
A DYNAMIC INDEX STRUCTURE FOR SPATIAL DATABASE QUERYING
BASED ON R-TREES

YANG Gui-juna, ZHANG Ji-xianb

a Institute Remote Sensing Applications, Chinese Academy of Sciences, No.9718 Mail Box, Road Datun, District

Chaoyang, Beijing, P.R.China,100101,E-mail: guijun.yang@163.com
b Chinese Academy of Surveying and Mapping, No.16, Road Beitaiping, District Haidian, Beijing, P.R.China,100039

E-mail: stecsm@public.bat.net.cn

KEY WORDS: Spatial Database Querying, R-Tree, Dynamic Index Structure

ABSTRACT:

In recent years, spatial database has become an important area of people's interest and research. A fundamental issue in this area is
how to store and operate spatial data efficiently. This paper describes a data structure, R-Tree, which is very easy to understand but
prove to be very powerful, and the concerning operations on it.
In the traditional R-Tree, it's not specified where an R-Tree index can be stored. Either the main memory or the second memory can
be used to store R-Tree. In this paper, I give an advanced R-Tree dynamic index structure which shows intuitively what an R-Tree is
like. Then you can efficiently complete operations on R-Tree, such as search, insert, delete, node splitting, updates and other
operations.

1. INTRODUCTION

R-Tree is a spatial access method (A data structure to search for
lines, polygons, etc) which splits space with hierarchically
nested and possibly overlapping boxes. The following is the
description of R-Tree: Let M be the maximum number of
entries that will fit in one node and let m<=M/2 be a parameter
specifying the minimum number of entries in a node. An R-tree
satisfies the follow properties.
1)Every leaf node contains between m and M index records
unless it is the root.
2)For each index record (I, tuple-identifier) in a leaf node, I is
the smallest rectangle that spatially contains the n-dimensional
data object represented by the indicated tuple.
3)Every non-leaf node has between m and M children, unless it
is the root.
4)For each entry (I, child-pointer) in a non-leaf node, I is the
smallest rectangle that spatially contains the rectangles in the
child node.
5)The root nodes have at least two children unless it is a leaf.
6)All leaves appear on the same level.
In the above description, it's not specified where an R-Tree
index can be stored. Either the main memory or the second
memory can be used to store R-Tree.

2. SPATIAL OBJECTS ARRANGED IN R-TREE

In this paper, I give an advanced R-Tree dynamic index
structure which shows intuitively what an R-Tree is like. Then
you can efficiently complete operations on R-Tree, such as
search, insert, delete, node splitting, updates and other
operations. A more specified description is given which
suppose the R-Tree should be stored in the second memory.
And the analysis of space taken is also given. It's as follows:
Let N = # of rectangles, M = # of rectangles fitting in internal
memory, B = # of rectangles per disk block, where N>>M and

f

A

B

Cd
e

g

h

i

j

(a)

A B C

d e f g h i j

(b)

Figure 1: (a) Spatial objects arranged in R-Tree hierarchy.
(b) R-Tree file structure on disk(Block size 3)

1<=B<=M/2. An R-Tree is a height-balanced multi-way tree
similar to a B-Tree. The leaf nodes contain (B) data 　
rectangles each, while internal nodes contain (B) entries of 　
the form(Ptr, R), where Ptr is a pointer to a child node and R is
the minimal bounding rectangle covering all rectangles in the
sub-tree rooted in that child.

mailto:wang116@163.net
mailto:stecsm@public.bat.net.cn

An R-tree occupies O(N/B) disk blocks and has height
O(logBN);insertions can be performed in O(logBN)I/Os.

3. OPERATIONS ON R-TREE

When dynamic structure R-Tree be designed, you can you can
efficiently complete operations on spatial database, such as
search, insert, delete, node splitting, updates and other
operations. The algorithms given in this paper look more like
description rather than procedure. I revised them according to
the criteria of the pseudo code.

3.1

3.2

3.3

Search

Search algorithm accomplishes the following task, given an R-
Tree whose root node is T, find all index records whose
rectangles overlap a search rectangle S. We denote an entry in a
node as E(EI, EP), where EI represents the smallest rectangle
bounding the sub-tree or the spatial object, EP is the pointer to
the sub-tree or the spatial object.
SearchSubTree(t, s)
1. If t is not a leaf
2.then for each entry E in t do
3. if EI overlaps S
4. then SearchSubTree(EP, s)
5. else SearchLeaf(T, s)

SearchLeaf(t, s)
1. for each entry E in t
2. do if EI overlaps s
3. then output E
Searching an R-Tree is unlike searching an B-Tree, All internal
nodes whose minimal bounding rectangles intersect with the
search rectangle may need to be visited during a search. So a
worst case performance is O(N) instead of O(lgN). Intuitively,
we want the minimal bounding rectangles stored in a node to
overlap as little as possible so that we need to search as little
nodes as possible.
We can apply the searching of an R-tree to find objects that
overlap a search object, say o, by the following steps.
SearchObj(t, o)
1. s bounding box of the search object o
2. SearchSubTree(t,s)
and revise the above SearchLeaf(t,s) as follows:
SearchLeaf(t,s)
1. for each entry E in t
2. do if EI = s
3. then if EP = o
4.then output E

Insertion

Like insertion in B-Tree, inserting new data tuple into R-Tree
may cause splitting nodes and the splits propagate up the tree.
Furthermore, an insertion of a new rectangle can increase the
overlap of the nodes. Choosing which leaf to insert a new
rectangle and how to split nodes during re-balancing are very
critical to the performance of R-Tree. The heuristics to do node-
splitting are discussed later in this paper.
Algorithm Insert: Insert a new index entry E into an R-Tree T.
Insert(E, t)
1. L ChooseLeaf(E, t) > select a leaf node L where to place E
2. If L need not split
3. then install E
4. else SplitNode(L)

5. AdjustTree(L)

ChooseLeaf(E,t)
1. N t
2. while N is not a leaf
3.do choose the entry F in N whose rectangle FI needs least
enlargement to include EI
4.N FP
5. return N

AdjustTree(L)
1. N L
2. if L was split previously
3. NN resulting second node
4. While N is not the root
5. do P parent(N)
6. En entry in P which points to N
7. Adjust EnI so that it tightly encloses all entry rectangles in N
8. if N has a partner NN which results from an earlier split.
9. then create Enn so that EnnP point s to NN and EnnI enclose
all rectangles in NN.
10. if there is room in P
11. then add Enn to P
12. else splitNode(P) to produce P and PP
13. N P
14. if there exists PP
15. then NN PP
16. return
SplitNode() is shown later.

One insertion takes O(lgN) I/O. To construct an R-Tree Index
Structure, we have to repeatedly insert an objection. It will take
O(NlgN) I/Os and is very slow. Moreover, it has other
disadvantages: sub-optimal space utilization, and, most
important, poor R-tree structure which requires the retrieval of
an unduly large number of nodes in order to satisfy a query. To
improve the operations, people do a lot of work later.
One of the improvement is called R-Tree Packing algorithm.
The general algorithm is as follows.
1. Pre-process the data file so that the r rectangles are ordered in

r/n consecutive gr　 　 oups of n rectangles, where each group
of n is intended to be placed in the same leaf level node.
2. Load the r/n grou　 　 ps of rectangles into pages and output
the (MBR, page-number) for each leaf level page onto a
temporary file. The page-numbers are used as the child pointers
in the nodes of the next higher level.
3. Recursively pack these MBRs into nodes at the next level,
proceeding upwards, until the root node is created.

Deletion

Algorithm Delete: Remove an index record E from an R-Tree
Delete(E, t)
1. L FindLeaf(E, t)
2. If L is null
3. Then return
4. Remove E from L
5. CondenseTree(L)
6. If the root node has only one child.
7. then make the child the new root.

FindLeaf(E, t)
1. if t is not a leaf
2. then for each entry F in t
3. do if FI overlaps EI
4. then FindLeaf(E, FP)

5. else for each entry F in T
6. do if FI = EI & FP=EP
7. then return T

CondenseTree(L)
1. N L
2. Q empty
3. while N is not the root
4. do P parent(N)
5. En the entry of N is P
6. if N had fewer than m entries
7. then delete En from P
8. add N to set Q
9. else adjust EnI to tightly contain all entries in N
10. N P
11. reinsert all entries of nodes in set Q according to their level.
Like B-tree, the deletion of an index record may result in a leaf
containing less than m entries(called “node underflow”) and
requires the need for restructuring of the index. And the
restructuring may propagate up the tree.
The restructuring can be done two ways. One is just like B-Tree.
The underflow node is merged with whichever sibling will have
its area increased least. Or the orphaned entries can be
distributed among sibling nodes. Another way is reinserting the
orphaned entries just like the algorithm shown above. The main
reason of choosing reinsertion is to try to obtain a better index
by forcing a global reorganization of the structure instead of the
local reorganization of a node merge constitutes.

3.4

3.5

3.5.1

3.5.2

Updates and Other Operations

When a data tuple indexed by an R-Tree is updated, its
bounding rectangle my need to be changed. In that case the
update of R-Tree is needed. There is no straight way to do the
update. The only way is for the index entry to do deletion,
update and then re-insertion.
Lots of other kinds of searching or deletion which not
mentioned above can be done by alternating the above
algorithms a little bit.

Node Splitting

Figure 2 a good split and a bad split based on
the same groups of rectangles

Now we go to the most interesting part of this paper – how to
split a node. To add a new entry to a full node, it's necessary to
divide the collection of M+1 entries into two nodes. And the
important thing is that the total area of the two covering
rectangles after a split should be minimized.
In figure 2, a good split and a bad split are shown based on the
same groups of rectangles.

An Exhaustive Algorithm: This is the most
straightforward but slowest way. It is to generate all possible
groupings and choose the best such that the area of the
bounding rectangle is the smallest. Exponential number of
choices O(2M-1) must be examined. In practice, M is the number
of rectangles stored in one memory block. It's usually very large.
The algorithm is obviously too slow. This algorithm is only a
theoretic one not a practical one.

A Quadratic-Cost Algorithm: The idea of the
algorithm is very simple. It first takes each pair of entries,
calculates the waste area of them and chooses the pair which
waste area is the most. Here waste area is defined as follows:
the area of the bounding box of two elements together minus
the areas of the bounding box of them separately. The elements
in the chosen pair are put into two groups. These two groups are
the result groups. Then it continuously calculate the other
elements to see whether there will be large different if they are
put in one group rather than other group. If there be, put the
element into the concerning group. If there isn’t, leave the
element until one group is almost underflow, and put the all the
remaining elements into this group. This method takes O(M2)
time. It does not guarantee the smallest area but it’s practical
and easy to implement.
QuadraticSplit(T)
1. PickSeeds(T, G1, G2)
2. assign G1 to a group, G2 to another group.
3. while not all entries have been assigned
4. do if m = number of entries in one group + numbers entries

not assigned
5. then assign all the entries to this group.
6. else F = PickNext(T)
7. add F to the group whose covering rectangle will have to be

enlarged least

Pickseeds(T, G1, G2)
1. for each pair of entry E1 and E2 in node T
2. do compose a rectangle J including E1 and E2.
3. d area(J)-area(E1I)-area(E2I)
4. Choose the pair with the largest d and G1 E1, G2 E2.

PickNext(T,E,D)

Bad Split Good Split

1. For each entry E not yet in a group,
2. do d1 the area increase required for the covering rectangle

of Group 1 to include EI
3. d2 the area increase required for the covering rectangle of

group 2 to include EI
4. Chose any entry with the maximum difference between d1

and d2.
5. Return the entry E and the group D

3.5.3 A Linear-Cost Algorithm: The steps are the same with
Quadratic cost algorithm. Only the methods to pick seed and
pick next are different. It's linear in M and in the number of
dimensions.
LinearPickSeeds()
1.Along each dimension, find the entry whose rectangle has the
highest low side and the one with the lowest high side, record
the separation
2.Normalize the separations by dividing it by the width of the
entire set along the corresponding dimension
3.Choose the pair with the greatest normalized separation along
any dimension.
PickNext() simply chooses any of the remaining entries.

To make LinearPickSeeds Algorithm clear, let’s look at figure 3.
Which is a 2-dimensional example. We will show x-dimension
in detail.

Figure 3 The workflow of Linear-Cost Algorithm

4. CONCLUSIONS

The analysis is based on some experimental result. The linear
algorithm proved to be as good as more expensive techniques.
It’s fast and the slightly worse quality in the splits did not affect
the search performance noticeably.

Fig.4 CPU cost of insert records and search
performance pages touched

Fig.5 CPU cost of delete records and search
performance CPU cost

The algorithm introduced in this paper is simple. A lot of
further researches are done on R-Tree to improve its
performance. Bulk operations, which mean a large number of
operations are performed on the index at the same time, are one
of them. And some special techniques, such as lazy buffering
technique, are also considered. R-Tree proves to be very useful
data structure in controlling spatial data especially in second
memory. It’s now being used by IBM Informix system as a
rapid and efficient indexing method to process data.

L
W

j

e

f

g
i

d

Xh

Besides operating spatial database, R-Tree can be used to
control other types of data as follows. Combinations of
numerical values treated as multidimensional values. Range
values, as opposed to single point values, such as the time of a
course.
More work still needs to be done to improve the performance of
R-Tree operations. And much more applications of R-Tree need
us to explore.

REFERENCES:

M Astrakhan, et al, System R Relational Approach to Database
Management, ACM Transactions on Database Systems 1,2(June
1996),p97-137

D Comer, The Ubiquitous B-tree, Computing Surveys
11,2(1989),p121-138

G Yuval, Finding Near Neighbors in k-dimensional Space, Inf
Proc Lett3,4(March 2001),p113-117

J K Ouserhout, Corner Stitching A Data Structuring Technique
for VLSI Layout Tools, Computer Science Report Computer
Science Dept82/114, University of Califormia,Berkeley,1988

R A Finkel and J L Bentley, Quad Trees-A Data Structure for
Retrieval on Composite Keys, Acta Informatica4,(1994),p1-9

C
PU

 m
sec per insert

Bytes per page Bytes per page

Pages touched per
qualifying

record

Bytes per page Bytes per page

C
PU

 m
sec per delete

C
PU

 usec per
qualifying
r ecord

	1. INTRODUCTION
	2. SPATIAL OBJECTS ARRANGED IN R-TREE
	3. OPERATIONS ON R-TREE
	3.1 Search
	3.2 Insertion
	3.3 Deletion
	3.4 Updates and Other Operations
	3.5 Node Splitting
	3.5.1 An Exhaustive Algorithm: This is the most straightforward but slowest way. It is to generate all possible groupings and choose the best such that the area of the bounding rectangle is the smallest. Exponential number of choices O(2M-1) must be examined. In practice, M is the number of rectangles stored in one memory block. It's usually very large. The algorithm is obviously too slow. This algorithm is only a theoretic one not a practical one.
	3.5.2 A Quadratic-Cost Algorithm: The idea of the algorithm is very simple. It first takes each pair of entries, calculates the waste area of them and chooses the pair which waste area is the most. Here waste area is defined as follows: the area of the bounding box of two elements together minus the areas of the bounding box of them separately. The elements in the chosen pair are put into two groups. These two groups are the result groups. Then it continuously calculate the other elements to see whether there will be large different if they are put in one group rather than other group. If there be, put the element into the concerning group. If there isn’t, leave the element until one group is almost underflow, and put the all the remaining elements into this group. This method takes O(M2) time. It does not guarantee the smallest area but it’s practical and easy to implement.

	4. CONCLUSIONS

