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ABSTRACT

Traveling salespersons problem (TSP) is one of the unsolved problems of the day that carry significant value to the transportation
networks. The exact solution of a Traveling salespersons problem is not feasible. There are some good approximation algorithms
that can provide an approximate solution. Here, we propose a method to extend the conventional Traveling salespersons problem
to transportation networks where the travel plan can be optimized within the Geospatial Information System. We also propose an
optimized web based implementation scheme that gives a faster response to the route queries. In modern geographic informations
systems, such a web accessible route query system can be very useful.

1 INTRODUCTION

The Traveling Salesperson Problem (TSP) is to find a minimal
weight tour through all the nodes of a weighted graph i.e. to find
a cycle in the graph that goes through every node once and only
once with the least cost. A direct implication of TSP is in find-
ing an optimal route in road networks. This is very important in
transportation networks since it can help reduce fuel consump-
tion, avoid traffic jams, simplify garbage collection, etc. Imple-
mentation of TSP in any commercial GIS in real time has not
been done yet.

The classical TSP is a NP-hard problem (Mitchell, 1999), (Arora,
1998) and (Arora, 1996). It can be solved using one of the heuris-
tic algorithms called the Christofides (Christofides, 1976)O(n2.5)
algorithm. The cost of the Christofides solution is at most3

2
times

the cost of the optimal travelling salesperson tour. This solution
is still not applicable to general transportation networks because
that TSP algorithm is defined for a complete graph only. Other al-
gorithms have been proposed (Mitchell, 1999), (Arora, 1998) and
(Arora, 1996) in order to provide a polynomial time approxima-
tion scheme for the travelling salesperson problem as well as for
other NP-hard Euclidean geometric problems (minimum Steiner
tree, k-TSP, and k-MST). Out of these, the only algorithms ap-
plicable to general road networks is Mitchell’s algorithm (see
(Mitchell, 1999)), but its complexity is higher (O(n20m+5)) for
an equivalent approximation (1 + 2

√
2

m
) of the optimal tour.

Here, we suggest a novel approach of combining the classical
TSP problem solution based on Christofides algorithm (Christo-
fides, 1976) with the transportation networks using Geospatial In-
formation Systems. In the proposed approach, we solve the clas-
sical TSP for the city sites (nodes) assuming a complete graph and
after an optimal TSP cycle is obtained we replace each successive
pair of sites by their shortest paths. This generates a transporta-
tion tour which is not the optimal tour but is certainly a factor3

2
approximation one.

This algorithm has been tested by implementing it as a web based
application that is easily accessible to anyone on the internet.
Here, the web-interface is developed as a java applet that pro-
cesses the information and communicates with the server for the
final results. The dataset used here is a part of the city of Calgary
downtown road network. The main java applet displays a vec-
tor map of the city roads overlaid on an orthophoto of the area.
The applet allows the user to choose visiting points in any order
and then calculas the most efficient path to visit all the sites and
display it.

2 PRELIMINARIES

2.1 Minimum Spanning Tree

The minimum spanning tree of a weighted graph of n nodes is
a tree of(n − 1) edges of minimum total weight which spans
all the vertices of the graph. To calculate the minimum spanning
tree, Kruskal’s algorithm (Kruskal, 1956) can be used.

2.2 Minimum Cost Perfect Matching

Given a set ofn points (n even), and given edges between these
points, with a cost associated to them; aPerfect Matchingon the
graph is a selection ofn pairwise disjoint edges. The cost of a
matching is the sum of the costs of its edges. Aminimum cost
perfect matchingis a perfect matching of minimum cost.

2.3 Eulerian walk

A walk that includes each edge of a multigraph exactly once is
called an Eulerian walk. A closed Eulerian walk is one that starts
and finishes at the same vertex (Downey, 2005).

Theorem 2.1. A multigraph with no isolated vertices is Eulerian
if and only if it is connected and either all or all but two of its ver-
tices have even degree. If every vertex has even degree, then all
Eulerian walks are closed; if two vertices have odd degree, then
every Eulerian walk starts at one of these vertices and finishes at
the other (Downey, 2005).



(a) Minimum span-
ning tree

(b) Odd degree nodes

(c) Perfect Matching

Figure 1: Perfect matching example

2.4 All-Pairs Shortest Path

The shortest distance between any pair of vertices in the shortest-
path spanning tree, as long as the path giving the shortest path
does not pass through the root of the spanning tree (Skiena, 1990).
The problem can be solved using Dijkstra’s algorithm (Dijkstra,
1959) or Floyd’s algorithm (Floyd, 1962). The Floyd’s algorithm
also works in the case of a weighted graph where the edges have
negative weights (Weissteinf, 2005).

3 THE ROAD NETWORK TSP ALGORITHM

The idea behind modifying the classical Christofides algorithm to
solve the Traveling Salesman’s problem arises from the fact that
the transportation networks are not complete graphs and hence
the algorithms developed for graphs are not applicable to trans-
portation network. Here, we first present the original Christofides
algorithm and then explain how it is modified to work on the
transportation networks. Given a complete graph G, the Chris-
tofides algorithm (Christofides, 1976) is described here:

1. Find the minimum spanning tree (Kruskal, 1956) of the given
graph G.

2. Identify all odd-degree nodes in the minimum spanning tree.

3. Do a minimum cost perfect matching on the odd degree
nodes in the minimum spanning tree (see figure 1).

4. Construct the multigraph (see upper right graph in figure 2)
where the set of vertices is the set of vertices of the minimum
spanning tree, and the set of edges is obtained by adding
the minimum cost perfect matching edges to the minimum
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Figure 4.2: A minimum spanning tree T for eight cities in the plane (top left),
an Eulerian tour C ′ in T +M , where M is a minimum weight perfect matching
of the (black) odd nodes of T (top right), the simple cycle C derived from C ′
by introducing shortcuts (bottom right), and the minimum tour (bottom left).

The cycle has an even number of nodes and edges. If we choose every second
edge on the cycle, we partition its edges into two disjoint sets. Each set is a
perfect matching of the odd nodes of T . Thus, one of the two sets has cost at
most c∗

2 . Therefore, the cost of the minimum weight perfect matching M is at
most c∗

2 .
F is the overlay of T and M , so the Eulerian tour C ′ has cost cost(T ) +

cost(M) ≤ c∗ + c∗
2 . Introducing shortcuts to obtain a TSP tour can only reduce

the cost. "#

The running time of Christofides’ algorithm is actually O(n3). Without the
triangle inequality, there is no constant factor approximation for TSP.

4.2.3 Nearest Neighbour Rule

In the Nearest Neighbor Rule (NNR) algorithm, we form a path by starting
with an arbitrary node and proceeding by always joining the previously added
node to its nearest neighbour node that has not yet been selected, until we have
visited all nodes. Connecting the last node selected to the first one closes the
tour. Rosenkrantz, Stern and Lewis (1974) have shown the following theorem.

Figure 2: The Christofides Algorithm (From (Fleischer, 2003))

Figure 3: The Triangle Inequality

spanning tree edges (if an edge between the two same ver-
tices appears both in the perfect matching and in the MST,
there will be two edges in the multigraph).

5. perform an Eulerian walk on the graph from the previous
step (see lower left graph in figure 2).

3.1 Extension of the Christofides Algorithm

A simpler but less accurate algorithm exists to solve the Travel-
ing Salesman’s problem with Triangle-Inequality. This algorithm
creates an Euler tour on the minimum spanning tree and short-
cuts any node already visited that produces a tour of length at
most twice the shortest tour. Here, we propose an approach to
extend the 1.5 optimal Christofides algorithm that is also based
on triangle inequality. The Christofides algorithm differs from
the 2-approximation algorithm in the way that it makes use of the
minimum cost perfect matching to reduce the overall length of
the tour. This approach divides the process of finding an opti-
mal transportation route into two parts. Firstly, the TSP cycle is
calculated using the Christofides algorithm assuming a complete
graph with the nodes (road intersections) and then we remove
this assumption and convert this to a transportation route. Given
a Transportation network T, the algorithm is:

1. Let G be the complete graph having nodes V from graph T.

2. Find the minimum spanning tree of the given graph G.

3. Identify all odd-degree nodes in the minimum spanning tree.

4. Do a minimum cost perfect matching on the odd degree
nodes in the minimum spanning tree.

5. Construct the multigraph where the set of vertices is the
set of vertices of the minimum spanning tree, and the set
of edges is obtained by adding the minimum cost perfect
matching edges to the minimum spanning tree edges (if an



edge between the two same vertices appears both in the per-
fect matching and in the minimum spanning tree, there will
be two edges in the multigraph).

6. perform an Eulerian walk on the graph from the previous
step.

7. Substitute each pair of successive nodes by the shortest path
between them.

The route obtained after this can be considered as an optimal tour
because the shortest path is used instead of direct path because
the direct path might not exist in transportation networks. Note
here that if there is a direct path between two successive nodes
of the cycle then the shortest path will be the direct path. This
can be proved by the triangle inequality. For the sole purpose
of performance improvement, the shortest path is not calculated
at runtime, rather it is retrieved from the database that contains
all-pairs shortest paths.

3.2 Proof of Correctness

The Christofides algorithm assumes that the graph is a complete
graph. Road networks are not generally complete graphs (un-
less network degenerates to fewer than four vertices). Moreover,
the triangular inequality might not hold for some road networks.
We will prove that replacing the edges from the complete graph
by shortest paths does not increase the approximation rate if the
triangular inequality holds. If the triangular inequality does not
hold, the approximation factor is 2 (like for the tour based on the
minimum spanning tree). In fact, the only thing that changes in
Christofides’s algorithm proof is that we need to prove that short-
cuts always exist in road networks and that they do not increase
the length of the tour. The fact the length of the tour is not in-
creased comes from the triangular inequality. It is obvious that
we can always choose as a crossover the shortest path along the
road network. Now let us prove the approximation

Theorem 3.1. The above TSP algorithm produces a3
2

approx-
imation of the optimal Travelling Salesperson tour of a setV of
vertices (crossings) of a road networkR that satisfies the trian-
gular inequality.

Proof. Let T be a minimum spanning tree ofV along (i.e. that
is a subgraph of)R. Let T∗ be a travelling salesperson optimal
tour for V alongR. Let c∗ be the cost ofT∗, andc be the cost
of T . Removing any edge fromT∗ gives a spanning tree ofV .
Thus,c∗ is larger than or equal toc. If we connect the odd nodes
of T (the only vertices are the odd nodes ofT ) in the order of
their cyclic appearance onT∗, we obtain a cycle of cost at most
c∗ (because of the triangular inequality). This cycle has an even
number of nodes (because the number of odd-degree vertices in
a graph is even) and edges (because it is a cycle). If we choose
every second edge on the cycle, we partition its edges into two
disjoint sets. Each set is a perfect matching of the odd nodes of
T . Thus, one of the two sets has cost at mostc∗

2
. Therefore the

cost of the minimum cost perfect matchingP is at mostc∗
2

. Since
c ≤ c∗, the cost of the multigraph overlay ofT andP is at most
3
2
c∗. Finally, by the triangular inequality, introducing shortcuts

can only lower the cost.

3.3 Analysis

The complexity of the Christophedes algorithm is polynomial
since the minimum cost perfect matching can be computed in
O(n1.5 log5 n) using Varadarajan’s algorithm (see (Varadarajan,

User Interface (Applet)

!Display map
!Gather User Input
!Create optimal TSP tour

!Remove crossovers
!Feed Data to the Servlet

Back-End (Servlet)

!Order successive nodes in the TSP Cycle
!Establish JDBC connection

!Run SQL queries to fetch shortest paths between
the node pairs
!Run SQL queries to fetch actual paths between

successive road intersections within a shortest path
!Send back all the data back to the applet

Database (MySQL) !Maintain “All Pair Shortest Path” database
!Maintain “Transportation Network” database

Figure 4: The functionality

1998)), while the Euler tour can be computed in linear time (be-
cause the multigraph is Eulerian), the Minimum Spaning Tree is
O(n log n) and the shortcuting of the Euler tour is linear. How-
ever, if we take into account the size of the output, an output sen-
sitive algorithm analysis leads to a polynomialO(n1.5 log5 n)
time in the sum of the sizes of the Minimum Spanning Tree and
the minimum cost perfect matching. The all shortest path com-
putation complexity isO(n2.575) using (Zwick, 2002), but it is
a preprocessing step that is performed once for a given road net-
work.

4 TSP IMPLEMENTATION IN SPATIAL DATABASE

In this prototype implementation, the web-interface is developed
as a java applet that processes the information and communicates
with the server for the final results.

The main java applet displays a vector map of the city roads over-
laid on an orthophoto of the area. The applet allows the user to
choose visiting points in any order and then calculate the most
efficient path to visit all of the sites and display it.

The Interface of the application is fairly simple to use and under-
stand. The backend of this application is a database driven Java
enterprise application. The applet gathers the user input (i.e., the
sites to visit) and solves the traveling Salesperson’s problem as-
suming a complete graph constituted by the highlighted points.
The best cycle is calculated using the Christofides algorithm and
the crossovers are removed. The application must somehow cal-
culate the actual road path that it does by replacing the successive
site pairs in the best cycle, by their shortest paths. For faster exe-
cution and quick response of the application, these shortest paths
are not calculated on the fly, rather a database of all-pairs short-
est paths” (Zwick, 2002) is created using the Floyd’s algorithm
(Floyd, 1962). The best cycle obtained after solving the traveling
salesperson problem, is sent to the server to get the actual optimal
road path.

From a programming standpoint, there are a few optimizations
done here. When the user moves the mouse over the applet, the
nearest site, to the mouse, is highlighted. To optimize the search
for the nearest site among a list of sites, the whole city is divided
into parts using Binary space partitioning (QuadTree partition).
This is far more efficient than doing a linear search.

The data preparation was a crucial step here. The raw inputs to
this application are a vector road map of the city of Calgary in
ASCII format, a raster base map and the map projection informa-
tion. We developed several applications for data processing and
input to the spatial database. These applications extract the im-
plicit information about the road network connectivity and store
it in spatial database that can be used by the applet to do the two
basic tasks: use the information for solving the traveling sales-
person’s problem and displaying the roads (Please note here that



Figure 5: Sites to be visited selected on the map

curved roads can be displayed and processed appropriately).

The spatial database also holds the all pairs shortest path infor-
mation. This is accessed by the servlet to process shortest path
queries.

5 RESULTS AND APPLICATIONS

Figures 5 and 6 are snapshots of the system that was developed
using the transportation network of the city of Calgary, Canada.
The vector road map is overlaid on the Ortho-photograph of the
area. The downtown area of the city has been chosen to test the
algorithm as it has parallel roads with many intersections. This
helped us to generate some complex cases. These results clearly
show the application of the algorithm on the transportation net-
works.This application can be accessed at:

http://ojaswa.geomatics.ucalgary.ca/tsp

Having the TSP solved for transportation networks, enables us to
optimize many transportation tasks. One such example is supply-
ing the medicaments to the pharmacies. This involves visiting all
the pharmacies in question. This job can be done faster and with
lesser fuel consumption if an optimal route is followed. Some
other potential applications of TSP in transportation context are
postal delivery, tourist visits, garbage collection and pizza deliv-
ery.

6 CONCLUSIONS

In this article we have presented implementation of Christofides
TSP algorithm within a Geospatial database. The implementa-
tion of the Cristophides algorithm for the travelling salesperson
problem is applied on road networks. Up to our knowledge, this
the first actual implementation of a TSP algorithm in the case of
transportation networks.

7 ACKNOWLEDGMENT

The authors wish to thank the City of Calgary for the use of
their digital data of Calgary’s downtown. We also wish to ac-
knowledge Intergraph Inc. for the Registered Research Labora-
tory (RRL) grant. Thanks also to two of the graduate students,

Figure 6: The optimal route highlighted in white

Matthew Reid and Anoop Pullivelli, at the Department of Geo-
matics Engineering, University of Calgary for their fruitful dis-
cussions and valuable help.

REFERENCES

Arora, S., 1996. Polynomial time approximation schemes for
Euclidean TSP and other geometric problems. In: 37th Annual
Symposium on Foundations of Computer Science (Burlington,
VT, 1996), IEEE Comput. Soc. Press, Los Alamitos, CA, pp. 2–
11.

Arora, S., 1998. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric problems. J.
ACM 45(5), pp. 753–782.

Christofides, N., 1976. Worst case analysis of a new heuristic for
the traveling salesman problem. Technical Report 388, Graduate
School of Industrial Administration, Carnegie-Mellon University,
(Pittsburgh, PA).

Dijkstra, E., 1959. A note on two problems in connection with
graphs. In: Numerische Math, pp. 269–271.

Downey, R., 2005. Eulerian Graphs. World Wide Web.
http://www.mcs.vuw.ac.nz/courses/MATH214/2005T1/notes2.pdf.

Fleischer, R., 2003. IT Fundamen-
tals CSIT570. World Wide Web.
http://www.cs.ust.hk/˜rudolf/Courses/Msc03/Script/week2.pdf.

Floyd, R. W., 1962. Algorithm 97: Shortest path. Commun.
ACM 5(6), pp. 345.

Kruskal, J. B., 1956. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proc. Amer. Math. Soc. 7,
pp. 48–50.

Mitchell, J. S. B., 1999. Guillotine subdivisions approximate
polygonal subdivisions: a simple polynomial-time approximation
scheme for geometric TSP,k-MST, and related problems. SIAM
J. Comput. 28(4), pp. 1298–1309 (electronic).

Skiena, S., 1990. All pairs shortest paths. In: Implementing Dis-
crete Mathematics: Combinatorics and Graph Theory with Math-
ematica.ξ 6.1.2, Addison-Wesley, Los Alamitos, CA, pp. 228–
229.



Varadarajan, K. R., 1998. A divide-and-conquer algorithm for
min-cost perfect matching in the plane. In: FOCS ’98: Proceed-
ings of the 39th Annual Symposium on Foundations of Computer
Science, IEEE Computer Society, p. 320.

Weissteinf, E. W., 2005. All-Pairs Shortest Path, from
MathWorld–A Wolfram Web Resource. World Wide Web.
http://mathworld.wolfram.com/All-PairsShortestPath.html.

Zwick, U., 2002. All pairs shortest paths using bridging sets and
rectangular matrix multiplication. J. ACM 49(3), pp. 289–317.


	Introduction
	Preliminaries
	Minimum Spanning Tree 
	Minimum Cost Perfect Matching
	Eulerian walk 
	All-Pairs Shortest Path

	The road network TSP algorithm
	Extension of the Christofides Algorithm
	Proof of Correctness
	Analysis

	TSP Implementation in Spatial Database
	Results and Applications
	Conclusions
	Acknowledgment

