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ABSTRACT:

Ground based laser scanning is now well settled in the fields of cultural heritage, as-built modelling and monitoring applications. W e 

intend to use laser scanning to detect changes on building sites or inside facilities, mainly for monitoring purposes but also to be able 

to provide synthetic information in case of an emergency. In both cases, the main constraint is time. A minimum precision on the

measure of movements is also required, depending on the type of application. Laser scanner seems to be the perfect tool for such

applications as it quickly acquires a large amount of accurate 3D data. But the comparison of so huge datasets implies the use of

appropriate structures and ad-hoc algorithms. A specific octree structure is described, and then several simple cloud-to-cloud 

comparison techniques are presented. The best one, based on the Hausdorff distance computation is improved on various points. 

Also, as a full automatic process seems still unachievable, a software framework has been developed. It intends to minimize human

intervention and therefore prevents from wasting the LiDAR speed in time-consuming post-processing operations. 

1. INTRODUCTION

Change detection on 3D data is a rather new technique for non-

professional users, considering that it has been done exclusively 

by professional surveyors by now. The main reason is that 

before laser scanning, the techniques to acquire 3D points on 

real scenes were topography and photogrammetry, which are 

very precise but time consuming (especially if one is interested 

in tiny details). It can hardly be done by non-professionals or in 

an automatic way. Moreover it is actually very inconvenient to 

apply such techniques in dense industrial context, with pipes 

and cables everywhere. Today, aerial or ground based laser 

scanners acquire much more information in a global but 

unstructured way.  

A common technique to perform change detection on a point 

cloud is to compute its distance to a 3D reference model. It can 

be done either directly or by creating an intermediary model on 

top of the points. The reference model can either be theoretical 

or also created from real data. Point-to-mesh and mesh-to-mesh 

distances have been very well studied and demonstrated by 

academic software such as Metro (P. Cignoni et al. 1998) or 

Mesh (N. Aspert et al. 2002). Both need time and advanced 

treatments.  

In our process, we could use automatic 3D shape reconstruction 

on a point cloud. It is a challenging problem that is widely and 

intensively studied. However, this technique still faces big 

issues that prevent us from using it: important computation 

time, especially on true 3D clouds with millions of points, and a 

very bad behaviour on complex or dense scenes with 

incomplete coverage. 

In the particular case of aerial laser scanning, the sensor 

displacement implies that the acquired dataset is 2D½.  

Therefore it can be rather easily modelled with polygons or 

transformed into a depth image. This has led to the development 

of specific comparison techniques, mainly for urban areas 

(Murakami et al. 1998, Vögtle et al. 2003, Vosselman et al. 

2004). The main application is database updating. 

Finally, we can refer to the work of Mémoli and Sapiro 

(Mémoli et al. 2004) who have deeply analyzed the direct point 

clouds comparison problem in a very formal way. However, the 

point clouds have to be once again uniformly sampled with a 

good coverage, they must represent unique objects (manifolds) 

and the comparison result is global. 

It seems that no specific method has been developed for direct 

cloud-to-cloud comparison of ground-based LiDAR data. 

Approaching techniques in the field of as-built verification or 

building site monitoring consist either in binary comparison of 

point clouds for material appearance/disappearance mapping 

(Shih et al. 2004) or the comparison of a laser scanned point 

cloud with an existing as-built 3D model in a dense industrial 

environment (Gonçalves et al. 2003). 

In this paper we present a method for the direct comparison of 

two or more point clouds acquired with a ground-based laser 

scanner in order to detect local changes under important time 

constraints. Section 2 deals with data acquisition and 

registration issues. In section 3 we present naive comparison 

methods which only need a light structure computation (octree). 

In section 4 we discuss their results and carry out several 

improvements, providing some assumptions made in section 2 

are respected. Conclusions are presented in section 5. 

2. DATA ACQUISITION AND REFERENCING 

The first test consists of a building site monitoring application. 

The dataset has been acquired on a common downtown building 

site, during the excavation phase (at the very beginning of the 

building process). W e used a TRIMBLE GS200 ground-based 

laser scanner. Point clouds were acquired every day, from 

almost he same position and orientation each time (mainly for 
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stability reasons). There are 4 scans, about 200.000 points each 

(See Figure 1). 

The second test consists of a change detection application 

inside a power plant (a highly obstructed environment). After 

ten years of intense scanning of its facilities, EDF (Electricity 

of France) owns a huge database of laser scanned point clouds. 

Some are acquired in the same area at different epochs; others 

correspond to different areas but to equivalent material. Most of 

them contain millions of points. 

For both tests, knowledge of the laser scanner position and 

orientation is assumed. If point clouds are composed of multiple 

registered scans, the scan membership information for every 

point is also required for the improvement step that is proposed 

in section 4. There is no limitation on the number of scans or 

the total amount of points. 

The registration process is done by standard techniques 

(physical targets, point matching, etc.). Of course, registration 

error directly interferes with the change detection process and 

may generate false detections. We note that automatic 

registration procedures and especially those relying on the ICP 

algorithm (Besl et al. 1992) do not converge with too different 

point clouds: the standard deviation of the points corresponding 

to a change (which are equivalent to noise here) should be less 

than 10% of the object size. If it is not the case, one should keep 

only the points that have not – or nearly not – moved. As a first 

approximation, assuming both clouds are roughly registered, it 

is possible to set a threshold value and consider during the ICP 

process only points whose distance to their nearest neighbour in 

the other cloud is less than this value. If there are enough of 

them and if they are sufficiently well dispatched all over the 

scene, the iterative registration process will converge and give 

fairly good results. 

Figure 1 - Building site scans examples (two first days) 

coloured by height 

3. DIRECT COM PARISON WITH OCTREE 

Although we deal with large clouds (up to 30 millions of 

points), we wish to have an estimation of what has changed 

between two scans in a short or at least reasonable time. As 

indicated in the introduction, meshing algorithms applied to so 

huge and complex data are slow and hazardous. Moreover, the 

memory usage issue is critical, and meshes are not the best 

structure to face it. Thus we use a specific octree structure to 

ensure a good ratio between memory usage and points 

neighbourhood extraction speed.

3.1 The octree structure 

Figure 2 - Octree subdivision principle 

An octree consists in a recursive and regular subdivision of the 

3D space. In practical, the cubical bounding box of the set of 

points is divided into 8 equivalent cubes and this division 

process is recursively repeated for each cube. It stops when no 

more point lies in a cube or when a maximum preset level is 

reached. Such a structure gives the ability to rapidly determine 

which points lay in a specific cube and in its neighbouring 

cubes. Nearest neighbours extraction and equivalent processes 

become thus very fast. 

An octree structure is generally (and logically) implemented 

with a tree structure but it is also possible to use a numerical 

coding scheme: for every point, a 3*n bits long code is 

computed, where n is the maximum subdivision level of the 

octree. For a given level, 3 bits are used to code a number from 

0 to 7. This number corresponds to the sub-cube (also called a 

cell) where the point lies. Each bit corresponds simply to the 

cell position relatively to its parent cube along one dimension. 

These numbers are concatenated for all successive levels to 

build the cell code (see Table 3). This coding step is very fast as 

the coding process is linear (it has a complexity of k.O(N)

where N is the number of points and k n ).

Level 1 2 3  n 

Bits bzbybx bzbybx bzbybx … bzbybx

most significant bit  least significant bit 

Table 3 - numerical coding of an octree cell position 

Eventually, codes are sorted to make this octree structure more 

efficient. It makes possible to find rather quickly a given code 

with a simple dichotomic search, or all the points that lay in a 

cell at a given level l by considering only the first 3*l bits of 

codes. The sorting step has a complexity of O(n.log(n)). This 

octree structure is simple to implement and offers a good 

flexibility (it is easy to add or suppress points). 

We will close this discussion about implementation by referring 

to more sophisticated octree structures that would perfectly 

match our expectations - but for a highest implementation cost - 

such as Botsch et al. 2002 or Duguet and Drettakis 2004. 
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3.2 Octree-based comparison process 

Assuming that clouds are expressed in the same reference 

frame, a mere idea is to apply the same octree subdivision 

process to all of them. Each octree structure is computed 

starting from the same initial cube which is the smallest cube 

that bounds all clouds. By this way, similar cells in all octrees 

are spatially equivalent. Therefore, one can expect that the 

subsets of points lying in these homologous cells are indeed 

“comparable” or at least, are part of the same object. 

Based on this principle, a lot of “homologous cells comparison 

strategies” can be defined. They are generally as slow as they 

are accurate. Below are examples of such strategies. Let S and 

S’ be two subsets of points contained in two homologous cells 

at a given subdivision level l. Let N and N’ be respectively the 

sizes of S and S’. By default, S will be the compared cloud and 

S’ the reference cloud (the comparison process is not 

symmetrical). 

Strategy 1 – “Average distance” 

All points of S are labelled with the same value which is the 

average of the distances between each point of S and its nearest 

neighbour in S’ (it could also be the minimum of maximum 

distance). This is can be quickly computed if l is big enough or 

equivalently if N and N’ are rather small (see Table 8). It is 

robust to noise and density variations. But it is very inaccurate 

and should only be used in a preview step (see Figure 4).  

Figure 4 - "average distance" between the two first scans of the 

building site, computed at octree level 5 (points that 

have not been compared are displayed in grey). 

As distance approximations are not exactly the same for 

different values of l, better results are achieved by applying the 

process recursively, keeping for each point the minimum value 

from a level to another (see Figure 5). However, some points 

are left not compared, as they are too far from the reference 

cloud (they lay in octree cells that have no homolog).  

Figure 5 - "average distance" between the two first scans of the 

building site, recursively computed from octree 

level 5 to 10. 

Strategy 2 – “Best fitting plane orientation” 

The least square plane is computed for both subsets. All points 

of S are labelled with the same value which is the angle 

between these planes. This is a simple tilt change 

approximation (and therefore a kind of shape modification 

information) but shifts are not detected. Once again, this is only 

a quick and rough evaluation of what has changed. We observe 

similar results compared to the first strategy (see Figure 6, to be 

compared with Figure 5). Once again, a recursive approach 

gives better results. 

Figure 6 - "best fitting plane orientation" recursively computed 

from octree level 5 to 10 

Strategy 3 – “Hausdorff distance” 

The Hausdorff distance between two sets of points is a common 

distance that consists in computing for each point p of a cloud S

the distance to its nearest point in the other cloud S’:

2''
'min)',( ppSpd

Sp

     (1) 

This is much more precise than the two previous methods but 

slightly slower. It is also very dependent on the point density 

variations between scans as it does not consider any implicit or 

explicit surface, but only points. The Hausdorff distance 

computation relies also on the octree structure but the nearest 

neighbour of a point does not lie necessarily in the homolog 

cell. For each point p, in order to assure that the truly nearest 

point has been founded, one must compute the distance to all 

points included in the neighbouring cells until the minimum 

distance is lower than the radius of the biggest sphere centred 

on p and fully included in this neighbourhood. There are no un-

compared points by definition (see Figure 7). Note that the 

subdivision level at which the calculation is done does not 

change the result but only the computation timing (see Table ). 

Figure 7 – “Hausdorff distance" 

3.3 Computation costs and early results discussion 

Here are presented indicative computation timings for the 

strategies presented above (see Table 8). These tests have been 
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made on a notebook with a 1.7 GHz Centrino™  processor and 1 

Go of memory. The first tested dataset is composed of the two 

first scans of the building site (170.000 and 765.000 points). 

The second dataset is composed of two clouds made of multiple 

consolidated scans and acquired inside a power plant (850.000 

and 612.000 points). A third dataset, composed of two clouds of 

12 million points each, is used for scalability test. 

We observe that strategies relying only on homologous cells 

subsets comparison are of course faster than the true Hausdorff 

distance. However, their output is so approximate that they 

should only be used as preview processes. The Hausdorff 

distance is surely the best solution to our problem. It has 

however some important issues: 

As it has already been said, it is very sensitive to 

point sampling variations between scans. 

Its computation time depends greatly on the octree 

level (see Table 9) and the points repartition in space.

A point will always have a nearest point in the other 

scan but it does not necessarily mean that their 

distance corresponds to any real change. 

Process dataset 1* dataset 2* 

octrees computation 01.25 s 01.76 s 

strategy 1 average 02.21 s 14.97 s (6) 

strategy 2 one pass 00.11 s (5) 00.19 s (6) 

strategy 2 recursive 00.47 s (5-10) 01.33 s (6-10) 

strategy 3 Hausdorff 07.07 s (7) 21.38 s (8) 

Table 8 - computation costs comparison 
(*) numbers in braces are the octree levels used for computation that 

approximately correspond to the same number of points per cell 

octree level dataset 1 dataset 2 dataset 3 

5 36.11 s n.a. n.a. 

6 12.88 s 129.47 s n.a. 

7 07.07 s 042.78 s n.a. 

8 24.03 s 021.38 s 563.59 s 

9 n.a. 116.32 s 657.64 s 

Table 9 - octree level influence on Hausdorff distance 

computation time (best in yellow) 

To address the first issue, we suggest to model locally the 

surface to avoid density variation issues. For each point of the 

first cloud, once the nearest point in the second cloud has been 

determined, a set of its nearest neighbours is extracted. With 

this set, a local surface model is computed (the least square 

plane, a Delaunay triangulation, a spline surface or a quadratic 

height function for example). Finally, the distance from the 

point of the first cloud to this surface patch is computed. By this 

way, any point sampling influence is avoided (see Figure 10). It 

can still remain error, depending on the chosen model, 

especially on highly curved or angular surfaces but it is much 

smaller. It should also be an optional treatment as it is not 

always useful while rather time consuming (with an appropriate 

algorithm and Delaunay triangulation, a multiplication of the 

process time by 2 to 4 has been observed). 

To fix the second issue, we compute the average number of 

points per cell for every level (for the cost of one table scan – 

linear process – thanks to the octree structure described in 

section 3.1). The smallest level of subdivision that gives an 

average number of points per cell below a certain limit (which 

depends greatly on the computer capacities but which should 

not be greater than a few hundreds of points) is then chosen for 

computation.

Finally, the last issue is surely the most challenging. It does not 

result from the Hausdorff distance itself but more likely because 

of the laser scanning principle. Imagine a laser sensor at a fixed 

position, scanning a changing scene at different epochs. 

Because of the displacements of occluding materials, the laser 

beam will not go through the same portions of the 3D space 

(even if the field of view remains the same for each scan).  

Figure 10 - Comparison of a set of non-uniformly sampled 

points (a) with uniformly sampled points (b). Points 

are sampled on the same plane. Results of the 

Hausdorff distance computed without (c) and with 

(d) local modelling (Delaunay triangulation).  

Consider Figure 11: in case of disappearing material (top 

figure), the laser beam at epoch 2 goes through a portion of 

space that has never been scanned during the first epoch (the 

visible pink zone below the orange area). The fact is that it is 

impossible to have a clue about what may have changed in this 

shadow area. It is only possible to conclude that something has 

disappeared or moved in the first scan. However, a human - 

who have some a priori information on the scanned scene - 

would say that the two subsets of points on the left are indeed 

“comparable” while the points at the right have no homologous 

points in the first scan (bottom figure). A solution to this 

problem is proposed in the next section. 

Figure 11 – scanner shadow areas 
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4. IMPROVEMENT WITH DEPTH MAPS 

In the previous section, we have pointed out a consequence of 

the laser scanning principle that prevents us from using the 

Hausdorff distance as a “change detector” in some specific 

areas. To solve this problem, points that lie in those areas are 

filtered out in a first step and then specific treatments (chosen 

by a human operator, thanks to a priori knowledge of the 

scanned scene) are applied to these points. 

4.1.1 Visibility maps 

The filtering phase consists in sorting the points into two 

categories: each point of the compared scan lies either in an 

area of space that has been effectively observed by the sensor 

during the scanning process of the reference scene (i.e. the laser 

beam went through this area at both epochs), or in a shadow 

area of the first sensor. 

The process relies on a Z-buffer (Watkins 1970) which is a 

common structure in computer graphics applications. As most 

of ground laser scanners use rotating mirrors and/or axes that 

move with constant angle steps, their 3D measures can actually 

be expressed in 2D½: 3D points are projected into a 2D grid in 

the scanner angular coordinate system (see Figure 12). This grid 

is called a “depth image” or “depth map” (see Figure 13) and is 

equivalent to a Z-buffer. Every pixel in this image corresponds 

to a given direction and its associated value is the distance from 

the scanner to the nearest obstacle in this direction. 

Figure 12 – scanning principle and depth image projection 

Some holes may exist in the depth image as some laser pulses 

have not been reflected back. To fix this, a simple “hole-filling” 

process is applied to the image (holes are replaced by the mean 

value of its neighbours). Finally, if one knows also the 

maximum sensor range, it can be used to initialize the buffer 

(otherwise we initialise it with zero values). 

The depth image is associated with the sensor position and 

orientation. With such a structure, the visibility of any 3D point 

can be determined: a queried 3D point is projected into the 2D 

image space; if the projected point is outside of the image, it 

means that the 3D point is outside the scanner field of view. 

Otherwise, the distance between the point and the scanner 

centre is compared to the buffer value at the same position. If 

the point is closer, it is labelled as visible (e.g. the 

corresponding space area has been actually visited by the laser 

beam) else it is invisible. This visibility test is made during the 

comparison process, before each nearest neighbour request. If it 

is positive, the Hausdorff distance is calculated, otherwise the 

invisibility type is stored (out of field of view, out of range or 

hidden). Invisible points will be processed in a specific way 

(see next section). 

The visibility map is only computed for the reference cloud. If 

this cloud is composed of multiple scans, membership to the 

different point of views (p.o.v.) should be known for every 

point (as requested in Section 2). A visibility map is then 

computed for each p.o.v., and the visibility query is made for 

every p.o.v. until one test is positive (e.g. the point is visible

from at least one p.o.v.). Otherwise the point is invisible.

Figure 13 - depth image of the first scan of the building site 

(equivalent to the 1st day in Figure 1) 

Note: as for graphical Z-buffers, an uncertainty value is used 

for the distance test. It is a positive epsilon variable added to the 

buffer range value during the test. It is a simple way to take 

errors into account (mainly sensor and registration errors), but 

also to arbitrarily consider small distances as differences and 

not as hidden configurations (depending on the objects sizes). 

For outdoor scenes with high ranges, we set epsilon between 10 

cm and 1 meter. For indoor scanning, with lower ranges and a 

much higher precision, we use values between 3 cm and 10 cm.  

4.1.2 Invisible points handling 

It appears that invisible points can be classified into three 

groups:

Points that are out of field of view or out of range. We 

can forget them, as there is no way to compare them. 

Points that are labelled as hidden because there has 

been a shape modification or a shift of the object 

surface, farer from the scanner (a true change). 

Points that are labelled as hidden because something 

has disappeared or shifted, revealing what was behind 

it, in its shadow (see Figure 14).

Figure 14 - Comparison of day 3 (b) with day 1 (a). With a 

simple Hausdorff distance (c), points in the shovel 

shadow are labelled as different (non-blue points 

inside the white polygon). After a visibility check 

(d), those points are labelled as hidden (in pink). 

In order to make the distinction between the two hidden cases, a 

solution is to use a third scan. Given three scans acquired at 

three different epochs (t-1, t and t+1), lets consider a set of 

points that are labelled as hidden at epoch t. If those points have 

not moved between epoch t+1 and t-1, then there is a great 

probability that they have not moved at epoch t. If they have 

moved at epoch t+1, the outside border of the shadow zone at 

epoch t can give a hint on what happened inside. 

If there is no third scan or some ambiguities remain, different 

strategies can be proposed as a choice to the user: 

a b

c d
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1. To compare the remaining points in a 2D½ way (the 

user must specify a direction). It is most indicated for 

outdoor datasets or more generally for nearly 2D½ 

datasets. For example, the user may guess that gravity 

is the main reason for the displacement of some hidden 

points, and will therefore want to compare them to 

points vertically above or below them. 

2. To compare the hidden points with their occluding 

points in the reference cloud (which can be identified 

via the Z-Buffer). If the two sets have at least partially 

the same shape, there is a good probability that they 

correspond to the same shifted surface. 

3. To manually select and tag subsets of points with 

specific values. 

Finally, whatever processes the user has chosen, he obtains one 

set of points labelled with distance values, and one set of points 

that could not be compared but which are labelled with 

visibility tags. This allows to produce accurate maps of 3D 

changes without false detection (see Figure 15-a).

To extract higher level information, a 3D connected 

components extraction process can be applied on this dataset. 

The user sets (graphically or numerically) a distance threshold 

to filter out points considered as unmodified (see Figure 15-b). 

Doing this, only points corresponding to “changes” remain 

under the form of isolated subsets of points (as they were 

connected to unchanged surfaces that have been filtered out). 

Then, the octree structure – considered as successive 2D slices 

of cells – is used to perform on each slice a simple binary 

connected components extraction process (cells can have two 

values: empty or occupied). The results are merged in 3D by 

regrouping components in the orthogonal direction (see Figure 

15-c).

Figure 15 – Objects extraction principle: distance calculation 

(a), distance thresholding (b) and 3D connected 

components extraction (c). 

5. CONCLUSIONS

We have presented a direct point-to-point comparison 

framework. Given two datasets acquired on the same area, one 

can use either preview processes (for on-site verification) or a 

more precise comparison process relying on Hausdorff distance. 

This last process can be refined if the sensor pose and scan 

membership information for every points are available. Speed 

constraint is assured thanks to the use of a light octree structure 

such as the one presented in section 3.1. Results can be used for 

basic change mapping or human driven verification, but also for 

higher level treatments, such as 3D connected components 

extraction and objects recognition. No time consuming process 

is needed, allowing the whole distance calculation and change 

detection process to be completed in a short time. 

In case of an emergency or more generally if the user is not 

familiar with 3D point clouds, knowledge of the sensor 

parameters or manually setting threshold values can become 

critical issues. Therefore, we are now working on automatic 

distance thresholding to achieve unsupervised changing objects 

extraction (allowing automatic recognition of 3D objects for 

vehicle tracking or displacements monitoring). We are also 

working on automatic sensor pose estimation (directly from the 

3D points repartition in space, without any information other 

than the sensor type). Another field of research is the 

classification and recognition of the different types of change 

that can occur on geometry, in order to produce cleaner and 

more informative results. 
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