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ABSTRACT:

In spatial data integration the most difficult problems arise due to multiple, inconsistent representations of one and the same real
world object in different geospatial databases. One of the biggest challenges regarding the integration of multiple representations is
the identification of corresponding objects within diverse source data sets. This process is generally referred to as spatial data
matching. Some sophisticated approaches have been presented to cope with the task but still methods are needed to optimize the
procedure. In this work, it is intended to achieve such an optimization by applying an iterative approach for the matching of street
data form disparate sources, namely the Geographic Data Files (GDF) format and the German Authoritative Topographic
Cartographic Information System database (ATKIS). After reducing the global geometric deviation of the linear source data sets by a
rubber sheeting transformation, the street objects are topologically split and additional nodes are introduced, respectively, in order to
enable the detection of a maximum number of 1:1 matches. Then, the matching process starts by identifying seed nodes in the source
data sets which show a high likelihood of correspondence. With the seed nodes as starting points, a combined edge and node
matching algorithm detects 1:1 correspondences. In case no 1:1 match could be found, an enhanced edge matching approach being
able to recognize 1:2 matches is triggered. The whole process is performed in multiple iterations and it is repeated applying relaxed
constraints. The results of the matching are stored in explicit relations expressing the degree of inconsistency of multiple

representations.

1. INTRODUCTION

Spatial data infrastructures are evolving on the global (GSDI
05, Nexus 05), on the national (ADV 04, ANZLIC 05, FGDC
05) and also on regional or city levels. It is their common goal
to unify existing data sets within one platform and to provide an
integrated view on the underlying data. However, this common
goal also involves a common problem: the existing data sets
which have been acquired by different institutions according to
different conceptual schemas and data models, in different
formats and scales, with different accuracies or at different
dates, etc. are highly inconsistent. Basically, two types of
inconsistencies can occur: First, different object types could not
fit together: imagine a small scale building data set which is
overlaid with a large scale street data set, leading to invalid
intersections between street and building objects. Second, the
same real world object could be represented in two different
spatial databases, leading to possible inconsistencies in case that
atiributes of these representations are contradictory. For
example, the geometries of streets which have been captured by
different companies or institutions in their individual databases
will never be exactly the same. This raises the question which of
the representations is the best approximation of the real world.
Of course, that is depending on the application context, too.

This paper deals with the second inconsistency issue, the
problem of multiple representations of the same real world
phenomenon. To be able to achieve an integration of
inconsistent representations available in existing data sets
within a spatial data infrastructure, first of all corresponding
instances have to be identified. This process is generally
referred to as spatial data matching. It is highly problematic

since sitnations can occur which even cannot be resolved by
human operators.

In our approach, we try to find an optimized solution for the
matching of street data sets which have been acquired according
to two different conceptual schemas, namely the Geographic
Data Files standard (GDF) and the German Authoritative
Topographic Cartographic Information System database
(ATKIS). Both GDF and ATKIS capture street objects as linear
features at an approximate scale of 1:25000. The approach
developed here encompasses several steps. In a first phase, the
data are prepared to allow for an optimized matching process.
Then, the matching itself is performed in several iterations to
achieve the final result which is stored as explicit relations
between corresponding features. The result set also includes
those features for which no matching candidates could be
found.

The remainder of this paper is organized as follows: in section
2, related work is discussed. Section 3 presents the investigated
data and section 4 gives an overview of the data pre-processing
steps. Section 5 contains a detailed explanation of the proposed
matching process and in section 6 results and drawbacks of the
approach are outlined. Finally, section 7 concludes the paper
and gives an outlook on future issues.

2. RELATED WORK

Identifying corresponding objects in different data sets or data
matching, respectively, is not unique to geospatial databases.
Also in alphanumeric data like relational tables or semi-
structured data (like XML documents) it is necessary to find
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correspondences between similar representations to perform
data integration, for example in the area of genome databases.
In the database domain, this process is rather referred to as data
cleansing, record linkage or duplicate detection. An example for
the detection of corresponding elements in nested XML
documents can be found in (Weis and Naumann 04). The
authors apply a threshold-based similarity function which relies
on the edit distance measure (that basically calculates the
number of changes needed to transform a source string into a
target string) in order to identify corresponding string objects.
To reduce the number of expensive edit distance computations
different filter methods have been implemented. Thus,
corresponding instances and structures can be identified
efficiently.

In alphanumeric databases, usually all records within different
databases have to be compared with each other. However, in
spatial data matching, the number of pairwise comparisons of
duplicate objects or multiple representations, respectively, can
be significantly reduced since a simple fact can be exploited:
two objects representing the same real world phenomenon have
to share at least approximately the same location on earth, and
thus the search window and the number of possible matching
candidates, respectively can be minimized. However, the
problem still remains very difficult.

Multiple representations of spatial data are mainly resulting
- from the fact that different geospatial communities are
interpreting the real world from their individual perspectives
(Bishr et al. 99). Thus, they create their own conceptual
schemas based on which they acquire the data. However, there
are also other reasons for the occurrence of multiple
representations, like the fact that the same real world object can
be captured at different dates. Multiple representations can vary
in many different ways and to different degrees: they can have
different geometries or geometry types, different scales,
different semantics and different relational properties like e.g.
different topologic relations, etc.

Generally, a manual approach for the identification of
corresponding geospatial objects is considered to be most
promising. However, due to the huge amounts of spatial data
available and due to their high update rates, this approach is not
applicable. Thus, automatic matching techniques have to be
developed. In the following sections, some existing methods for
the matching of multiple representations are presented and
differentiated on the basis of the geometric types of the objects
to be matched. Just like the research presented in this paper,
these approaches mainly focus on data of similar scale. There
are other projects dealing with multi-scale issues like (Jones et
al. 96, Dunkars 03), but they shall not be discussed here in
detail.

2.1 Point-based methods

Point-based methods generally consider the proximity of the
points to be matched and also investigate the properties of the
incident features in case there are such. One algorithm which
can be assigned to this category is based on the concepts that
have been developed within the EVIDENCE project (Pandazis
99). It has been implemented by (Bofinger 01). The algorithm is
based on the idea of describing intersections of streets, i.c.
nodes of a street network, by an explicitly defined code. The
code consists of point coordinates, abbreviations and names of
incident streets and the number of linked edges. For each
intersection, such a code is created. By comparing the codes of

features within different data sets and by assigning the
intersections with the most similar codes to each other,
references can be derived.

In (Beeri et al. 2005), location-based database join algorithms
for point datasets are developed. They are also capable of
matching more than two data sets at a time, either in a
sequential or a simultaneous fashion. The performances of the
algorithms are presented in terms of recall and precision.

2.2 Line-based methods

In (Walter 97, Walter and Fritsch 99) a fundamental, line-based
matching approach for street network data of ATKIS and GDF
has been presented. In a first step, the algorithm finds all
potential correspondences of topologically connected line
elements in two source data sets by performing a buffer
operation. The matching candidates are stored in a list. This list
is ambiguous and typically contains a large amount of n:m
matching pairs. Then, unlikely matching pairs are identified and
eliminated using relational parameters like topological
information and feature-based parameters like line angles. The
result is a smaller but still ambiguous list with potential
matching pairs. These matching pairs are evaluated with a merit
function in order to compute a unique combination of matching
pairs which represents the solution of the matching task. This is
a combinatorial problem which is solved with an A* algorithm
(see Aho et al. 87).

The buffer algorithm of (Walter 97) has recently been adapted
by several other authors. (Mantel & Lipeck 04) extend the
algorithm to be able to apply it in a symmetric fashion for the
matching of cartographic objects. In (Stigmar 05), the Java
Conflation Suite developed by the Jump Project (JUMP 05), is
extended by 3 different modules, one of which also uses the
buffering approach to optimize matching procedures between
route data derived from navigation systems and road data
provided by national mapping agencies. Also, (Zhang et al. 05)
apply the buffer algorithm while matching street networks. They
developed a method to adjust the buffer parameters during the
matching process to find an optimal solution.

2.3 Area-based methods

In (Kraft 95) corresponding areas in two datasets are used in
order to minimize global geometric differences between these
two datasets. All areas which have a distance less than a specific
threshold are interpreted as potential matching pairs. All
potential matching pairs are evaluated with a cost function
which is calculated by different weighted parameters like size of
area, centre of gravity, Kappa number or number of line
segments. This leads again to an ambiguous list of matching
pairs. This list is sorted by the costs, beginning with the
matching pair with the lowest costs. The maiching with the
lowest costs is used for the final result and all remaining
matching pairs, which contain one of these areas, are eliminated
until the list is empty.

Further work on matching area objects was proposed by (van
Wijngarden et al. 97) who matched building objects by
calculating the percentage of overlap of the building geometries.
In (von Gosseln and Sester 04) an approach to match water
areas of ATKIS and geological/soil databases with cardinalities
up to nm was introduced. They apply several similarity
measures like degree of overlap, area-to-perimeter ratio or the
Hausdorff distance to detect corresponding objects.
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2.4 Mixed Approaches

Mixed approaches combine point-based and line-based or area-
based matching procedures. (Filin and Doytsher 00) adopt
similar algorithms for the geometric matching of nodes as
described in 2.1. They also present an advanced node matching
approach that utilizes topological properties for identifying
counterpart nodes. It performs a “walk” from one source node
(e.g- A) in a data set a to its adjacent nodes (e.g. B and C) and
then to their corresponding nodes in data set b (B’ and C*). The
match is considered valid if direct connections from B and C”
to target node A’ in data set b exist. Thus, corresponding nodes
which cannot be found by applying the proximity criterion (i.e.
which are located outside the search window) still are
detectable. The authors augment their node matching algorithm
by a topology-based approach for the detection of
corresponding edges. It tries to cope with the problem of
fragmentation of linear features into segments. First, the shortest
path between two nodes A and B in one data set is found and
then the most similar path between the corresponding nodes A’
and B’ in the other data set is identified by calculating the
relative area between the paths.

In (Xiong and Sperling 04), node, segment and edge matching
algorithms are combined as well. Their purpose is to match
linear road features extracted from aerial photographs and
existing street network databases. During a first phase sets of
corresponding node features are grouped into clusters or sub-
networks, respectively. This concept is based on the notion that
matches should rather be carried out on the basis of the
perception of a whole spatial situation, and not only by looking
at individual cases. In a further step, the clusters themselves are
compared and their “closeness” is evaluated. Then, the method
identifies a set of highly corresponding seed nodes within
corresponding clusters by geometric and topological criteria.
This step is supervised by a human operator who can insert
undetected seed nodes and delete incorrect matches after the
automatic procedure has been finished. Starting from the seed
nodes, the edge matching is performed. Those candidates are
accepted as edge matching pairs which show the highest degree
of similarity with respect to angle and length difference criteria
as well as distance approximations.

Another example of a mixed approach was implemented by
(Kraut 03). First, it identifies junctions of different street
networks with a high likelihood of correspondence by
comparing strictly defined geometric, attributive and topologic
parameters. The found pairs are defined as start points. They are
used for an affine transformation to adjust the data sets.
Basically, running in each direction from any start point and
comparing each adjacent node and again their adjoining nodes,
and so on, the whole network can be examined. If both the start
and end nodes of two streets are identified as being coincident,
also the edges are matched. The approach proposed in this
paper adopts a similar principle.

3. INVESTIGATED DATA

In our approach, we investigated street data stemming from
different conceptual schemas, namely ATKIS and GDF. The
data sets have been captured in approximately the same scale
(see Figure 1, showing a clipping of the test data). ATKIS and
GDF are briefly introduced in the following sections.

3.1 ATKIS

ATKIS is a general topographic database that stores data of
different topographic object categories like vegetation,
settlements, traffic, etc. It is not targeted to a certain application
domain but rather serves as an information basis on top of
which application-dependent data can be added. The ATKIS
data are being captured in different digital landscape models
(DLM) with scales of 1:25000 (used in this research), 1:50000,
1:250000 and 1:1000 000. ATKIS is hierarchically organized
and is an object-based system, but it does not support
inheritance. '
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Figure 1. ATKIS ( e ) and GDF ( = = — ) street data sets
(situation after alignment has been performed, see
section 4.1)

The topographic object categories (like “traffic’) are subdivided
into so-called object groups (e.g. road traffic, air traffic, etc.)
which contain the object classes (like Street, Way, etc.). The
instances of the object classes are the objects. On the object
level, the geometries of objects are stored and alphanumeric
attributes, e.g. the order of a road or its width, are given.

3.2 GDF

The conceptual schema of GDF is focused on describing road
networks for car navigation purposes and therefore contains all
the information necessary to perform routing. The central
element in GDF is the “feature” which corresponds to some
kind of real world object like a railway, a street, etc. Real world
objects represented by a point, line or area are called simple
features, while complex features are composed of a group of
simple features. Features contain geometric as well as thematic
information and can be linked by relations. Every feature
belongs to a specific feature class (like Road Element, Road,
etc.), i.e. GDF can also be considered as a hierarchical, object-
based system but just like in ATKIS inheritance is not
supported. GDF data are captured by 2 different companies,
namely NAVTEQ and TeleAtlas, with a positional accuracy of
approximately £3 metres.

4. DATA PRE-PROCESSING

In order to optimize the matching process, some data
preparation processes had to be carried out on the source data

103



ISPRS WG 11/3, 11/6 Workshop "Multiple representation and interoperability of spatial data", Hanover, Germany, February 22-24, 2006

sets: first, the global geometric deviation between them had to
be reduced. Second, the linear street features within both data
sets had to be split to achieve as many 1:1 matches as possible.

4.1 Reducing the Geometric Deviation

In order to reduce the global geometric deviation between data
sets to be matched, they first have to be adjusted. Thus, the area
in which corresponding features have to be looked for can be
reduced and ambiguities can be minimized. This was done by a
rubber sheeting transformation (see e.g. Cobb et al. 98).

For the alignment process, so-called warping nodes had to be
found in both data sets which were showing a high degree of
correspondence. All those nodes were considered as potential
warping nodes which were located within a distance of 100
metres from each other and which had at least 4 incident cdges
showing approximately the same length and the same angles. In
order to be accepted as warping nodes the criterion of mutual
unambiguousness (see section 5.1) had to be fulfilled. Finally,
warping vectors between the corresponding ATKIS and GDF
warping nodes were created. After having identified all
potential warping vectors, we compared them with respect to
their length and orientation and removed strong outliers. On the
basis of the resulting warping vectors set, the rubber sheeting
transformation was performed.

4.2 Topological splitting

Basically, a representation can either be made up of one or of
multiple individual objects. Thus, different cardinalities from
I:1 up to mm can occur during matching procedures.
Determining n:m matches, though, is much more difficult than
identifying 1:1 relations since it results in a combinatorial
problem as it was shown in the approach of (Walter and Fritsch
99). For this reason, we intended to split street features so that
as many 1:1 matches as possible can be found.

The basic algorithm that solves this task is depicted in Figure 2.
In Figure 2 (a) two ATKIS and two GDF edges and their start
and end nodes are displayed. In this situation, a correct match is
hard to be detected. The situation improves if more nodes are
introduced and the edges are split, respectively. This process
contains multiple steps (see Figure 2 (b)): first of all, object a,
of the ATKIS map is buffered (a; buffer). Then, all GDF edges
are determined that intersect this buffer and show approximately
the same angle (+ 10 degrees). This is only object g, All
segments of a; buffer that intersect either the start or the end
node of a; are taken as input segments and an intersection
between them and g; is calculated. If an intersection could be
detected agnd if within the search area around the intersection
point no node of edge g; can be found, a new GDF node is
introduced — and g; is split into g,’ and g,. The same process is
carried out for ATKIS edge a,. However, in this case, no new
node is created since the intersection points of the buffer
segments are located within the search area around node g,; (see
black cross) and within the search area of the newly introduced
node (actually it is located at the same position). The same
algorithm is also performed for the GDF edges which leads to a
new ATKIS node and, consequently, to the splitting of edge a,
into the edges a,” and a,. If objects are split, the attributes of the
existing objects are simply copied and transferred to the newly
created objects. The resulting situation in Figure 2 (c) now
shows two clear matches, namely a;<>g, and a,¢>g,’. The edges
a;” and g cannot be assigned since their angle difference is too
large.
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Figure 2. Splitting edges by transferring nodes from one
representation to the other

5. THE ITERATIVE MATCHING APPROACH

The matching approach proposed in this paper consists of
different steps. First, so-called seed nodes (according to the
terminology of Xiong and Sperling 04) which show a high
likelihood of correspondence are identified. Then, all edges
emanating from the seed nodes and again their end nodes are
compared and so on. Following this principle, the complete
network can be examined by performing multiple iterations. The
process is explained in detail in the following sections.
Additionally, the way we store links between corresponding
objects is outlined. Finally, we briefly describe how we handle
cases which cannot be correctly detected by the automatic
system.

The whole implementation of the approach has been carried out
within the Java-based open source GIS environment JUMP
(JUMP 05). None of the algorithms provided by the Java
Conflation Suite or the Road Matcher Application which have
been developed within the TUMP project were used during the
pre-processing and matching steps except for the computation
of some geometric similarity measures.

5.1 Finding seed nodes

The algorithm that detects the seed nodes is basically similar to
the one that finds corresponding nodes for performing the
rubber sheeting transformation. First, all nodes of the ATKIS
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data set are considered which have more than 2 incident edges.
For all those nodes, corresponding GDF nodes which are
located within a 30 metres distance and show exactly the same
number of emanating edges with almost the same angles (a
tolerance of + 5 degrees is accepted) are selected as potential
candidates. Then, the same process is catried out vice versa, i.c.
all corresponding ATKIS nodes are being detected for the GDF
nodes. In any case where only one possible counterpart could be
found for both the ATKIS and the GDF node, the
corresponding node objects are characterized as seed nodes. So
the algorithm works bi-directional and thus meets the
requirement of dual comparison (or mutual unambiguousness as
we call it) proposed for node matching algorithms by (Filin and
Doytsher 00).

T—~
._'|..~"\Search areas

Figure 3. Finding seed nodes (legend see Figure 2)

The principle of the algorithm is illustrated in Figure 3 where
one seed node pair (sp;) can be identified. It has three incident
edges showing approximately the same direction. The node pair
np; does not belong to the seed nodes since the angle difference
between one edge pair is too large. The same is true for node
pair np, because the corresponding nodes do not have the same
number of incident edges and for node pair np; since the
corresponding nodes only have 2 emanating edges. With respect
to node cluster nc,, again no seed nodes can be found: although
for both ATKIS nodes only one corresponding node can be
detected that lies within the predefined distance and has the
same number of incident edges showing the same angles, the
condition of bi-directionality or mutual unambiguousness,
respectively, is not fulfilled since for the GDF node there is
more than one possible matching candidate within the search
area.

5.2 Matching nodes and edges

After the seed nodes have been found, different node and edge
matching procedures are applied to the data in an iterative
fashion. These procedures are based on the principle of
calculating similarity measures between potential matching
candidates. Therefore, the similarity measures used are first
introduced in this section. Then, the algorithm itself is
explained in detail.

5.2.1 Calculating similarity measures: In this work, the
degree of correspondence or consistency, respectively, between
features is determined by evaluating their topological and
geometric consistency by appropriate indicators. For nodes, the
following similarity values are determined:

=  Proximity, determined as the Euclidian distance
between two points

®=  Combined investigation of the number of incident
edges (node degree) and the angle differences
between emanating edges

The absolute similarity values of both criteria are transferred
onto an interval of 0 (no similarity) to 10 (maximum similarity)
in order to derive so-called node evaluation values for the
_proximity indicator (evyp) and for the combined angle and node
degree criterion (evya). This mapping of absolute similarity
values to evaluation values follows explicit rules which cannot
be described here in detail. For example, if the distance between
two points is less than 3 m evyp is 10 and if it is larger than 30
m evyp is 0. Similarly, evy, is 10 if the number of incident
edges is equal and if the angles of those edges are within a
tolerance of 5 degrees, etc. The total node evaluation value (T,
(node)) then is determined as

Tev (node) = 0.75 * evyp + evya

ie. the proximity criterion has a little less influence on the total
node similarity than the node degree/angle criterion. This kind
of weighting results from the experiences made during the
investigation of corresponding node candidates. The total node
evaluation value is then normalized onto an interval ranging
from 0 to 100, with 100 representing the highest similarity.
Finally, the normalized value is called the total node similarity
value (TSnopg) for a potential node matching pair.

Similarly, the following similarity measures for edges are
calculated:

*  Length difference, determined as the ratio of length
differences to the whole line lengths of both edges

= Angle difference between two edges, determined as
the difference between the larger and the smaller
angle against the x-axis

®  Average line distance, determined as the average
distance of the distances of all vertices of two input
edges

*  Vertex-Hausdorff' distance (Davis and Aquino 04),
determined as a less complex and easier to compute
approximation of the Hausdorff distance (basically
calculating the maximum of all minimal distances
between two geometries). The Vertex-Hausdorff
distance yields either the same results as the regular
Hausdorff distance or at least a useful solution in
most cases of vector data matching,

*  Adjacency relations of start and end nodes,
determined as the difference of the number of incident
edges of start and end nodes of two edges

Just like for the nodes, each of the absolute edge similarity
values is mapped to a corresponding evaluation value by
explicit mapping rules, i.e. evaluation values for the length
difference (evgy), the angle difference (evgy), the line distance
(evap), the Vertex-HausdorfY distance (evgy) and the adjacency
(evgr) are derived. For the edges, the scale of the evaluation
values ranges also from 0 (no similarity) to 10 (maximum
similarity) for each indicator. The different partial evaluation
values are finally aggregated into a total edge evaluation value
(Tey (edge)) using the following weighted sum approach:

Tev (edge) =3 % eVgr, T 3= evgat 2% €Vep+ 4% evgyt+ 4 % €VET
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Again, each evaluation value is weighted by a factor which was
specified on the basis of the operator’s expertise regarding the
influence of the different geometric and topological similarity
values on the total similarity. The aggregation of similarity
measures is a difficult problem that can be further optimized
within our approach, for example by using machine learning
techniques (see e.g. Bilenko and Mooney 03).

In correspondence to the total node evaluation value, the total
edge evaluation value is normalized onto a scale from 0 (no
similarity) to 100 (maximum similarity) as well, leading to the
total edge similarity value (TSgpgg).

5.2.2 Description of the matching algorithm: Afier the
detection of seed nodes, all edges emanating from
corresponding seed nodes are investigated. In the first phase,
the end nodes of edges having a similar angle are compared.
The basic notion behind this approach is that if two edges have
corresponding start nodes and corresponding end nodes, there is
a high likelihood that the edges themselves are matching
partners. The comparison of the end nodes can lead to the
following results:

a. both end nodes are seed nodes, too
al. the seed nodes are corresponding
a2. the seed nodes are not corresponding
b. both end nodes are unmatched
c. one of the end nodes is already matched, the other one is
not

After the status of the end nodes has been acquired, the second
phase of the algorithm begins. In case (al), if both end nodes
are corresponding seed nodes the probability that the edges are
1:1 counterpart objects as well is very high. In this case, the
match between the edges is performed if the total similarity
value for the edges exceeds 40. Also in case (a2) a 1:1 match
between the edges is possible, but then the total similarity value
between them has to be at least 70. Just like the node matches,
edge matches are also stored in a list that is continuously
growing after each additional iteration.

In case (b), if both end nodes are unmatched, the total similarity
value between them is determined. If it is larger than 70 and
there is no other matching candidate around that yields a higher
similarity value, a match is performed and the nodes are also
added to the seed nodes list. The edge matching is then carried
out analogously to case (al). If no match between the end nodes
could be established, a 1:1 edge match is only possible if the
respective total similarity value is again 70 or above. The same
is true for situation (c) in which one end node has already been
assigned whereas the other one remained unmatched. This
occurs rather seldom. The described procedure is carried out in
multiple iterations as long as no new matches can be found.

The 1:1 edge matching is suitable for most cases since the pre-
processing step has already split the data sets in a way that
during the matching mostly 1:1 matches occur. However, in
some cases (see Figure 4) there are still 1:2 matches. Thus, if no
1:1 edge match can be determined, an extended algorithm being
able to find 1:2 matches is triggered.

The 1:2 matching algorithm can be illustrated by means of
Figure 4. It starts from seed node pair sp,. The following
comparison of the end nodes (gn; and an;) of the incident edges
(ge; and ae;) of sp; does not lead to a node match and neither
does the edge matching procedure, otherwise a 1:1 match could

be established. So it is first determined which of the compared
edges is the shorter one. The shorter edge ge; is then extended
in case it has an adjacent edge that — together with ge; — shows
an angle similar to the angle of the longer edge ae;. In the
example in Figure 4, this is edge ge,. Eventually, the total
similarity between nodes gn, and an; and edges (ge,, ge,) and
ae, is calculated and if appropriate similarity values can be
found, a 1:2 match is established. The principle of the 1:2 match
algorithm is adopted from the so-called buffer growing
algorithm proposed by (Walter 97).

gny
Eel’—’o~~~gc~2~ gny

-Q

ae) ani§ |

Figure 4. A situation in which a 1:2 edge matching algorithm
(legend see Figure 2) is required; the node gn, could
not be transferred to edge ae; during the topological
splitting since it lies too far away from it

If no new matches can be detected anymore the whole matching
follows again applying relaxed constraints. This means that
nodes are already accepted as matches if they show a total
similarity value of 50 or higher in case no other potential
candidate is around, and edge matches are accepted if their
similarity is at least 30 in case (al) or 50 in all other cases.

Also, the seed node detection phase is repeated relaxing the
search criteria. Now, all nodes having at least 2 incident edges
with corresponding angles (tolerance extended to * 8 degrees)
are added to the seed node list. After the second seed node
detection, the whole matching process starts again from the
beginning until no new matches can be found anymore.

5.3 Performing Iterations

After the seed node detection, all of the further matching
procedures are applied to the data in an iterative way. Thus,
starting at the seed nodes the network of matched objects is
constantly growing (see Figure 5).

Figure 5 shows different stages of the matching for a test area in
the city of Stuttgart, approximately 2 square kilometres in size.
In the first stage (I), the seed nodes have been identified (bold
dots). The second stage (II) illustrates the situation after 2
iterations of the 1:1 matcher and the third stage (IIT) displays
the final result of the automatic matching procedure. All
matched objects are drawn in dark colour/bold style.

®

=
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Figure 5: Different stages of the matching process; ATKIS: grey
(semi-bold), GDF: black; matched objects are dark
grey and bold

5.4 Storing the matches in MRep Relations

According to (Uitermark et al. 96), “geographic data set
integration (or map integration) is the process of establishing
relationships between corresponding object instances in
different, autonomously produced, geographic data sets of a
certain region.” Basically, these relationships between multiple
representations could only be expressed as simple pointers
within a bidirectional list, displaying that an object or an object
set of data set A can be assigned to an object or an object set of
data set B and vice versa (a,<>%g, {Ca, ma}<>¥s, {la, ra}<>{ng,
Sm}, €tc.).

However, the relations could also be defined in a more explicit
way as it has already been proposed by (Volz and Walter 04).
The notion to store explicit relations between multiple
representations, so-called MRep Relations, relies on the fact
that during matching more information like the mentioned
geometric, topological and also attributive similarity measures
for corresponding representations can be derived. In our
opinion, this additional information can be exploited for
multiple purposes (see below).

An example of an MRep Edge Relation that has been
established for two multi-representation edges of ATKIS and
GDF is illustrated in Figure 6 in the XML-based
MultiRepresentational Relation Language (MRRL) exchange
format that has been defined within this work. It shows the
identifiers of the MRep Relation itself and those of the
counterpart objects (source/target_ids), the cardinality of the
match, the total similarity measure and the different geometric
and topological measures (see 5.2). Similarly, MRep Relations
between corresponding nodes can be established. An MRRL

file also contains the identifiers of those objects for which no
counterpart could be found.

<mrepedgerelation>
<mrepedgerelation_id>mrep_edge_307</mrepedgerelation_id>
<attributes>

<general_atts>

<source_jds>
<id>atkis_A02MZNE3RE</id>
</source_ids> '
<target ids>
<id>gdf_0x09c658b10c9e11d9901aed0fa2996570</id>

<ftarget ids>
<cardinality>1:1</cardinality>
<total_similarity>93.75</total_similarity>

</general_atts>

<geometric_atts>
<length_difference>3.00</length_difference>
<angle_difference>0.05</angle_difference>
<hausdorff_distance>11.71</hausdorff_distance>
<avg_fine_distance>11.50</avg_line_distance>

</geometric_atts>

<topological_atts>
<startnode_deg_ diff>0</startnode_deg_diff>
<endnode_deg_diff>0</endnode_deg_diff>

</topological_atts>

</attributes>
</mrepedgerelation>

Figure 6. Excerpt of MRRL, showing an MRep Edge Relation

As it was shown in (Volz 05a), MRep Relations can be used in
order to perform a data-driven matching of different geospatial
schemas like ATKIS and GDF. By analyzing the MRep
Relations and especially the affiliations of cotresponding
instances to object classes in their source schemas (e.g. to the
object class “Street’ in ATKIS or the object class “‘Road’ in
GDF; notice that these affiliations are not displayed in Figure
6), schema similarities or semantic correlations between object
classes of disparate schemas, respectively, can be detected. In
(Volz 05b) an approach for a shortest path analysis in multi-
representation databases was described. Instead of merging
multiple representations into one consolidated and consistent
data set where only one single representation is available for
each real world phenomenon, the proposed technique exploits
MRep Relations and thus avoids the conflation process during
data analysis.

Furthermore, by introducing similarity measures within MRep
Relations, not only the match between corresponding data
instances itself can be graphically visualized in a map, but also
the degree of correspondence as resulting from the similarity
measure can be presented. Thus, an operator can get an
overview of the quality of each individual match, i.e. he or she
can directly recognize which matches are rather weak and which
matches are highly reliable, thereby reducing the manual efforts
with regard to the improvement of the automatically produced
matching results.

5.5 Dealing with unsolvable cases

If the spatial data to be matched are not very homogeneous,
intricate cases can occur that can sometimes even only hardly be
solved by human operators, i.e. a complete automatic matching
is generally unrealistic. Thus, a software component enabling
manual intervention was provided. It allows viewing the
correspondences that have been detected by the automatic
system. In case the operator disagrees with the result produced
automatically, the match can be undone and a new
correspondence can be established. Of course, all the cases
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which the operator detects as matches and which have not been
recognized during the automatic process can be solved as well.

6. RESULTS OF THE AUTOMATIC MATCHING

Generally, the approach shows a good performance. In the test
area depicted in Figure 5, 98.86% of all the 985 ATKIS objects
and 97.31% of the 1003 GDF objects were matched correctly or

" were correctly recognized as single representations having no
counterpart in the other data set. The percentage values result
from a comparison of the automatic approach and a reference
matching carried out by a human operator. The whole automatic
matching process for the test area takes less than 9 seconds.
However, some problems were encountered that were on the
one hand related to the topological splitting during the pre-
processing step, on the other hand they were caused by the
algorithm itself (see Figure 7). These problems shall be
discussed here.

gel

matched
edges

(b

Figure 7. Some problems of the matching algorithm (legend see
Figure 2)

During the topological splitting in the pre-processing phase,
only those edges which are roughly parallel are considered for
node transfers. However, this leads to problems in some cases,
as it is depicted in Figure 7 (a) where edge ge, (total angle
approximately 160 degrees) exceeds the angle tolerance both to
edges ae; (total angle approximately 90 degrees) and ae, (total
angle approximately 180 degrees) although the segments of ge,
are almost parallel to ae, and ae,. Thus, no new node is
introduced in ge; and consequently no matches can be detected.
On the other hand, if the criterion of parallelism is dropped, in
some situations nodes are generated where this is actually not
correct. Thus, more indicators have to be introduced during the
topological splitting allowing for a better performance of the
algorithm.,

In another situation shown in Figure 7 (b), one GDF road is
represented as two topologically separate edges (ge, and ge,),
whereas in the ATKIS data set it only consists of one line (ae;).
During the automatic matching proposed here, only
correspondences between ae; and ge, can be found whereas
edge ge; remains unmatched. However, if the matching was
correct, ac; would be related both to ge, and ge,. This type of

matches can up to now not be recognized automatically by our
algorithm which brings up anotber task for future
improvements. One approach to handle this kind of problem
could be to consider also thematic attributes like street names
during the matching.

Another drawback of the approach is illustrated in Figure 7 (c).
Here, all edges displayed are matched except ae; and ge,,
although they are very likely corresponding. The reason for the
error is that both the start and the end nodes of the edges are not
corresponding, and consequently the approach fails (notice that
corresponding edges have to have either corresponding start or
corresponding end nodes, otherwise no edge matches are
triggered). In order to solve such problems in further versions of
the approach, edges which remained unmatched could be
investigated after the iterative matching has been carried out
and similarity measures could be calculated for potential
candidates. Such mechanisms have not been incorporated in the
implementation yet.

Moreover, in very few cases, further errors and inadequate
matches, respectively, have been introduced in the test area due
to the relaxation of matching constraints, i.c. there might be a
potential for optimization, too.

It has to be mentioned that the test area did not contain many
difficult cases. Therefore, we are planning to apply the
algorithm to test scenes which are more complicated so that we
can discover further error sources and recetve hints on potential
improvements of our approach in order to make it as generic as
possible.

7. CONCLUSION AND OUTLOOK

In this paper we have proposed an automatic matching
algorithm for linear street data of ATKIS and GDF. It relies on
a pre-processing of the data and combines iterative node and
edge matching concepts based on the detection of similarity
measures. The results of the process are stored explicitly as
relations between multiple representations. The matching
basically provides reliable results. In some cases (see previous
section), however, the approach still fails to recognize the
situation correctly and establishes wrong matches or misses
available correspondences. Thus, an improvement of the pre-
processing step and of the matching algorithm itself with
respect to the drawbacks found is one of our future goals. Also,
more complex situations have to be considered that will
probably reveal more problems and can lead to a further
enhancement of the procedure. Additionally, we plan to apply
the approach to the matching of multi-scale linear street data
(1:250000 and 1:25000) which probably requires different
methods for generating similarity values. In principle, the
presented matching algorithm could be used for identifying
corresponding linear features of other object types (e.g.
hydrological networks) which has to be investigated as well.
Since the matching is up to now merely geometry- and
topology-based, including semantic aspects will definitely be a
point to look at with respect to future improvements. Another
issue will deal with the merging or conflation of multiple
representations based on MRep Relations, also considering data
quality/uncertainty issues.

108



ISPRS WG 11/3, 11/6 Workshop "Multiple representation and interoperability of spatial data", Hanover, Germany, February 22-24, 2006

8. REFERENCES

ADV: Homepage of the Working Committee of the Surveying
Authorities of the States of the Federal Republic of Germany,
http://www.adv-online.de, accessed: 11.2004

Aho, A., Hopcroft, 1. E., Ullman, J. D.: Data Structures and
Algorithms. Addison-Wesley Series in Computer Science and
Information Processing, (1987), 427 p.

ANZLIC: Homepage of the Spatial Information Council for
Australia and New Zealand, http://www.anzlic.org.au, accessed:
04.2005

Beeri, C., Doytsher, Y., Kanza, Y., Safra, E., Sagiv, Y.: Finding
Corresponding Objects when Integrating Several Geo-Spatial
Datasets. In: Proceedings of the 13% ACM International
Workshop on Geographic Information Systems, Bremen,
Germany, (2005), pp. 87-96.

Bilenko, M., Mooney, R.J.: Employing Trainable String
Similarity Metrics for Information Integration. In: Proceedings
of the ITCAI-2003 Workshop on Information Integration on the
Web, Mexico, (2003), pp. 67-72.

Bishr, Y. A., Pundt, H. Riither, C.: Proceeding on the Road of
Semantic Interoperability - Design of a Semantic Mapper Based
on a Case Study from Transportation. In: V&kovski, A., Brassel,
K.E., Schek, H.-J. (eds.): Proceedings of the 2™ International
Conference on Interoperating Geographic Information Systems,
Zurich, Lecture Notes in Computer Science, Heidelberg, Berlin,
(1999), pp. 203-215.

Bofinger, J.M.: Analyse und Implementierung eines Verfahrens
zur Referenzierung geographischer Objekte. Diploma Thesis at
the Institute for Photogrammetry, University of Stuttgart,
(2001), 76 pages.

Cobb, M., Chung, M., Miller, V., Foley, H., Petry, F., Shaw,
K.: A Rule-Based Approach for the Conflation of Attributed
Vector Data. Geolnformatica 2(1), (1998), pp. 7-35.

Davis, M., Aquino, J. : Java Conflation Suite (JCS), Technical
Report, (2003), 48 p. Acces via: http://www.jump-project.org/,
accessed: 02.2002

Dunkars, M. : Matching of Datasets. In: Proceedings of the ofh
Scandinavian Research  Conference on  Geographical
Information Science (SCANGIS) ’03, June 4% 10 6™ Espoo,
Finland, (2003), pp. 67-78.

FGDC: Homepage of the Federal Geographic Data Committee
of the United States, hitp://www.fgdc.gov, accessed: 04.2005

Filin, S., Doytsher, Y.: Detection of Corresponding Objects in
Linear-Based Map Conflation, Surveying and Land Information
Systems, Vol. 60, No. 2, (2000), pp. 117-128.

Gosseln, G. v., Sester, M.: Integration of Geoscientific Data
Sets and the German Digital Map using a Matching Approach.
In: Proceedings of the XX® ISPRS Congress, Comm. IV,
Istanbul, Turkey, (2004), pp. 1249-1254.

GSDI: Homepage of the Global Spatial Data Infrastructure
Association, http://www.gsdi.org/, accessed: 04.2005

Jones, C. B., Kidner, D. B, Luo, L. Q., Bundy, G. L., J. M.
Ware: Database Design for Multi-Scale Spatial Information

System. Int. J. Geographical Information Science 10(8), (1996),
pp. 901-920.

JUMP: Java Unified Mapping Platform, http://www. jump-
project.org/, accessed: 11.2005

Kraft, W.. Entwurf von Zuvordnungsalgorithmen zur
Fortfiilhrung und Uberpriifung von raumbezogenen Daten-
bestidnden. Diploma Thesis at the Institute for Photogrammetry,
University of Stuttgart, (1995), 75 pages.

Kraut, M.: Zuordnung und Conflation heterogener
StraBendaten. Diploma Thesis at the Institute for
Photogrammetry, University of Stuttgart, (2003), 109 pages.

Mantel, D., Lipeck, U.: Matching Cartographic Objects in
Spatial Databases. In: Proceedings of the XX" ISPRS
Congress, Comm. IV, Istanbul, Tarkey, (2004), pp. 172-176.

Nexus: Homepage of the Nexus Project of the University of
Stuttgart, http://www.nexus.uni-stuttgart.de, accessed: 11.2005

Pandazis, J.: TR 4011 EVIDENCE - Final Report, (1999),
Brussels.

Stigmar, H.: Matching Route Data and Topographic Data in a
Real-Time Fnvironment. In: Proceedings of the 10%
Scandinavian Research Conference on  Geographical
Information Science (SCANGIS) *05, June 13% to 15%
Stockholm, Sweden, (2005), pp. 89-107.

Uitermark, H.: The Integration of Geographic Databases.
Realising Geodata Interoperability through the Hypermap
Metaphor and a Mediator Architecture. In: Rumor, M,
McMillan, R., Ottens, FLF. (eds.): Proceedings of the 2™ Joint
European Conference & Exhibition on Geographical
Information (JEC-GI) *96, Vol. I, Barcelona, (1996), pp. 92-95.

Van Wijngarden, F., van Putten, J., van Oosterom, P,
Uitermark, H.: Map Integration — Update Propagation in a
Multi-Source Environment. In: Proceedings of the 5% ACM
international workshop on advances in geographic information
systems, Las Vegas, Nevada, United States, (1997), pp. 71-76.

Volz, S.: Data-driven Matching of Geospatial Schemas. In:
Cohn, A.G., Mark, D.M. (eds.): Spatial Information Theory.
Proceedings of the International Conference on Spatial
Information Theory (COSIT '05), Ellicottville, NY. Lecture
Notes in Computer Science 3693, (2005a), pp. 115-132.

Volz, S.: Shortest Path Search in Multi-Representation Street
Databases, In: Proceedings of the 3" Symposium on Location
Based Services and TeleCartography, Vienna, Austria, (2005b),
pp- 125-130.

Volz, S., Walter, V.: Linking Different Geaspatial Databases by
Explicit Relations. In: Proceedings of the XXt ISPRS
Congress, Comm. IV, Istanbul, Turkey, (2004), pp. 152-157.

Walter, V.: Zuordnung von raumbezogenen Daten — am
Beispiel der Datenmodelle ATKIS und GDF. Dissertation,
Deutsche Geoditische Kommission (DGK), Reihe C, Heft Nr.
480, (1997), 127 pages.

Walter, V., Fritsch, D.: Matching Spatial Data Sets: a Statistical
Approach, Int. J. Geographical Information Science 13(5),
(1999), pp. 445-473.

109



ISPRS WG II/3, 11/6 Workshop "Multiple representation and interoperability of spatial data", Hanover, Germany, February 22-24, 2006

Weis, M., Naumann, F.: Detecting Duplicate Objects in XML
Documents. In: Proceedings of the SIGMOD International
Workshop on Information Quality in Information Systems
(QIS) *04, Paris, (2004), pp. 10-19.

Xiong, D., Sperling, J.: Semiautomated Matching for Network
Database Integration, ISPRS Journal of Photogrammetry and
Remote Sensing, Special Issue on Advanced Techniques for
Analysis of Geo-spatial Data, Volume 59 (1-2), (2004), pp. 35-
46.

Zhang, M., Shi, W., Meng, L.: A Generic Matching Algorithm
for Line Networks of Different Resolutions. In: Proceedings of
the ICA workshop on generalisation and multiple
representation, A Corufia, Spain, (2005).

Acknowledgements

The research presented here is part of the Nexus project which
is supported as a Center of Excellence called “SpPATIAL WORLD
MODELS FOR MOBILE CONTEXT-AWARE APPLICATIONS” under
grant SFB 627 by the Deutsche Forschungsgemeinschaft (DFG
- German Research Council).

The test data have kindly been provided by the Navteq company
(GDF) and the state survey office of the federal state of Baden-
Whuerttemberg (ATKIS).

The author likes to thank the anonymous reviewers for their
valuable comments.

110



	First page
	Intro
	Published by 
	ISPRS Headquarters 2004-2008 
	Available from 
	N. Regnauld 
	M. Neun, D. Burghardt, R. Weibel
	E. Tomai 
	J.E. Stoter , R.L.G. Lemmens, B. Kőbben, N. J. Bakker 
	W. Shi, L. Meng
	Thursday, February 23, 14:00 – 14:30
	The future production of generalised maps at IGN Belgium 
	Encoding and decoding of planar maps through conformal Delaunay triangulation 
	E. Verbree 

	Hierarchical structures for rule based incremental generalisation 
	J.-H. Haunert, K.-H. Anders, M. Sester 
	M. Kada
	Friday, February 24, 11:00 – 12:30 
	J. Heuwold, K. Pakzad 
	M. Müller 


	A multi-resolution hierarchy classification study compared with conservative methods 
	G. B. Zhu, X. L. Liu , Z. G. Jia
	Friday, February 24, 14:00 – 15:30 


	Automatic integration of raster and vector maps: first checks 
	M. A. Brovelli, G. Zamboni 

	Results of experiments on automated matching of networks 
	S. Mustière 

	An iterative approach for matching multiple representations of street data 
	S. Volz



	Hierarchical structures for rule-based incremental generalisation
	An iterative approach for matching multiple representations of street data

