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ABSTRACT: 
 
A class of novel spatial relation, internal cardinal direction (ICD) relation, is introduced and discussed. Applying ICD-9 model, the 
characteristics and the simplification rule of ICD relations are discussed at first. Then the ICD related qualitative spatial reasoning is 
discussed in a formal way. Four composition cases are presented. They are 1) composing two nesting ICD relations and composing 
two coordinate ICD relations to deduce 2) conventional (or external) cardinal relations, 3) qualitative distance relations and 4) 
topological relations respectively. When ICD relations are taken into account, the container determines analysis scale and forms a 
positioning framework together with ICD relations. So the research on ICD related qualitative spatial reasoning would con-tribute to 
the representation and reasoning about survey knowledge. 
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1. INTERNAL CARDINAL-DIRECTION RELATIONS 
AND ICD-9 MODEL 

1.1 Internal cardinal-direction relations 

In fields of geographical information system (GIS), artificial 
intelligence (AI) and databases, qualitative spatial reasoning 
(QSR) has drawn lot of attention. Spatial relations, including 
topological relations, cardinal direction relations and metric 
relations, play essential roles in QSR. To the author’s 
knowledge, without concerning temporal factors, the research 
of QSR mainly focuses on three aspects until recently. They are: 

1. Formalizing one type of spatial relations and 
discussing their attributes, such as concept neighbourhood 
graph, computability, etc. (Egenhofer, 1992; Randell, 1992; 
Duckham, 2001; Skiadopoulos 2004). 
2. Composing two or more spatial relations to obtain a 
previously unknown relation. This aspect includes 
composition of topological relations (Ligozat, 1999; Renz, 
2002), composition of cardinal direction relations 
(Skiadopoulos, 2001; Isli, 2000), and composition of 
topological relation and metric relation (Giritli, 2003). 
Furthermore, the other SQR problems, such as path-
consistency problem, minimal labels problem, can be 
solved based these compositions. 
3. Determining a place’s position according to provided 
spatial relations (Clementini, 1997; Isli, 1999; Moratz, 
2003), where cardinal direction relations and metric 
relations are more often applied. 

 
In this paper, internal cardinal-direction (ICD) relation related 
QSR is in discussion. Different from the other types of spatial 
relations, ICD is applied to represent the direction relations 
between an object and another area entity containing it. The 

ICD relations between the containee and the container depend 
on the containee’s relative position in the latter. 
 
It is well known that spatial knowledge development includes 
three stages, i.e. landmark knowledge, route knowledge and 
survey knowledge (Montello, 2001). In order to express and 
transfer survey knowledge, some base landmarks are usually 
selected and described using ICD relations at first. Then the 
other places are determined according to the base landmarks 
using topological, cardinal direction or qualitative distance 
relations. A typical statement to represent survey knowledge 
might be “A locates in the west-east of B, and C lies to the north 
of A”. In (Mennis, 2000), a pyramid framework to model 
geographic data and geographic knowledge is developed based 
on geographic cognition (Fig. 1). According to this framework, 
geo-knowledge includes two parts, i.e. taxonomy 
(superordinate-subordinate relationships) and partonomy (part-
whole relations). Obviously, ICD implies part-whole relations 
and conduces to the representation of partonomy knowledge. 
 

 
Figure 1.  A pyramid framework for spatial knowledge (Mennis, 
2000) 
 



 

This paper is structured as follows. At first, ICD-9 model and 
its characteristics are described briefly. Then some fundamental 
concepts are defined. Based on these concepts, simplification 
rules of ICD-9 are established. In the third part of this paper, 
ICD-relation based qualitative spatial reasoning is in discussion. 
A series of composition tables are provided to demonstrate the 
QSR about ICD relations with ICD relations, ECD relations, 
topological relations and qualitative distance relations 
respectively. At last, we conclude the paper and present an 
agenda for future work. 
 
1.2 ICD-9 model 

In ICD-9, regions are defined as non-empty sets of points in R2. 
Let a be a region. For simpleness, the reference object, i.e. the 
container, is assumed to be connected region if for every pair of 
points in it there exists a line (not necessarily a straight one) 
joining these two points such that all the points on the line are 
also in it. 
 
In order to partition a into ICD parts, the minimum bounding 
rectangle (MBR) of a is divided into 9 tiles averagely at first. 
As shown in Fig. 2, the tiles intersect a and form corresponding 
parts denoted by I_N(a), I_NE(a), I_E(a), I_SE(a), I_S(a), 
I_SW(a), I_W(a), I_NW(a) and I_M(a). 
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Figure 2.  ICD-9 model (a. atomic ICD relation b. complex ICD 
relation 
 
If another geometry b locates within I_E(a), then b I_E a, i.e. b 
is in the east of a (Fig.2-a). Similarly, the other ICD relations 
including I_NE (northeast), I_E (east), I_SE (southeast), I_S 
(south), I_SW (southwest), I_W (west), I_NW (northwest), I_M 
(middle) could  also be defined. These ICD relations are called 
atomic relations. However, if b lies more than one part of a, 
using the method mentioned in (Skiadopoulos, 2001), it is 
complex and can be defined as b R1:…:Rk a, where 2≤k≤9, and 

{ _ , _ , _ , _ , _ , _ , _ , _ , _ },1iR I N I NE I E I SE I S I SW I W I NW I M i k∈ ≤ ≤  
 
For example, the ICD relation shown in Fig. 2-b is denoted by b 
I_N:I_NE:I_E:I_M a. For the sake of defining complex ICD 
relation, a λ function is applied to combine a set of basic ICD 
relations to construct a complex one. For instance, 
λ(I_N;I_NE;I_NW:I_N)= I_NW:I_N:I_NE. If b is restricted to be 
connected, some disconnected cases, such as λ(I_N;I_NE;I_S), 
are impossible. λ function is also suitable for ECD relations. 
 
Referring to the research suggested in (Skiadopoulos, 2001), we 
use the function δ as a shortcut to express a set of ICD relations. 
For arbitrary atomic cardinal direction relations R1; … ; Rk, the 
notation δ(R1; … ; Rk) is a shortcut for the disjunction of all 
valid basic cardinal direction relations that can be constructed 
by combining atomic relations R1, … , Rk. For instance, 
δ(I_SW;I_W;I_NW) stands for the disjunctive relation {I_SW, 
I_W, I_NW, I_SW:I_W, I_W:I_NW, I_SW:I_W:I_NW}. 
Obviously, δ(R1; … ; Rk) include 2k-1 basic relations.  
 

Definition 1. Based on δ function, the set including all internal 
cardinal relations is denoted by ICD-9. ICD-9=δ(I_N; I_NE; 
I_E; I_SE; I_S; I_SW; I_W; I_NW; I_M). It has 511 elements. 
 
Definition 2. ICD(b,a) is a function used to represent the ICD 
relation between b and a, i.e. ICD( , )a b R aRb= ⇔  
 
Definition 3. Let b and a have the ICD relation of R, i.e. b R a, 
then we have ( )b R a⊆ . 
 
If R is an atomic relation, then R(a) is corresponding to one 
partition cell of a. However, if R is complex relation that is 
represented as R1:…:Rk, then 

1
( ) ( )

k

i
i

R a R a
=

= U . R(a) has the 

following characteristic: ( )p R a∀ ∈ , p R a, where p is a point 
geometry. In the context of ICD relations with a, R(a) forms an 
approximation of b. To be simple, if b is inside a, we could use 
the notation of b  to denote the approximation based on ICD 
relation between b and a. 
Theorem 1. Let a, b be two geometries and b might be 
disconnected. If ( )b R a⊆  where R= R1:…:Rk and 1≤k≤9, then the 
set of all possible ICD relations is δ(R1; … ; Rk), i.e. 

1ICD( , ) ( ;...; )kb a R Rδ∈ . Briefly, δ(R1; … ; Rk) is written as δ(R) if 
R= R1:…:Rk. 
Proof. Because b might be disconnected, it is simply a 
combination problem.�  
 
However, if b is constrained to be connected, some 
disconnected combination cases should be excluded form δ(R). 
For example, the relation of NE: SE will not be reasonable any 
more. We use the symbol δ’ (R) to denote the subset instead of 
δ(R). For example, δ’(I_N; I_M; I_S) = {I_N, I_M, I_S, 
I_N:I_M, I_M:I_S, I:N:I_M:I_S}, where relation I_N:I_S is 
excluded. 
 
 

2. CHARACTERISTICS AND SIMPLIFICATION 
RULES OF ICD-9 

Let R1 and R2 be atomic ICD relations, according to the 
relations between R1(a) and R2(a), the relations on ICD 
relations R1 and R2 could be determined. We have the following 
definitions. 
 
Definition 4 R1 and R2 are equal if R1(a)=R2(a). R1 and R2 are 
neighboring if R1(a) externally meet R2(a). R1 and R2 disjoint 
if 

1 2( ) ( )R a R a∩ = ∅ . Especially, R1 and R2 are opposite if R1 and 
R2 disjoint and centrally symmetrical.  
 
The symbols Q, N, D and O are used to denote these three 
relations. For example, I_N Q I_N, I_S N I_M, I_W D I_SE and 
I_NE O I_SW. The relation of equal and opposite can also be 
extended to ECD relations if the ICD relations are quantified 
using the same approach. For example, I_N Q E_N, I_NE O 
E_SW, where E_N and E_SW are ECD relations north and 
south-west. What should be pointed out is that although the 
above relations are similar to topological relations, the 
prediction’s objects are different. One is about ICD relations 
and another focuses on spatial geometries. 
 
In order to define the above relations, a quantitative 
representation is introduced. Assume there is a Cartesian 
coordinate, the origin of which is middle part of the container. 
Then each tile is represented by an ordered pair <Qx,Qy>, where 



 

, { 1,0,1}x yQ Q ∈ −  (Fig. 3). Actually, -1, 0 and 1 stand for south, 

middle and north or west, middle and east respectively. 
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Figure 3.  Quantification of atomic ICD relations 

 
Theorem 2. If R1 and R2 are atomic and can be encoded as 
<Q1x,Q1y> and <Q2x,Q2y> respectively, then: 
R1 Q R2 iff 

1 2 1 2( ) ( )x x y yQ Q Q Q= ∧ = ,  

R1 N R2 iff − ≤ ∧ − ≤ ∧¬1 2 1 2 1 2abs( ) 1 abs( ) 1x x y yQ Q Q Q R R Q  ,  

R1 D R2 iff 
1 2 1 2abs( ) 2 abs( ) 2x x y yQ Q Q Q− = ∨ − =  and  

R1 O R2 iff 
1 2 1 2 1 20 0 0 0x x y y x xQ Q Q Q Q Q+ = ∧ + = ∧ ≠ ∧ ≠ . 

 
This representation method can be extended to the case of 
complex ICD relations. If R(a) is rectangle, then R can be 
described using the range of R(a). For example, 
I_N:I_NE:I_M:I_E could be denoted by <0~1,0~1>. 
 
Applying the ordered pairs of atomic ICD relations, a complex 
ICD relation can be simplified. As shown in Fig. 4, the line 
object b and area object c have ICD relations with a. They are b 
I_NE:I_E:I_SE a and c I_N:I_NE:I_E a. But in practice, the 
more natural and geographical cognition accordant statements 
to describe these relations might be “b goes through east of a” 
and “c locates in the northeast of a”. So a simplified method is 
necessary to simplify the complex ICD relations. 
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Figure 4.  Complex ICD relation that can be simplified 

 
Let R=R1: R2…Rn be complex ICD relation, and R1:R2:…:Rn be 
represented as <Q1x,Q1y>, <Q2x,Q2y>…<Qnx,Qny>. We define 

1 1, ,

n n

ix iy
i i

s x s y

Q Q
Q Q

n n
= =< >=< >
∑ ∑  as the result for simplification. For 

example, the pairs’ value for ICD relations in Fig. 4 is <1,0> 
and <0.67,0.67> respectively. Then R could be simplified to an 
atomic ICD relation according to the minimum Euclidean 
distance from <Qsx,Qsy> to the pairs of every atomic relations. 
Following this rule, ICD(b,a) and ICD(c,a) are simplified to 
I_E and I_NE. This is accordant to commonsense geographical 
cognition. Especially, if ICD(b,a) is complex and the simplified 
result of is I_M, the size of b is usually comparative to a. 
 
 

3. ICD RELATED QUALITATIVE SPATIAL 
REASONING 

It is argued by (Goodchild, 2001) that many geographic 
attributes are scale-specific. An important characteristic of 
internal cardinal relations is that the container determines the 
analysis scale for describing the position of entities inside it. In 
order to position a place in the container, distance relations, 
cardinal direction relations and topological relations are all 
necessary besides ICD relations. So it is necessary to study the 
qualitative spatial reasoning about ICD relations.  
 
Fig. 5 gives two categories of available ICD-involved 
composition. In Fig. 5, G1, G2 and G3 are three spatial objects, 
and RICD, RECD, RQD, RTopo denote ICD relations, ECD relations, 
qualitative distance relations and topological relations 
respectively. The solid lines stand for known ICD relations. 
Meanwhile, the dash lines represent unknown spatial relations 
to be deduced. 

1. Fig. 5-a represents the composition of nested ICD 
relations. This makes G1, G2 and G3 be at different 
scale levels. 

2. If G2 and G3 are within the same container G1, then 
the external cardinal direction relations, qualitative 
distance relations and topological relations can be 
inferred according to their ICD relations to G1. Fig. 
5-b indicates such an instance. 
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Figure 5.  ICD-involved composition of spatial relations 
 
The composition described in Fig.5-b is somewhat different 
from common relation compositions, which are defined as: 

1 2 1 2{ , | ( )}R R x y t xR t tR y= < > ∃ ∧o , such as the case given in Fig.5-a. 
This is because ICD relations are not closed under inverse. For 
example, if a and b have a specific ICD relation, the relation 
between b and a will not be ICD any more. This nature of ICD 
is significantly difference from the other spatial relations (e.g. 
topological relations), i.e. container and containee play 
asymmetric roles. Because the container forms analysis context 
of the containees, it is more valuable to infer the relation 
between two objects which are within the same container based 
on their ICD relations. For making a standard composition, we 
still could inverse such a composition to predict the ICD 
relations according to an ICD relation and an ECD (or 
topological, qualitative distance) relation. The unclosed 
property makes that ICD relation itself could not form an 
integrated algebra system. Therefore, it is necessary to involve 
the other types of spatial relations in the composition.  
 
3.1 QSR about nesting ICD relations 

The qualitative spatial reasoning of two nesting ICD relations 
shown as the following theorem is somewhat straightforward. 
Theorem 3. Let a, b, c be three geometries that have IDC 
relations of R1 and R2 respectively, i.e. b R1 a and c R2 b. Then 

2 1 1( )R R Rδ∈o . 



 

Proof. At first, according to definition 3, 

1 1 1, ( )∈ ⇒ ⊆bR a R b R aICD_9 , 

2 2 2 1, ( ) ( )∈ ⇒ ⊆ ⇒ ⊂cR b R c R b c R aICD_9  
According to theorem 1, we have 

1ICD( , ) ( )c a Rδ∈  
Therefore, 

2 1 1( )R R Rδ∈o �  
 
Theorem 3 indicates that 

2 1R Ro  is unrelated to R2. It is a natural 
result. But in practice we seldom use this reasoning process 
because of different spatial scale level. For example, if a city b 
locates in the north of a state a, meanwhile a building c is in the 
west of city b, we seldom tell that “building c locates in the 
north of state a” for the scale reason, although it is right. 
 
3.2 QSR about ICD and ECD relations 

Compared with ICD relations, the conventional direction 
relations when two geometries are disjoint are named as 
external cardinal direction (ECD) relations. In order to 
represent ECD-relations, some models were constructed. They 
include cone-based model, project-based model (Frank, 
1991)，double-cross model (Freksa, 1992) and MBR-based 
model (Goyal, 2000; Goyal, 2001; Skiadopoulos, 2001; 
Skiadopoulos, 2004), etc. (Fig. 6) 
 

 
a.                                                b. 

               
              c.                                                 d. 

Figure 6. ECD models (a. cone-based model; b. project-based 
model; c. double-cross model; d. MBR-based mode) 
 
To keep consistent with ICD-9 model, MBR-based model is 
applied to represent external cardinal relations (Fig. 7). There 
are mainly two representing approaches, i.e. matrix method 
(Goyal, 2000) and string method (Skiadopoulos, 2001). 
 

E a b 

c 

 
Figure 7. Composing ICD and ECD relations 

 
When MBR-based ECD model is chosen, the middle part of the 
reference object in ICD relations can be treated as another 

reference object for ECD relations. Meanwhile, the other eight 
parts have corresponding external cardinal relations to the 
middle part. Therefore ICD relations have similar 
characteristics to ECD relations. The differences between them 
exist in two aspects: 

1. ICD partitions only the MBR of the reference object, 
while ECD partitions the whole space of R2. 

2. The areas of every ICD parts usually comparative 
(depending on shape of the container). But ECD tiles 
have not such an attribute. With a given region, the 
area of middle part is fixed, and what of the other 
eight parts are infinite. Moreover, areas of E_NE, 
E_SE, E_SW and E_NW are higher order infinities 
than E_N, E_E, E_S and E_W. This makes MBR-
based ECD model not suitable for relatively “small” 
reference object. As an extreme case, if the reference 
geometry degenerates into a point, then cone-based 
model should be applied instead of MBR-based 
model. 

 
In the discussion on QSR of ICD and ECD relations, the 
containee objects are restricted to be connected. So the function 
δ’ is used to represent the combination result. It can also be 
applied to external direction relations with the similar meanings. 
The reason for the restriction is that the spatial relations 
between disconnected or multiple geometries are usually 
complicated and less meaningful, although there are some 
papers discussing this questions, for example (Behr, 2001). 

 
Let b, c be two geometries inside a region a, and assume they 
are all connected According to ICD_9 model, they occupy 
different parts of a, i.e. b R1 a and c R2 a, where R1 and R2 are 
basic ICD relations. If R1 and R2 are atomic, the composition 
relations can be deduced via table 1. 

 
Table 1.  Composition table of ICD and ICD to get ECD 
relations 
 I_N I_NE I_E I_SE 
I_N * δ’(E_E; 

E_NE; 
E_SE) 

E_SE E_SE 

I_NE δ’(E_W; 
E_NW; 
E_SW) 

* δ’(E_S;E_S
W; E_SE) 

δ’(E_S;E_S
W; 
E_SE) 

I_E E_NW δ’(E_N; 
E_NE; 
E_NW) 

* δ’(E_S;E_S
W; E_SE) 

I_SE E_NW δ’(E_N ;E_
NE, E_NW) 

δ’(E_N;E_N
E; E_NW) 

* 

I_S δ’(E_N;E_N
E ; E_NW) 

E_NE E_NE δ’(E_S;E_S
W; E_SE) 

I_SW E_NE E_NE E_NE δ’(E_E;E_N
E; E_SE) 

I_W E_NE E_NE δ’(E_E;E_N
E; E_SE) 

E_SE 

I_NW δ’(E_E; 
E_NE; 
E_SE) 

δ’(E_E;E_N
E; E_SE) 

E_SE E_SE 

I_M δ’(E_N;E_N
E; E_MW) 

E_NE δ’(E_E;E_N
E; E_SE) 

E_SE 

 
 I_S I_SW I_W I_NW I_M 
I_N δ’(E_S;E

_SW; 
E_SE) 

E_SW E_SW δ’(E_W;
E_NW;
E_SW) 

δ’(E_S;E
_SW; 
E_SE) 

I_NE E_SW E_SW E_SW δ’(E_W;
E_NW;E
_SW) 

E_SW 

I_E E_SW E_SW δ’(E_W;
E_NW; 

E_NW δ’(E_W,
E_NW; 



 

E_SW) E_SW) 
I_SE δ’(E_W;

E_NW; 
E_SW) 

δ’(E_W;
E_NW;E
_SW) 

E_NW E_NW E_NW 

I_S * δ’(E_W;
E_NW; 
E_SW) 

E_NW E_NW δ’(E_N,E
_NE; 
E_NW) 

I_SW δ’(E_E;E
_NE; 
E_SE) 

* δ’(E_N ;
E_NE; 
E_NW) 

δ’(E_N ;
E_NE; 
E_NW) 

E_NE 

I_W E_SE δ’(E_S;E
_SW; 
E_SE) 

* δ’(E_N ;
E_NE; 
E_NW) 

δ’(E_E;E
_NE; 
E_SE) 

I_NW E_SE δ’(E_S;E
_SW; 
E_SE) 

δ’(E_S;E
_SW; 
E_SE) 

* E_SE 

I_M δ’(E_S;E
_SW; 
E_SE) 

E_SW δ’(E_W;
E_NW; 
E_SW) 

E_NW * 

 
In the above table, the symbol of “*” stands for universal 
relation. The table can be easily proved. Let the MBR of a, b 
and c be (xal, yab)-(xar, yat), (xbl, ybb)-(xbr, ybt) and (xcl, ycb)-(xcr, 
yct), where (xal, yab) and (xar, yat) are the coordinates of two 
corner points (left-bottom and right-top) of a’s MBR. 
Considering b I_N a and c I_NE a, so we have: 

1 2( ) ( )
3 3al ar al bl br al ar alx x x x x x x x+ − < < < + −

 

2 ( )
3ab at ab bb bt aty y y y y y+ − < < <

 

2 ( )
3al ar al cl cr arx x x x x x+ − < < <

 

2 ( )
3ab at ab cb ct aty y y y y y+ − < < <

. 

The relation between b’s MBR and c’ MBR is xbl<xbr<xcl<xcr, 
meanwhile, the relations between ybb, ybt and ycb, yct is 
undetermined. According to MBR-based ECD model, the ECD 
relations between c and b might be c E_E b, c E_NE b, c E_SE 
b, c E_NE:E_E b, c E_E:E_SE b, c E_NE:E_E:E_SE b. They 
can be written as δ’(E_E; E_NE; E_SE). 
 
When R1 and R2 are not atomic relations, i.e. b or c occupy 
more that one cell of the partition, the relation composition is a 
little complex. As shown in Fig. 8-a, according to b 
I_NW:I_N:I_NE a and c I_M:I_S a, the ECD relation between c 
and b could be determined as c E_S b. 
 

b 

c 

a 
b

c 

a 

 
a.                                                  b. 

Figure 8.  Composing complex ICD relations to get ECD 
relations 
 
In order to discuss the composition of complex ICD relations, 
the quantitive representation of ICD relation should be applied.  
 

Definition 5. Let R be complex ICD relation. R= R1: R2…Rn. 
Two ranges of R along x and y axes are respectively defined as: 

1 2 1 2[min( , ... ), max( , ... )]x x nx x x nxQ Q Q Q Q Q  and 

1 2 1 2[min( , ... ), max( , ... )]y y ny y y nyQ Q Q Q Q Q  

Where <Qix, Qiy> is the quantification of Ri (i=1,2,…,n). For 
example, the ranges for I_NW:I_N:I_NE:I_E is [-1,1] and [0,1] 
respectively.  

 
Based on this definition, the ECD relations can be inferred. 
Assume b R1 a and c R2 a, and at least one of them is complex 
ICD relation. In order to compute the ECD relation between c 
and b, each atomic ICD relation in R2 and the ranges of R1 
should be considered. Let the ranges of R1 be [Fx, Tx] and [Fy, Ty] 
and the atomic relations in R2 denoted by <Qix, Qiy>, i=1,…,n. 
Then Qix has 6 jointly exhaustive and pairwise disjoint (JEPD) 
possible relations to [F1x, T1x]. They are Qix=Fx= Tx, Qix<Fx, 
Qix=Fx<T1x, Fx<Qix<T1x, Fx<Qix=Tx and Qix>Tx. These determine 
the ECD relations along horizontal axis. The relations along 
vertical axis are similar. According to their combinations, 
including 6*6=36 cases, the ECD relations between an object in 
Ri(a) and b can be obtained, where Ri is an atomic relation in R2 
(Table 2). 
 

Table 2.  Composition of ECD relations along two axes 
 Qix=Fx= Tx Qix<Fx Qix=Fx<T1x 
Qiy=Fy= Ty * δ’(E_NW;E_W; 

E_SW) 
δ’(E_NW;E_W;E
_SW;E_N;E_M;E
_S) 

Qiy<Fy δ’(E_SW;E_N; 
E_SE) 

E_SW δ’(E_SW;E_S) 

Qiy=Fy<T1y δ’(E_NW;E_N;_
NE;E_W;E_M;E
_E) 

δ’(E_SW;E_W) δ’(E_W;E_M; 
E_SW;E_S) 

Fy<Qiy<T1y δ’(E_W;E_M;E_
E) 

E_W δ’(E_W;E_M) 

Fy<Qiy=Ty δ’(E_W;E_M;E_
E;E_SW;E_S;E_
SE) 

δ’(E_NW;E_W) δ’(E_NW;E_N;E
_W;E_M) 

Qiy>Ty δ’(E_NW;E_N;E
_NE) 

E_NW δ’(E_NW;E_N) 

 
 Fx<Qix<T1x Fx<Qix=Tx Qix>Tx 
Qiy=Fy= Ty δ’(E_N;E_M;E_S

) 
δ’(E_N;E_M;E_S
;E_NE;E_E;E_S
E) 

δ’(E_NE;E_E;E_
SE) 

Qiy<Fy E_S δ’(E_S;E_SE) E_SE 
Qiy=Fy<T1y δ’(E_S;E_M) δ’(E_M;E_E;E_S

;E_SE) 
δ’(E_E;E_SE) 

Fy<Qiy<T1y E_M δ’(E_M;E_E) E_E 
Fy<Qiy=Ty δ’(E_N;E_M) δ’(E_N;E_NE;E_

M;E_E) 
δ’(E_NE;E_E) 

Qiy>Ty E_N δ’(E_N;E_NE) E_NE 
 
Through table 2, the relations of each tile of R2(a) to b can be 
looked up. Let they be S1,…,Sn. Then we calculate the Cartesian 
product S = S1×…×Sn. Finally, the λ function is applied to 
combine the elements in the set of S and form the ECD relations 
in 

1 2R Ro .  
 
Let take Fig. 8-b as an example. The ranges of ICD(b,a) is [1,1] 
and [0,1], and ICD(c,a) include three atomic relations which are 
quantified as <0,0>, <0,-1> and <1,-1>. So we get three sets 
according to table 2: δ’(E_W;E_SW), {E_SW} and 
δ’(E_S;E_SE). The Cartesian product is {(E_W,E_SW,E_S), 
(E_W,E_SW,E_SE), (E_W,E_SW,E_S:E_SE), (E_SW,E_SW, 
E_S), (E_SW,E_SW, E_SE), (E_SW, E_SW,E_S:E_SE), 
(E_W:E_SW, E_SW, E_S), (E_W:E_SW, E_SW, E_SE), 
(E_W:E_SW,E_SW, E_S:E_SE)}. After applying λ function and 
removing duplicated relations, the result of composing R1 and 
R2 is {E_W:E_SW:E_S, E_W:E_SW:E_S:E_SE, E_SW:E_S, 
E_SW:E_S:E_SE}. Because c is assumed to be connected, some 
disconnected cases are excluded.  
 



 

3.3 QSR about ICD and qualitative distance relations 

In QSR, scale is an important concept, which refers to the size 
of the unit at which some problem is analyzed, such as at the 
county or state level (Montello, 2001). It is widely accepted that 
qualitative distance relations is scale-dependent (Clementini, 
1997). When we said a place is “near” to another place in an 
urban scale, it might be much farther than the concept of “far” 
in a campus scale. Usually, we consider it is “far” when the 
metric distance between two objects is close to the analysis 
scale, while we believe it is “near” when the metric distance is 
much shorter compared with the scale size. 
 
Compared with qualitative distance, quantitative distance has 
the following three axioms: 

1. d(x,x) = 0 (reflexivity) 
2. d(x,y) = d(y,x) (symmetry) 
3. d(x,y)+d(y,z)≥d(x,z) (triangle inequality) 

 
Where d(x,y) is the quantitative distance function from x to y. 
But when qualitative distance is taken into account, thses three 
rules will not be satisfied well any more. Usually qualitative 
distances are asymmetric (Egenhofer, 1995) and do not follow 
the triangle inequality rule.  
 
Employing ICD relations, the container forms the background 
scale for determining qualitative distance. Adopting the 
distance measure method presented in (Goyal, 2001), distance 
is defined in ICD framework based on the shortest path when 
assume moving an object from one tile to another. In this paper, 
the qualitative distance is quantified into three distinctions: 
close (Cl), commensurate (Cm) and far (F). They have the order 
relation of Cl≤Cm≤F. 
 
In ICD relation based framework, let b, c be two geometries 
inside a, they have atomic ICD relations with a. If the shortest 
path from b  to c  passes one tile ( b  and c  are equal), then the 
QD relations is close. If it includes two parts, then the relation 
may be commensurate or close. At last, if more than two parts 
are involved, the possible relations are far or commensurate. 
The compositions are shown in table 3.  
 
Table 3.  Composition table of ICD and ICD to get 
qualitative distance relations 
 I_N I_NE I_E I_SE 
I_N Cl Cm, Cl Cm, Cl F, Cm 
I_NE Cm, Cl Cl Cm, Cl F, Cm 
I_E Cm, Cl Cm, Cl Cl Cm, Cl 
I_SE F, Cm F, Cm Cm, Cl Cl 
I_S F, Cm F, Cm Cm, Cl Cm 
I_SW F, Cm F, Cm F, Cm F, Cm 
I_W Cm, Cl,  F, Cm F, Cm F, Cm 
I_NW Cm, Cl F, Cm F, Cm F, Cm 
I_M Cm, Cl Cm, Cl Cm, Cl Cm, Cl 
 
 I_S I_SW I_W I_NW I_M 
I_N F, Cm F, Cm Cm, Cl Cm, Cl Cm, Cl 
I_NE F, Cm F, Cm F, Cm F, Cm Cm, Cl 
I_E Cm, Cl F, Cm F, Cm F, Cm Cm, Cl 
I_SE Cm, Cl F, Cm F, Cm F, Cm Cm, Cl 
I_S Cl Cm, Cl Cm, Cl F, Cm Cm, Cl 
I_SW Cm, Cl Cl Cm, Cl F, Cm Cm, Cl 
I_W Cm, Cl Cm, Cl Cl Cm, Cl Cm, Cl 
I_NW F, Cm F, Cm Cm, Cl Cl Cm, Cl 
I_M Cm, Cl Cm, Cl Cm, Cl Cm, Cl Cl 
 

If ICD(b,a) or ICD(c,a) are complex relations, it mean that b  
or c  occupy more than one part. Assume 

1
( )

l

bi
i

b R a
=

= U
 and 

1
( )

m

ci
i

c R a
=

= U
, then  

QD( , ) min{QD( , ) |1 ,1 }bi cjb c R R i l j m= ≤ ≤ ≤ ≤  

 
For example, let b I_N:I_NE:I_M a and b I_S:I_SW a, then 
QD(b,c) is Cl or Cm. A shortcoming of it is that the sizes of b 
and c are ignored. 
 
3.4 QSR about ICD and topologic relations 

Topological relations are related to the connection between 
spatial objects. Their important characteristic is that they 
remain invariant under topological transformations, such as 
rotation, translation, and scaling. There are two approaches to 
describe topological relations in a formalized fashion, i.e. 
region connection calculus (RCC) (Randell, 1992) and point set 
based intersection model (Egenhofer, 1991).  
 
As mentioned above, if b and c are contained by a, then b  and 
c  can be regarded as an upper approximation of b and c. So the 
topological relation between b  and c  plays a filter role to 
exclude some impossible relations. When discussing 
topological relations, the point, line and area geometries should 
all be concerned. Considering that b  and c  are area geometries, 
we assume that b and c both are area geometries to be 
connected. So RCC-8 is applied to represent the topological 
relations in the following part. 
 
According to RCC-8, there are eight jointly exhaustive and 
pairwise disjoint topological base relations between area 
geometries. They are DC (DisConnected), EC(Externally 
Connected), PO (Partial Overlap), EQ (EQual), TPP 
(Tangential Proper Part), NTPP (Non-Tangential Proper Part), 
TPP−1 (converse TPP), and NTPP−1 (converse TPP). (Fig. 9) 
 

 
Figure 9. Eight base topologic relations of RCC-8 

 
To judge topological relation between b  and c  is easy. If 
ICD(b,a) and ICD(c,a) are atomic ICD relations, then the 
relation between b  and c  is somewhat simple. There are only 
three possible topological relations, i.e. DC, EC or EQ. For 
example, I_N(a) DC I_S(a), I_N(a) EC I_NE(a) and N(a) EQ 
N(a). Otherwise, if they are complex, the relation can be 
determined according to their constituent parts. As shown in Fig. 
10, the geometry b and c have ICD relations of 
I_N:I_NE:I_M:I_E and I_S:I_SE:I_M:I_E with a respectively, 
therefore we have  

_ ( ) _ ( ) _ ( ) _ ( )b I N a I NE a I M a I E a= ∪ ∪ ∪  and  



 

_ ( ) _ ( ) _ ( ) _ ( )c I S a I SE a I M a I E a= ∪ ∪ ∪ . 
 

Obviously the topological relation is b  PO c . That makes the 
possible relations between b and c include DC, EC and PO, 
meanwhile, the other 5 relations are excluded (Fig. 10). 
 

a 

b 

c 

 
a.                           b. 

a 

b 

c 

a 

b 

c 

 
c.                                      d. 

Figure 10.  Filtering impossible topological relations according 
to ICD relations (a. b  PO c  b. b DC c c. b PO c d. b EC c) 
 
Table 4 lists all cases of the topological relation between b and 
c . In this table, the purpose of function TR is to determine the 
topological relation between two objects. 
 

Table 4.  Topological relations according to ICD relations 
TR(b , c ) TR(b,c) 

DC 

 

 
DC 

 

 

EC 

 

 
DC,EC 

 

 

 

 

PO 

 

 

DC,EC, 
PO 

 

 

 

 

 

 

NTPP 

 

 

DC,EC, 
PO,TPP, 
NTPP 

 

 

 

 

 

 

 

 

 

NTPP-1 

 

 

DC,EC, 
PO,TPP-1, 
NTPP-1 

 

 

 

 

 

 

 

 

 

TPP 

 

 

DC,EC, 
PO,TPP, 
NTPP 

 

 

 

 

 

 

 

 

 

TPP-1 

 

 

DC,EC, 
PO,TPP-1, 
NTPP-1 

 

 

 

 

 

 

 

 

 

EQ 
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The above discussion can be extended to some situations of 
upper approximation, such as MBRs instead of ICD cells. Some 
conclusions can be drawn: 
 
1. Ordered by their capacities to exclude impossible topological 
relations, we have: DC>EC>PO>NTPP=NTPP-1= TPP=TPP-

1>EQ. The DC relation gives the strongest constraint, while EQ 
has the weakest constraint, i.e. EQ can’t exclude any relation. 

 
2. Considering the relations after filtered, DC relation can be 
realized most easily, i.e. it can not be filtered. According to the 
times appearing in filtered relations, a sequence can also be 
created. It is DC>EC>PO>NTPP=NTPP-1= TPP=TPP-1>EQ, 
which is same to the above one. 
 
To study these properties is beyond the inclusion of this paper, 
but what should be pointed out is that all spatial relations (not 
only topological relations) except for distance relations are 
possible if b  EQ c . Table 1 also supports this point. Such a 
conclusion is natural, for example, we could not deny any case 
of spatial relation between two objects if we only know that 
they locate in the same place. 
 
 

4. CONCLUSIONS 

Internal cardinal relation is a class of spatial relations should be 
emphasized on. The container object determines the analysis 
scale and the containee objects have part whole relation with 
the former. That makes ICD relation play an important role in 
the representation and transferring of spatial knowledge, 
especially survey knowledge. 
 
Focusing on ICD-9 model, this paper summarized ICD-related 
qualitative reasoning. The main contribution is discussion on 
possible relations, including ECD relations, qualitative distance 
relations and topological relations, between two containee 
objects according to their ICD relations to the container in 
detail. Applying some tables, the composition of ICD relations 
is presented. Beside that, the simplification rule for complex 
ICD relations and the case of composing nesting ICD relations 
in deferent scale level are also described. As a conclusion, 
because the other spatial relations can be induced according to 
ICD relations, we can tell that the container and the ICD 
relations together form a positioning framework for spatial 
knowledge. 
 
Focusing on ICD relations, planned further work includes: 
1. studying on ICD-5 and ICD-13 models and corresponding 
QSRs; 
2. developing some more complex and quantitative approaches 
of ICD relation and exploring the related QSR and 
computability. 
 
Eventually, together with research on the other spatial relations, 
we wish the research lead to a formalized and computable way 
for survey knowledge. 
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