal class variable. A 
stepwise variable selection was conducted to review the 
contribution of each variable to the class distribution. The 
results of the discriminant analysis show the inclusion of the 
variables hardness and depth resulted in an accuracy prediction 

of 83.4% (F-ratios of 168.220 and 209.159 respectively) of the 
class values for reef (class 1) and sand (class 2). The LDA 
model was applied to the test data set, calculating class labels 
based on depth and hardness. This validation process provided 
an overall accuracy of 83.6%. Stepwise addition of the variable 
roughness (F-ratio 19.604) improved the accuracy of fit by 
0.2% but decreased the overall prediction accuracy to 80.6% 
and was therefore excluded from the model.  
Based on the LDA model probability surfaces were created. 
From these probability surfaces a class map was generated. The 
predicted class map can be seen in figure 3.  The figure shows 
that general agreement between predicted reef and sidescan 
interpretation is adequate. 
 

 
 
Figure 3.  Predicted class map result using the model to 
generate classes 1 (rocky reef) and 2 (sand) overlaid on sidescan 
image. 
 

4. DISCUSSION 
 
Linear discriminate analysis seeks to find a way to predict a 
classification (Χ; class) variable based on known responses (Y; 
depth, roughness and hardness) (Hastie et al, 2001).  The 
technique goes further to show how close a set of measurements 
variables are to the multivariate means for the levels being 
predicted. Decision theory for classification requires class 
posteriors for optimal classification; here we take the class 
values from the digitised layer of the sidescan image and 
compare these to the modelled classes.  LDA relies on two main 
assumptions; that the data has a normal distribution and that the 
variables have the same variance and covariance. When plotted, 
both variables of depth and hardness displayed close to a 
normal distribution with a skewness of -0.608 for depth and -
0.32 for hardness, therefore indicating that the data are 
appropriate for this type of analysis. 
 
In some cases, the physical features of habitat are sufficient to 
explain their distribution and pattern. This model shows that 
classes can be described by hardness and depth with an 
accuracy of 83% when compared to the classified sidescan layer. 
The predicted map of reef and sand distributions shows that the 
model is able to determine the inner boundary of the reef edge 
to within an average of 30 meters. Given the density of data and 
the distance between transects (50 meters) this prediction 



appears to work quite successfully. The small reef areas to the 
east of the image were not predicted but this may occur due to 
low data density. Within the depth range of 25-30 m this model 
can aid in explaining the distribution of reef. 
 

5. CONCLUSION 
 
The strength of combining the two techniques relies on using 
the AGDS to provide a more accurate classification of the 
sediment type and the sidescan to provide information of the 
patterns of seabed distribution. It is important to be able to 
describe quantitatively how rocky reef areas vary spatially and 
to gather knowledge about the uncertainty in interpolation from 
acoustic ground discrimination (AGDS) point data. From this 
study area we have been able to clearly determine which 
parameters in the acoustic signal have the greatest effect on 
predicting reef presence.   
 
Categorical map analysis involves mapping the system property 
of interest by identifying patches that are relatively homogenous 
with respect to that property at a particular scale and that exhibit 
a relatively abrupt transition (boundary) to adjacent areas 
(patches) that have a different intensity (or quality).  By 
identifying the mahalanobis distance of each point from the 
multivariate mean (centroid) we can take into account the 
correlation structure of the data (variance and covariance) and 
be able to estimate the probability that data belong to one of two 
habitat classes. The multivariate distance calculation is useful 
for spotting outliers in many dimensions. Even if the data are 
correlated, it is possible for a point to be unremarkable when 
seen along one or two axes but still be an outlier by violating 
the correlation. 
 
If we can identify the differences in hardness and depth that 
identify a boundary between the two classes we can predict the 
amount of variability (patchiness) from the transect data and 
give an overall idea how heterogenous the seabed is in areas 
where the level of variability is smaller than the resolution of 
the sidescan imagery. This technique can be applied to other 
areas along the east coast where the geology and exposure are 
similar in spatial scale. 
 
The results of this study greatly contribute to a larger research 
project that aims to quantify uncertainty in seabed mapping 
although further research should be conducted in other areas 
using differing data density and transect spacings to see if the 
results of predicting reef occurrence can be improved. 
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