
CHANGE DETECTION ON POINTS CLOUD DATA ACQUIRED W ITH A GROUND

LASER SCANNER

D. Girardeau-Montauta,b, Michel Rouxa, Raphaël Marcb, Guillaume Thibaultb

a Telecom Paris (Ecole Nationale Supérieure des Télécommunications, Paris) (daniel.girardeau-montaut, michel.roux)@ enst.fr
b EDF R&D (Electricité de France – Direction des Etudes et Recherches, Clamart) (raphael.marc,guillaume.thibault)@ edf.fr

Commission III W G III/3

KEY W ORDS: Ground LiDAR, laser scanning, points cloud comparison, change detection, monitoring.

ABSTRACT:

Ground based laser scanning is now well settled in the fields of cultural heritage, as-built modelling and monitoring applications. W e

intend to use laser scanning to detect changes on building sites or inside facilities, mainly for monitoring purposes but also to be able

to provide synthetic information in case of an emergency. In both cases, the main constraint is time. A minimum precision on the

measure of movements is also required, depending on the type of application. Laser scanner seems to be the perfect tool for such

applications as it quickly acquires a large amount of accurate 3D data. But the comparison of so huge datasets implies the use of

appropriate structures and ad-hoc algorithms. A specific octree structure is described, and then several simple cloud-to-cloud

comparison techniques are presented. The best one, based on the Hausdorff distance computation is improved on various points.

Also, as a full automatic process seems still unachievable, a software framework has been developed. It intends to minimize human

intervention and therefore prevents from wasting the LiDAR speed in time-consuming post-processing operations.

1. INTRODUCTION

Change detection on 3D data is a rather new technique for non-

professional users, considering that it has been done exclusively

by professional surveyors by now. The main reason is that

before laser scanning, the techniques to acquire 3D points on

real scenes were topography and photogrammetry, which are

very precise but time consuming (especially if one is interested

in tiny details). It can hardly be done by non-professionals or in

an automatic way. Moreover it is actually very inconvenient to

apply such techniques in dense industrial context, with pipes

and cables everywhere. Today, aerial or ground based laser

scanners acquire much more information in a global but

unstructured way.

A common technique to perform change detection on a point

cloud is to compute its distance to a 3D reference model. It can

be done either directly or by creating an intermediary model on

top of the points. The reference model can either be theoretical

or also created from real data. Point-to-mesh and mesh-to-mesh

distances have been very well studied and demonstrated by

academic software such as Metro (P. Cignoni et al. 1998) or

Mesh (N. Aspert et al. 2002). Both need time and advanced

treatments.

In our process, we could use automatic 3D shape reconstruction

on a point cloud. It is a challenging problem that is widely and

intensively studied. However, this technique still faces big

issues that prevent us from using it: important computation

time, especially on true 3D clouds with millions of points, and a

very bad behaviour on complex or dense scenes with

incomplete coverage.

In the particular case of aerial laser scanning, the sensor

displacement implies that the acquired dataset is 2D½.

Therefore it can be rather easily modelled with polygons or

transformed into a depth image. This has led to the development

of specific comparison techniques, mainly for urban areas

(Murakami et al. 1998, Vögtle et al. 2003, Vosselman et al.

2004). The main application is database updating.

Finally, we can refer to the work of Mémoli and Sapiro

(Mémoli et al. 2004) who have deeply analyzed the direct point

clouds comparison problem in a very formal way. However, the

point clouds have to be once again uniformly sampled with a

good coverage, they must represent unique objects (manifolds)

and the comparison result is global.

It seems that no specific method has been developed for direct

cloud-to-cloud comparison of ground-based LiDAR data.

Approaching techniques in the field of as-built verification or

building site monitoring consist either in binary comparison of

point clouds for material appearance/disappearance mapping

(Shih et al. 2004) or the comparison of a laser scanned point

cloud with an existing as-built 3D model in a dense industrial

environment (Gonçalves et al. 2003).

In this paper we present a method for the direct comparison of

two or more point clouds acquired with a ground-based laser

scanner in order to detect local changes under important time

constraints. Section 2 deals with data acquisition and

registration issues. In section 3 we present naive comparison

methods which only need a light structure computation (octree).

In section 4 we discuss their results and carry out several

improvements, providing some assumptions made in section 2

are respected. Conclusions are presented in section 5.

2. DATA ACQUISITION AND REFERENCING

The first test consists of a building site monitoring application.

The dataset has been acquired on a common downtown building

site, during the excavation phase (at the very beginning of the

building process). W e used a TRIMBLE GS200 ground-based

laser scanner. Point clouds were acquired every day, from

almost he same position and orientation each time (mainly for

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

30

stability reasons). There are 4 scans, about 200.000 points each

(See Figure 1).

The second test consists of a change detection application

inside a power plant (a highly obstructed environment). After

ten years of intense scanning of its facilities, EDF (Electricity

of France) owns a huge database of laser scanned point clouds.

Some are acquired in the same area at different epochs; others

correspond to different areas but to equivalent material. Most of

them contain millions of points.

For both tests, knowledge of the laser scanner position and

orientation is assumed. If point clouds are composed of multiple

registered scans, the scan membership information for every

point is also required for the improvement step that is proposed

in section 4. There is no limitation on the number of scans or

the total amount of points.

The registration process is done by standard techniques

(physical targets, point matching, etc.). Of course, registration

error directly interferes with the change detection process and

may generate false detections. We note that automatic

registration procedures and especially those relying on the ICP

algorithm (Besl et al. 1992) do not converge with too different

point clouds: the standard deviation of the points corresponding

to a change (which are equivalent to noise here) should be less

than 10% of the object size. If it is not the case, one should keep

only the points that have not – or nearly not – moved. As a first

approximation, assuming both clouds are roughly registered, it

is possible to set a threshold value and consider during the ICP

process only points whose distance to their nearest neighbour in

the other cloud is less than this value. If there are enough of

them and if they are sufficiently well dispatched all over the

scene, the iterative registration process will converge and give

fairly good results.

Figure 1 - Building site scans examples (two first days)

coloured by height

3. DIRECT COM PARISON WITH OCTREE

Although we deal with large clouds (up to 30 millions of

points), we wish to have an estimation of what has changed

between two scans in a short or at least reasonable time. As

indicated in the introduction, meshing algorithms applied to so

huge and complex data are slow and hazardous. Moreover, the

memory usage issue is critical, and meshes are not the best

structure to face it. Thus we use a specific octree structure to

ensure a good ratio between memory usage and points

neighbourhood extraction speed.

3.1 The octree structure

Figure 2 - Octree subdivision principle

An octree consists in a recursive and regular subdivision of the

3D space. In practical, the cubical bounding box of the set of

points is divided into 8 equivalent cubes and this division

process is recursively repeated for each cube. It stops when no

more point lies in a cube or when a maximum preset level is

reached. Such a structure gives the ability to rapidly determine

which points lay in a specific cube and in its neighbouring

cubes. Nearest neighbours extraction and equivalent processes

become thus very fast.

An octree structure is generally (and logically) implemented

with a tree structure but it is also possible to use a numerical

coding scheme: for every point, a 3*n bits long code is

computed, where n is the maximum subdivision level of the

octree. For a given level, 3 bits are used to code a number from

0 to 7. This number corresponds to the sub-cube (also called a

cell) where the point lies. Each bit corresponds simply to the

cell position relatively to its parent cube along one dimension.

These numbers are concatenated for all successive levels to

build the cell code (see Table 3). This coding step is very fast as

the coding process is linear (it has a complexity of k.O(N)

where N is the number of points and k n).

Level 1 2 3 n

Bits bzbybx bzbybx bzbybx … bzbybx

most significant bit least significant bit

Table 3 - numerical coding of an octree cell position

Eventually, codes are sorted to make this octree structure more

efficient. It makes possible to find rather quickly a given code

with a simple dichotomic search, or all the points that lay in a

cell at a given level l by considering only the first 3*l bits of

codes. The sorting step has a complexity of O(n.log(n)). This

octree structure is simple to implement and offers a good

flexibility (it is easy to add or suppress points).

We will close this discussion about implementation by referring

to more sophisticated octree structures that would perfectly

match our expectations - but for a highest implementation cost -

such as Botsch et al. 2002 or Duguet and Drettakis 2004.

3

1

0

2

4

5

7

6 Bounding cube

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1
st
 day

2
nd

 day

over-scanned region

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

31

3.2 Octree-based comparison process

Assuming that clouds are expressed in the same reference

frame, a mere idea is to apply the same octree subdivision

process to all of them. Each octree structure is computed

starting from the same initial cube which is the smallest cube

that bounds all clouds. By this way, similar cells in all octrees

are spatially equivalent. Therefore, one can expect that the

subsets of points lying in these homologous cells are indeed

“comparable” or at least, are part of the same object.

Based on this principle, a lot of “homologous cells comparison

strategies” can be defined. They are generally as slow as they

are accurate. Below are examples of such strategies. Let S and

S’ be two subsets of points contained in two homologous cells

at a given subdivision level l. Let N and N’ be respectively the

sizes of S and S’. By default, S will be the compared cloud and

S’ the reference cloud (the comparison process is not

symmetrical).

Strategy 1 – “Average distance”

All points of S are labelled with the same value which is the

average of the distances between each point of S and its nearest

neighbour in S’ (it could also be the minimum of maximum

distance). This is can be quickly computed if l is big enough or

equivalently if N and N’ are rather small (see Table 8). It is

robust to noise and density variations. But it is very inaccurate

and should only be used in a preview step (see Figure 4).

Figure 4 - "average distance" between the two first scans of the

building site, computed at octree level 5 (points that

have not been compared are displayed in grey).

As distance approximations are not exactly the same for

different values of l, better results are achieved by applying the

process recursively, keeping for each point the minimum value

from a level to another (see Figure 5). However, some points

are left not compared, as they are too far from the reference

cloud (they lay in octree cells that have no homolog).

Figure 5 - "average distance" between the two first scans of the

building site, recursively computed from octree

level 5 to 10.

Strategy 2 – “Best fitting plane orientation”

The least square plane is computed for both subsets. All points

of S are labelled with the same value which is the angle

between these planes. This is a simple tilt change

approximation (and therefore a kind of shape modification

information) but shifts are not detected. Once again, this is only

a quick and rough evaluation of what has changed. We observe

similar results compared to the first strategy (see Figure 6, to be

compared with Figure 5). Once again, a recursive approach

gives better results.

Figure 6 - "best fitting plane orientation" recursively computed

from octree level 5 to 10

Strategy 3 – “Hausdorff distance”

The Hausdorff distance between two sets of points is a common

distance that consists in computing for each point p of a cloud S

the distance to its nearest point in the other cloud S’:

2''
'min)',(ppSpd

Sp

 (1)

This is much more precise than the two previous methods but

slightly slower. It is also very dependent on the point density

variations between scans as it does not consider any implicit or

explicit surface, but only points. The Hausdorff distance

computation relies also on the octree structure but the nearest

neighbour of a point does not lie necessarily in the homolog

cell. For each point p, in order to assure that the truly nearest

point has been founded, one must compute the distance to all

points included in the neighbouring cells until the minimum

distance is lower than the radius of the biggest sphere centred

on p and fully included in this neighbourhood. There are no un-

compared points by definition (see Figure 7). Note that the

subdivision level at which the calculation is done does not

change the result but only the computation timing (see Table).

Figure 7 – “Hausdorff distance"

3.3 Computation costs and early results discussion

Here are presented indicative computation timings for the

strategies presented above (see Table 8). These tests have been

added objects

excavated areas
1990.5980

0 (mm)

1759.1200

0 (mm)

1990.5980

0 (mm)

9823.1750

3102.0553

0 (mm)

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

32

made on a notebook with a 1.7 GHz Centrino™ processor and 1

Go of memory. The first tested dataset is composed of the two

first scans of the building site (170.000 and 765.000 points).

The second dataset is composed of two clouds made of multiple

consolidated scans and acquired inside a power plant (850.000

and 612.000 points). A third dataset, composed of two clouds of

12 million points each, is used for scalability test.

We observe that strategies relying only on homologous cells

subsets comparison are of course faster than the true Hausdorff

distance. However, their output is so approximate that they

should only be used as preview processes. The Hausdorff

distance is surely the best solution to our problem. It has

however some important issues:

As it has already been said, it is very sensitive to

point sampling variations between scans.

Its computation time depends greatly on the octree

level (see Table 9) and the points repartition in space.

A point will always have a nearest point in the other

scan but it does not necessarily mean that their

distance corresponds to any real change.

Process dataset 1* dataset 2*

octrees computation 01.25 s 01.76 s

strategy 1 average 02.21 s 14.97 s (6)

strategy 2 one pass 00.11 s (5) 00.19 s (6)

strategy 2 recursive 00.47 s (5-10) 01.33 s (6-10)

strategy 3 Hausdorff 07.07 s (7) 21.38 s (8)

Table 8 - computation costs comparison
(*) numbers in braces are the octree levels used for computation that

approximately correspond to the same number of points per cell

octree level dataset 1 dataset 2 dataset 3

5 36.11 s n.a. n.a.

6 12.88 s 129.47 s n.a.

7 07.07 s 042.78 s n.a.

8 24.03 s 021.38 s 563.59 s

9 n.a. 116.32 s 657.64 s

Table 9 - octree level influence on Hausdorff distance

computation time (best in yellow)

To address the first issue, we suggest to model locally the

surface to avoid density variation issues. For each point of the

first cloud, once the nearest point in the second cloud has been

determined, a set of its nearest neighbours is extracted. With

this set, a local surface model is computed (the least square

plane, a Delaunay triangulation, a spline surface or a quadratic

height function for example). Finally, the distance from the

point of the first cloud to this surface patch is computed. By this

way, any point sampling influence is avoided (see Figure 10). It

can still remain error, depending on the chosen model,

especially on highly curved or angular surfaces but it is much

smaller. It should also be an optional treatment as it is not

always useful while rather time consuming (with an appropriate

algorithm and Delaunay triangulation, a multiplication of the

process time by 2 to 4 has been observed).

To fix the second issue, we compute the average number of

points per cell for every level (for the cost of one table scan –

linear process – thanks to the octree structure described in

section 3.1). The smallest level of subdivision that gives an

average number of points per cell below a certain limit (which

depends greatly on the computer capacities but which should

not be greater than a few hundreds of points) is then chosen for

computation.

Finally, the last issue is surely the most challenging. It does not

result from the Hausdorff distance itself but more likely because

of the laser scanning principle. Imagine a laser sensor at a fixed

position, scanning a changing scene at different epochs.

Because of the displacements of occluding materials, the laser

beam will not go through the same portions of the 3D space

(even if the field of view remains the same for each scan).

Figure 10 - Comparison of a set of non-uniformly sampled

points (a) with uniformly sampled points (b). Points

are sampled on the same plane. Results of the

Hausdorff distance computed without (c) and with

(d) local modelling (Delaunay triangulation).

Consider Figure 11: in case of disappearing material (top

figure), the laser beam at epoch 2 goes through a portion of

space that has never been scanned during the first epoch (the

visible pink zone below the orange area). The fact is that it is

impossible to have a clue about what may have changed in this

shadow area. It is only possible to conclude that something has

disappeared or moved in the first scan. However, a human -

who have some a priori information on the scanned scene -

would say that the two subsets of points on the left are indeed

“comparable” while the points at the right have no homologous

points in the first scan (bottom figure). A solution to this

problem is proposed in the next section.

Figure 11 – scanner shadow areas

a

c d

b

Delta

comparable points non-comparable points

Epoch 1

Epoch 2

displacement

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

33

4. IMPROVEMENT WITH DEPTH MAPS

In the previous section, we have pointed out a consequence of

the laser scanning principle that prevents us from using the

Hausdorff distance as a “change detector” in some specific

areas. To solve this problem, points that lie in those areas are

filtered out in a first step and then specific treatments (chosen

by a human operator, thanks to a priori knowledge of the

scanned scene) are applied to these points.

4.1.1 Visibility maps

The filtering phase consists in sorting the points into two

categories: each point of the compared scan lies either in an

area of space that has been effectively observed by the sensor

during the scanning process of the reference scene (i.e. the laser

beam went through this area at both epochs), or in a shadow

area of the first sensor.

The process relies on a Z-buffer (Watkins 1970) which is a

common structure in computer graphics applications. As most

of ground laser scanners use rotating mirrors and/or axes that

move with constant angle steps, their 3D measures can actually

be expressed in 2D½: 3D points are projected into a 2D grid in

the scanner angular coordinate system (see Figure 12). This grid

is called a “depth image” or “depth map” (see Figure 13) and is

equivalent to a Z-buffer. Every pixel in this image corresponds

to a given direction and its associated value is the distance from

the scanner to the nearest obstacle in this direction.

Figure 12 – scanning principle and depth image projection

Some holes may exist in the depth image as some laser pulses

have not been reflected back. To fix this, a simple “hole-filling”

process is applied to the image (holes are replaced by the mean

value of its neighbours). Finally, if one knows also the

maximum sensor range, it can be used to initialize the buffer

(otherwise we initialise it with zero values).

The depth image is associated with the sensor position and

orientation. With such a structure, the visibility of any 3D point

can be determined: a queried 3D point is projected into the 2D

image space; if the projected point is outside of the image, it

means that the 3D point is outside the scanner field of view.

Otherwise, the distance between the point and the scanner

centre is compared to the buffer value at the same position. If

the point is closer, it is labelled as visible (e.g. the

corresponding space area has been actually visited by the laser

beam) else it is invisible. This visibility test is made during the

comparison process, before each nearest neighbour request. If it

is positive, the Hausdorff distance is calculated, otherwise the

invisibility type is stored (out of field of view, out of range or

hidden). Invisible points will be processed in a specific way

(see next section).

The visibility map is only computed for the reference cloud. If

this cloud is composed of multiple scans, membership to the

different point of views (p.o.v.) should be known for every

point (as requested in Section 2). A visibility map is then

computed for each p.o.v., and the visibility query is made for

every p.o.v. until one test is positive (e.g. the point is visible

from at least one p.o.v.). Otherwise the point is invisible.

Figure 13 - depth image of the first scan of the building site

(equivalent to the 1st day in Figure 1)

Note: as for graphical Z-buffers, an uncertainty value is used

for the distance test. It is a positive epsilon variable added to the

buffer range value during the test. It is a simple way to take

errors into account (mainly sensor and registration errors), but

also to arbitrarily consider small distances as differences and

not as hidden configurations (depending on the objects sizes).

For outdoor scenes with high ranges, we set epsilon between 10

cm and 1 meter. For indoor scanning, with lower ranges and a

much higher precision, we use values between 3 cm and 10 cm.

4.1.2 Invisible points handling

It appears that invisible points can be classified into three

groups:

Points that are out of field of view or out of range. We

can forget them, as there is no way to compare them.

Points that are labelled as hidden because there has

been a shape modification or a shift of the object

surface, farer from the scanner (a true change).

Points that are labelled as hidden because something

has disappeared or shifted, revealing what was behind

it, in its shadow (see Figure 14).

Figure 14 - Comparison of day 3 (b) with day 1 (a). With a

simple Hausdorff distance (c), points in the shovel

shadow are labelled as different (non-blue points

inside the white polygon). After a visibility check

(d), those points are labelled as hidden (in pink).

In order to make the distinction between the two hidden cases, a

solution is to use a third scan. Given three scans acquired at

three different epochs (t-1, t and t+1), lets consider a set of

points that are labelled as hidden at epoch t. If those points have

not moved between epoch t+1 and t-1, then there is a great

probability that they have not moved at epoch t. If they have

moved at epoch t+1, the outside border of the shadow zone at

epoch t can give a hint on what happened inside.

If there is no third scan or some ambiguities remain, different

strategies can be proposed as a choice to the user:

a b

c d

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

34

1. To compare the remaining points in a 2D½ way (the

user must specify a direction). It is most indicated for

outdoor datasets or more generally for nearly 2D½

datasets. For example, the user may guess that gravity

is the main reason for the displacement of some hidden

points, and will therefore want to compare them to

points vertically above or below them.

2. To compare the hidden points with their occluding

points in the reference cloud (which can be identified

via the Z-Buffer). If the two sets have at least partially

the same shape, there is a good probability that they

correspond to the same shifted surface.

3. To manually select and tag subsets of points with

specific values.

Finally, whatever processes the user has chosen, he obtains one

set of points labelled with distance values, and one set of points

that could not be compared but which are labelled with

visibility tags. This allows to produce accurate maps of 3D

changes without false detection (see Figure 15-a).

To extract higher level information, a 3D connected

components extraction process can be applied on this dataset.

The user sets (graphically or numerically) a distance threshold

to filter out points considered as unmodified (see Figure 15-b).

Doing this, only points corresponding to “changes” remain

under the form of isolated subsets of points (as they were

connected to unchanged surfaces that have been filtered out).

Then, the octree structure – considered as successive 2D slices

of cells – is used to perform on each slice a simple binary

connected components extraction process (cells can have two

values: empty or occupied). The results are merged in 3D by

regrouping components in the orthogonal direction (see Figure

15-c).

Figure 15 – Objects extraction principle: distance calculation

(a), distance thresholding (b) and 3D connected

components extraction (c).

5. CONCLUSIONS

We have presented a direct point-to-point comparison

framework. Given two datasets acquired on the same area, one

can use either preview processes (for on-site verification) or a

more precise comparison process relying on Hausdorff distance.

This last process can be refined if the sensor pose and scan

membership information for every points are available. Speed

constraint is assured thanks to the use of a light octree structure

such as the one presented in section 3.1. Results can be used for

basic change mapping or human driven verification, but also for

higher level treatments, such as 3D connected components

extraction and objects recognition. No time consuming process

is needed, allowing the whole distance calculation and change

detection process to be completed in a short time.

In case of an emergency or more generally if the user is not

familiar with 3D point clouds, knowledge of the sensor

parameters or manually setting threshold values can become

critical issues. Therefore, we are now working on automatic

distance thresholding to achieve unsupervised changing objects

extraction (allowing automatic recognition of 3D objects for

vehicle tracking or displacements monitoring). We are also

working on automatic sensor pose estimation (directly from the

3D points repartition in space, without any information other

than the sensor type). Another field of research is the

classification and recognition of the different types of change

that can occur on geometry, in order to produce cleaner and

more informative results.

REFERENCES

N. Aspert, D. Santa-Cruz and T. Ebrahimi, 2002. MESH:

Measuring Error between Surfaces using the Hausdorff

distance. In: proceedings of the IEEE International Conference

on Multimedia and Expo, vol. I, pp. 705-708.

P. Besl and N. McKay, 1992. A method for registration of 3-D

shapes. IEEE Trans. Pattern Anal. Mach. Intell, 14 (2), pp. 239-

256.

M. Botsch, A. Wiratanaya, and L. Kobbelt, 2002. Efficient high

quality rendering of point sampled geometry. In: proceedings of

the Eurographics Workshop on Rendering 02.

P. Cignoni, C. Rocchini, and R. Scopigno, 1998. Metro:

measuring error on simplified surfaces. Computer Graphics

Forum, vol. 17(2), pp. 167–174.

F. Duguet and G. Drettakis, 2004. Flexible Point-Based

Rendering on Mobile Devices. IEEE Computer Graphics and

Applications, n°4 vol. 24.

J. G.M. Gonçalves, V. Sequeira, B. Chesnay, C. Creusot, S.

Johnson and J. Whichello, 2003. 3D Laser Range Scanner for

Design Verification. In: proceedings of the 44th Meeting of the

Institute for Nuclear Materials Management, Phoenix, Arizona.

F. Mémoli and G. Sapiro, 2004. Comparing Point Clouds.

Eurographics Symposium on Geometry Processing.

H. Murakami, K. Nakagawa, H. Hasegawa, T. Shibata and E.

Iwanami, 1999. Change detection of buildings using an

airborne laser scanner, ISPRS Journal of Photogrammetry &

Remote Sensing, Vol. 54, pp. 148-152.

N-J. Shih, M-C. Wu and J. Kunz, 2004. The Inspections of As-

built Construction Records by 3D Point Clouds. CIFE Working

Paper #090, Stanford University.

T. Vögtle and E. Steinle, 2004, Detection And Recognition of

Changes in Building Geometry Derived From Multitemporal

Laserscanning Data, In: proceedings of the XXth ISPRS

Congress (Istanbul), Vol. 35, Part B2, p. 428-433.

G. Vosselman, B.G.H. Gorte and G. Sithol, 2004, Change

Detection for Updating Medium Scale Maps Using Laser

Altimetry, In: proceedings of the XXth ISPRS Congress

(Istanbul), Vol. 35, Part B3.

G. S. Watkins, 1970. A Real-time Visible Surface Algorithm.

Technical Report UTEC-CSc-70-101, Dep. Comptr. Sci., U. of

Utah, Salt Lake City.

a b c
shovel and
power
generator

ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

35

