
QUERYING SPATIAL-TEMPORAL DATA IN LOCATION-BASED SERVICES

Z.W. Yuana , M. Chenga, H.S. Kima,b , H.Y. Baea,b, J. W. Gea

a Sino-Korea Chongqing GIS Research Center, College of Computer Science, Chongqing University of Posts and

Telecommunications, Chongqing, 400065, P.R. China – (yuanzw, gejw)@cqupt.edu.cn, cheng_miao@hotmail.com
b Department of Computer Science and Engeering, Inha University, Incheon, 402-751, Korea – (hskim, hybae)@dblab.inha.ac.kr

KEY WORDS: mobile objects, Location-based Services (LBS), location server, MOD, spatial-temporal data, key technology

ABSTRACT:

With the growing advances of positioning technologies like GPS, tracking the location of mobile objects to push Location-based
Services (LBS) has been applicable. Generally, the location server is constructed as a moving objects database (MOD). In this paper,
we focus on the application of spatial-temporal data in MOD including its key technologies, say data model, index structure, under
the LBS environment. These key technologies are discussed and analyzed in detail, and the relative proposal is given.

1. INTRODUCTION

With development of wireless communications and positioning
techniques, tracking and recording the changing positions of
objects capable of continuous movement is becoming
increasingly feasible and necessary. And as being close to the
scheduled launch of the third-generation mobile
telecommunication networks, new classes of mobile
information services will be possible. One type of such services
is the Location-based Services (LBS). For the LBS systems to
become reality, database systems should be capable of storing,
updating, and querying the positions of large amounts of
continuously moving object, which poses new challenges to
database technology.

The tendency of tracking movement of moving objects in
database has lead to the combination of temporal and spatial
objects into spatial-temporal objects in database. However, in
the past, research in spatial and temporal data models and
databases has largely developed independently. Spatial database
(R. H. Güting, 1994) has focused on modeling, querying and
integrating geometric and topological information in databases.
For the modeling of spatial objects the well known concept of
abstract data types (ADT) has been proved very useful.
Temporal database has concentrated on modeling, querying,
and recording the temporal evolution of facts under different
notions of time (valid time, transaction time) and thus on
extending the knowledge stored in databases about the current
and past states of the real world. The need for integrated
handling of time and space dimension for scientific data has
long been recognized.

Moving Objects refer to such entities as automobiles, cellular
phones users, and air planes change their locations continuously.
The goal of a spatial-temporal database is to model the real
world accurately. The conventional assumption is that data
remains constant unless it is explicitly changed. With this
assumption, capturing continuous movement accurately would
entail either performing very frequent updates or recording
outdated, inaccurate data, which have received significant
interest in efficient storage and retrieval of moving objects in
database management systems. Location monitoring is an
important issue for real time querying and management of
mobile object positions. Signification research works have been

dedicated to key technologies for efficient processing of queries
on moving objects in spatial-temporal database, say spatial-
temporal data modeling, index structure and so on. In this paper,
we introduce such issue research works on spatial-temporal
database that have been developed before firstly. Then we
concentrate on query approach of tracking server and give a
propositional framework of such related technique that could be
used in LBS scenario.

The reminder of this paper is organized as follows. In section 2,
the motivation is put forward. In section 3, we give an overview
of the system architecture of tracking server in LBS. In section
4, we introduce the related works of spatial-temporal data
model and give an appropriate proposal. In section 5, an
investigation on index technologies will be shown, where we
propose a powerful index structure to support spatial-temporal
queries in MOD. Finally, conclusions are given in section 6.

2. MOTIVATION

In recent years, wireless technique such as WAP and Bluetooch
has found widespread application. Some observes point out that
there will be billions of wireless application within few years,
which will lead to huge profit from personal wireless
communication and related value-added services. With
advances in wireless Internet and mobile computing, location-
based services (LBS) are emerging as key value-added services
for telecom operators to deliver.

Positioning system based on satellite technique, say Global
Positioning System (GPS), which could only be used for martial
application in the past. Recently, such tendency has been met
that the huge civil use of GPS to carry out LBS. LBS enables
communication working builders to provide personal location-
aware content to subscribers using their wireless network
infrastructure. To our best knowledge, moving objects database
(MOD) plays an important role in tracking server in LBS.
Moving objects use e-services that involve location information.
The objects disclose their positional information to the services,
which in turn use this and other information to provide specific
functionality. When queries on moving objects is put forward in
tracking server, the moving objects database will execute
related processing to give the answer to such queries. However,

it may be difficult to construct such system because of such
special dynamic environment and complex operation. To get a
blue point of tracking server in point, such technologies as data
models, index structure should be thought over firstly. In this
paper, we present some propositional ideas for such
investigative fields, which may be used to construct a powerful
server side for positioning system.

3. SYSTEM ARCHITECTURE

The crucial issue in LBS environments is how to design LBS
application developing platform (LBS-ADP) and organize the
location servers. For LBS-ADP, a system architecture that is
easy implemented and adapt to all kinds of mobile network
system has been proposed in (Y. Xia, 2004). Simplest approach
to location database organization is to store all location
information in a single physical storage site. However, such a
solution results in a single point is impractical and may be not
able to meet the demand for large numbers of moving objects.
Instead, there is an architectural alternative in which the whole
space is decomposed into regions or cells; for each one, there is
a tracking server to supply LBS as shown in Figure 1.

Figure 1. System architecture of Location Server

Thus, this approach may not only be able to overcome the
above-mentioned drawbacks of a centralized database, but also
enhance the availability and scalability of various location
services.

We assume that each mobile phone is equipped with a device
like GPS to locate its position and moving objects move in a 2-
d space. Moving objects connect directly to regional servers and
regional servers can communicate with each other. Regional
servers handle with the incoming data including location
information and queries from mobile users. And each group of
regional servers also connects with the superior server. Note
that the regional servers only store the position information of
mobile units that move in their monitoring region. When the
regional server receives a query request, it will execute relative
query processing to give the answer. And if the query refers to
some spatial-temporal data that is stored in other regional
servers, the regional server will send such query request to the
superior server. The superior server analyses such request, and
decomposes it into several parts based on the regional servers
that are involved. Then each request part will be send to the
relevant regional server to perform such query operation.
Finally, the query answer will be send back to the regional

server that put forward the request through the superior server.
So the superior server only plays the roll of coordinator and
controlling of the regional servers, all the query operations are
executed in regional servers. In the rest of this paper, we will
concentrate on the query processing in regional server.

4. DATA MODEL

In the server side, there is still spatial-temporal data stored and
retrieved. Until now, many studies also have been done on the
modeling and representation of moving objects. In (M.
Worboys, 1994), Worboys generalized earlier work on spatial
data and present the first unified model for spatial and temporal
information by extending a spatial data model to a spatial-
temporal model. Wolfson et al. presented the famous data
model called Moving Object Spatial-Temporal (MOST) for
representing moving objects (A. P. Sistla and O. Wolfson,
1997). In the MOST model, the location of a moving object is
simply given as a linear function of time, which is specified by
two parameters: the position and velocity vector of the object.
But this data model can only support future query well.

Another work proposed an extended SQL exploiting the
concept of ADTs, which described an approach to modeling
moving and evolving spatial objects to generalize new data
types (M. Erwig, 1999; R. H. Güting, 2000). Two new spatial-
temporal data types: moving point and moving region are
introduced to represent moving objects, which are implemented
based on discrete data models (L. Forlizzi, 2000) (see Figure 2).

Figure 2. Discrete representation of moving point and moving
region

Then the movement of moving objects can be represented as
attribute timestamped models and described as function of time.
The shortcoming of such process is that, the ADT data model
and related operations are too complex to implement and
unpractical in real-life application environment. Moreover, only
historical spatial-temporal data is considered in this data model.
In (G. Faria, 1998), a lot of useful operators are raised to build
an extensible framework for spatial-temoral database
applications. C.X. Chen and C. Zaniolo (C. X. Chen, 2000)
developed a spatial-temporal data model and query language
based on the model proposed by Worboys where each state of a
spatial object is captured as a snapshot of time. They use a
triangulation model to represent spatial data, and a point-based
model to represent time at the conceptual level. Complex spatial
data is decomposed into simple triangulations to store and
retrieve. However, there are also only historical spatial-
temporal queries that could be supported in such model.

To build a vigorous Location-based Service, the location server
should support not only current and historical queries but also

future queries (M. F. Mokbel, 2003). Until now, there isn’t any
appropriate data model to support all spatial-temporal queries
types. The most reason is that, as shown in Figure 3, the
different queries are based on different spatial-temporal data.
And also, the current spatial-temporal data is still under
frequent dynamic update environment.

Figure 3. The classification of spatial-temporal queries

An appropriate way is to build and query the historical and
present data model respectively. For the historical spatial-
temporal data, usually called trajectory data, a line segment
trajectory data model may be constructed. A trajectory segment
is represented as <Pi-1, Pi>, where Pi-1 and Pi are two spatial-
temporal point parts. Each point Pi is a three-tuple <xi, yi, ti>,
where xi and yi are the spatial coordinates of the object at time ti.
Then the tuples have the following format (Oid, Ni, Pi-1, Pi)
where Oid is a unique id of moving object, Ni is a unique
segment number for this segment of the trajectory. All the
trajectory segments belonging to one moving object represent
the moving object’s trajectory. For the present spatial-temporal
data, such data model can be regarded as a trajectory segment
that don’t have end point. Then a moving object is described as
(Oid, Ni, Pi, Vel>, where the Oid and Ni have the same
signification as described above, the Pi also is a three-tuple that
represents the latest update position information, and the Vel is
the latest update velocity of moving object, which used to
calculate the future position of moving objects. If new update
information is received by the server, the update data will
replace the latest data to represent the current state of the
moving object.

5. INDEX TECHNOLOGY

5.1. Main Idea

In the location-based services, mobile objects reveal their
positional information to the location server to provide general
application. Our focus is on location-based services that access
and query positions of moving objects. As discussed above,
there queries in MOD (M. F. Mokbel, 2003) can be classified
into three categories (see Figure 3). To support historical
queries, the tracking server stores only the locations of the
moving objects at different times via sampling. Once a location
of a moving object is updated, the old location is invalid and to
become historical data. Current queries are interested on the
location of moving objects at present. To answer current queries,
a location-aware server keeps track of the latest locations of all
moving object. Future queries are interested in predicting the

locations of moving objects. Usually, the future queries depend
on some additional information (e.g., the velocity or
destination). Until now, there is few access methods that
combine both characters to index from past to future positions
of moving objects. In (J. Sun, 2004), two respective indices are
used to support both query operations. Especially, an
incrementally updateable, multi-dimensional histogram for
present-time queries and a stochastic approach for predicating
the future queries are proposed. Based on the idea of TPR-tree
(S. Saltenis, 2000), Pelanis et al. present the framework of
partial persistence to accurately record the history of movement.
They modified TPR-tree with a time-parameterized bounding
rectangle (TPBR) and employed a PP-structure to index past
data. The BBx-index (D. Lin, 2005) structure also can index the
positions of moving objects at any time through linear functions
of time, which depends on the Bx-index (C. S. Jensen, 2004)
structure.

All the index structures introduced above can index past, recent
and future position of moving objects. Unfortunately, they all
lose applicable in realistic LBS environment simply. Firstly, in
the LBS scenario, there must be millions of mobile objects that
should be handled. These index structures can’t meet such
demand. Secondly, dealing with the large number of update,
there may be highly dynamic environment in the server side. To
solve the problem, an optional way is to build the index
structure in the main memory to reduce the disk access
frequency, which will outperform other disk based access
methods. In (K. Kim, 2001), a cache-conscious version of the
R-tree called CR-tree is introduced, which compresses the MBR
through the quantized relative representation of MBR (QRMBR)
and performs well for the main memory indexing. Moreover,
some distance-based geolocation update scheme (W. J. Choi,
2003) also can be made use of to avoid frequently update
through location network.

For efficiently querying moving objects, we index the past and
present/future positions in the disk and the main memory
separately. The index structure PCFI (Z. H. Liu, 2004) and
PCFI+ (Z. H. Liu, 2005) are developed to support complex
spatial-temporal queries in tracking server, which consists of
two parts: One part locates in memory, and the other locates on
disk as shown in Figure 4.

Figure 4. Data structure of PCFI

The in-memory component is called frontline. It consists of a
current data file, a spatial index (SAM) (e.g., Grid-file) to index
the non- overlapped partitions. Based on the technologies of
TPR*-tree (Y. F. Tao, 2003) and CR-tree, a set of CTPR*-link
trees (X. Zhou, 2005), is constructed for indexing current
records in the current data file.
For the disk part, the historical data file will keep the segments
of the moving objects. The disk index structure is based on the
SETI (V. P. Chakka, 2003). One-dimensional sparse R*-tree is

used to index the life time of the historical data pages. A data
page’s life time (starttime, endtime) is mapped to one-
dimension line (starttime, endtime), we call this the lifetime
dimension. When a new entry is inserted in the sparse R*-tree
with the lifetime’s endtime is empty. When a data page is fully
filled by the subsequence segments, the corresponding entry in
sparse R*-tree will be updated to set the endtime. Entries in leaf
nodes are consisted by pointer (PID) to data page, lifetime, and
cellid (restriction: one page only contains the segments belong
to one cell). Entries in internal nodes are pairs of a pointer to a
subtree and a lifetime that bounds the lifetime in that subtree.
The cellid in leaf page is used to reduce disk read cost of the
candidate page while processing historical slice queries.

Figure 5. Diagram of Query Algorithm

5.2 Query Processing

Figure. 5 shows the steps in the query algorithm. The input to
the search algorithm for a time interval query can be
considered as a three dimensional query box, which consists of
a temporal predicate range and a spatial predicate box.

The search algorithm executes the following steps:
Compare with the current time: In this step, the temporal
predicate range is compared with the current time. There are
three cases:

Case 1 if the temporal predicate range is fully fall into past,
Step 1 to Step 4 is performed.

Case 2 if the temporal predicate range is fully fall into now or
future, Step 5 is performed.

Case 3 if the temporal predicate range covers past, now and
future, we separate it into two parties: one is the past party, the
procedure in case 1 is adopted; another one is the now or future
party, the procedure in case 2 is adopted.

Step 1: Spatial Filtering: In this step the spatial partitions that
overlap with the spatial predicate box is computed and a
candidate list of pair (cellid, full_overlap_or_not) is produced.

Step 2: Temporal Filtering: The sparse R*-tree index is
searched with the temporal predicate range. Each entry in the
sparse R*-tree leaf page is checked to insure whether the cell id
falls into the cell list without fetching the corresponding data
page into memory, if the cell is fully overlapped by the query
region, all the segments belong to this cell can be putted to the
result segment list directly without refinement, or, the page id is
put to the candidate page list. This step generates a list of pages
whose lifetimes overlap with the temporal predicate. For time-
slice queries, those data pages whose lifetimes contain the
predicate timestamp are fetched.

Step 3: Refinement Step: This procedure is as same as the
original SETI-tree. A list of segments that overlap with query
box is produced in this step.

Step 4: Duplicate Elimination: This procedure is the same as the
original SETI-tree. It produces a list of moving object ids or a
list of segments.

Step 5: Spatial & Temporal Filtering: This procedure is the
same as the query algorithm of original TPR*-tree.

For the slice query, the temporal predicate range consists of
only a single value, the query can be answered with sparse R*-
tree (past time) or frontline (CTPR*-tree, current of future).

For the window query, there are three cases: 1) if both of [Ts,
Te] are located in the past, the query can be answered via sparse
R*-tree; 2) if both of [Ts, Te] are located in the present or
future, we can process the query via frontline part; 3) if the Ts
is located in the past and Te is located in the future, the [Ts,
now) part is answered via sparse R*-tree part, and the [now, Te]
part is answered via frontline part.

For the moving query, it is similar to the window query, except
the query range should be divided into two parts according to
the current time if the time range contains current time.

6. CONCLUSION

Location-based services are characterized as dealing with the
large number of mobile objects. Generally, the location server
is constructed as a moving objects database (MOD). In this
paper, we investigate the relative research works of building a
rigorous MOD firstly. Then the weakness of these ideas and an
optional advice that we propose are put forward for realistic
LBS environment. A dual data model is built to model the
present/future and past position of moving objects. And a
powerful index structure called PCFI+ is proposed to index the
moving objects at any time. The PCFI+ consists of the memory
part and the disk part, which is used to index the current and
historical data file separately.

REFERENCES

A. P. Sistla, O. Wolfson, et al, 1997. Modeling and Querying
Moving Objects. In Proc. IEEE Intl. Conf. on Data Engineering
(ICDE), pp. 422-432.

C. S. Jensen, D. Lin, and B. C. Ooi, 2004. Query and Update
Efficient B+-Tree Based Indexing of Moving Objects. Proc. of
VLDB, 2004, pp. 768-779.

C. X. Chen, C. Zaniolo, 2000. SQLST: A Spatio-Temporal Data
Model and Query Language. Conceptual Modeling - ER 2000,
pp. 96-111.

D. Lin, C. S. Jensen, B. C. Ooi, and S. Saltenis, 2005. Efficient
Indexing of the Historical, Present, and Future Positions of
Moving Objects. In Mobile Data Management, MDM 2005, To
appear.

G. Faria, C. B. Medeiros, and M. A. Nascimento, 1998. An
Extensible Framework for Spatio-Temporal Database
Applications. SSDBM 1998, pp. 202-205.

J. Sun, D. Papadias, Y. Tao, and B. Liu, 2004. Querying about
the Past, the Present and the Future in Spatio-Temporal
Databases. In Proc. of ICDE, 2004, pp. 202–213.

K. Kim, S. K. Cha, and K. Kwon, 2001. Optimizing
Multidimensional Index Trees for Main Memory Access.
SIGMOD Conference 2001.

L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider, 2000.
A Data Model and Data Structure Structures for Moving
Objects Databases. Proc. ACM SIGMOD Conf 2000, pp. 319-
330.

M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis,
1999. Spatio-Temporal Data Types: An Approach to Modeling
and Querying Moving Objects in Databases. GeoInformatica,
3(3): pp. 269-296.

M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar,
2003. Towards Scalable Location-aware Services:
Requirements and Research Issues. GIS 2003, pp. 110-117.

M. Worboys, 1994. A Unified Model for Spatial and Temporal
Information. The Computer Journal, 37(1): pp. 25–34.

R. H. Güting, 1994. An Introduction to Spatial Database
Systems, VLDB Journal, 3, pp 357-399.

R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis, 2000. A
Foundation for Representing and Querying Moving Objects.
ACM Transactions on Database Systems, 25(1): pp. 1-42.
.
S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez,
2000. Indexing the Positions of Continuously Moving Objects.
Proc. of SIGMOD, pp. 331–342.

V. P. Chakka, A. Everspaugh, and J. M. Patel, 2003. Indexing
Large Trajectory Data Sets With SETI. In Proc. of the Conf. on
Innovative Data Systems Research, CIDR, Asilomar, CA

W. J. Choi, S. Tekinay, 2003. Location Based Services for Next
Generation Wireless Mobile Networks. IEEE 2003, pp. 1988-
1992.

X. Zhou, Z. H. Liu, Y. Xia, J. W. Ge, and H. Y. Bae, 2005.
CTPR*-link tree: A Cache-Conscious TPR*-tree for Spatio-
Temporal Main Memory Databases. In Proc. Of the 3rd Asian

Symposium on GISs from Computer Science & Engineering
View (2005), Japan, To appear.

Y. F. Tao, D. Papadias, and J. Sun, 2003. The TPR*-Tree: An
Optimized Spatio-Temporal Access Method for Predictive
Queries. Proc. of VLDB, pp. 790–801.

Y. Xia, G. J. Wei, and H. Y. Bae, 2004. Design and analysis of
generic LBS application developing platform. In Proc. Of the
2rd Asian Symposium on GISs from Computer Science &
Engineering View (2004), pp 112-114

Z. H. Liu, C. H. Lee, J. W. Ge and H. Y. Bae, 2004. Indexing
Large Moving Objects from Past to Future with PCFI. In Proc.
Of the 2rd Asian Symposium on GISs from Computer Science &
Engineering View (2004), pp 25-34.

Z. H. Liu, X. L. Liu, J. W. Ge, and H. Y. Bae, 2005. Indexing
Large Moving Objects from Past to Future with PCFI+-Index.
COMAD 2005, pp. 131-137.

