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ABSTRACT

For analyzing dynamic scenarios characterized by many ground moving vehicles, airborne GMTI radar is a well-suited sensor due to
its wide-area, all-weather, day/night, and real time capabilities (GMTI: Ground Moving Target Indicator). The generation of GMTI
tracks from these data is the backbone for producing a “recognized ground picture” as well as for analyzing traffic flows. In this paper
we dicuss the benefits of GMTI tracking in view of extracting road map information from GMTI data. The resulting tracking-generated
road maps are highly up-to-date and fairly precise. Moreover, their accuracy is quantitatively described. The proposed approach to
road map extraction is essentially based on a temporal integration of the received sensor data and by this differs in nature from methods
based on pattern recognition in a single image.
The underlying idea is rather simple: By definition, the track of a road moving target provides an approximation of the underlying road.
As GMTI tracking is a highly challenging task, the quality of GMTI tracks, however, is often insufficient for road map production due
to false returns, missing detections, Doppler blindness, fading phenomena, and other reasons. In this context, retrodiction techniques
can provide significant improvements. Being a generalization of standard smoothing techniques to multiple hypothesis tracking (or,
more generally speaking, Gaussian sum or particle filtering), retrodiction provides fairly precise estimates of the target kinematics at
past time instants by exploiting the sensor information available up to the present time. From ‘retrodicted tracks’ the road position and
related tangential vectors to the road can easily be derived. For calculating additional supporting vectors ‘continuous time retrodiction’
is proposed. We indicate how the generated road map information is exploited in the tracking loop resulting in even more precise tracks.
A procedure for iteratively producing high-precision road maps due to changing sensor-to-target geometries is sketched.
The proposed approach is illustrated be a simulated example providing hints to the achievable road map accuracies. An important
application is the mitigation of sensor registration errors by matching the produced sensor individual road maps with each other and
with geo-referenced road maps available in a topographical data base.

1 INTRODUCTION

The analysis of dynamic scenarios characterized by many ground
moving vehicles is an important task with numerous military and
civil applications. For producing appropriate surveillance data to
be exploited, airborne GMTI radar is a well-suited sensor due to
its wide-area, all-weather, day/night, and real time capabilities
(GMTI: Ground Moving Target Indicator).

The processing of GMTI measurements of kinematical target pa-
rameters (range, azimuth, range-rate) results in the production of
GMTI tracks, which represent the currently available knowledge
on the kinematical properties of ground moving objects along
with related measures of accuracy and the corresponding history
(1, 2, 4). GMTI tracks are thus prerequisites for producing a “rec-
ognized ground picture” as well as for analyzing traffic flows.

In most applications the majority of ground vehicles is moving on
road networks whose topographical coordinates might be known
at least up to a certain accuracy. Such road maps provide valu-
able context information which can be used for improving the
quality of GMTI tracking (5, 6, 7, 8, 9). This does not only affect
the achievable track accuracy but also the weighting factors for
association hypotheses in MHT techniques (Multiple Hypothesis
Tracking) or, more generally, the problem of track continuity and
track separation.

Seen from a different perspective, however, ground vehicles mov-
ing on road networks being observed by wide-area sensors, such
as GMTI radar, produce large data streams that can also be used
for road map extraction: After a suitable post-processing described
in this paper, the GMTI tracks of road targets simply define the
corresponding road segments currently being used by the ground
moving targets.

Tracking-driven road extraction can be beneficial in situations or
scenarios where reliable road maps are not available at all, where
the maps provided by geographical information systems are not
up-to-date, or where the accuracy of the road maps is insufficient.
In addition, there exist fields of applications, in which roads or
road-like ‘lines of communication’ exist only temporarily or may
change with time. This can be the case in deserts or in times
of a conflict. As practical evidence shows, even in typical off-
road scenarios the existence of structures similar to roads quickly
evolve, as a ‘second’ vehicle usually moves in the tracks of its
precursor. This is especially true in a not sufficiently explored or
a dangerous environment (e.g. in a mine field).

In the sensor’s own coordinate system, the achievable accuracy of
road maps generated by road target tracking depends on the mea-
surement accuracies of the GMTI sensors, the current sensor-to-
target geometry, the scan rate, and the dynamic properties of the
ground targets, i.e. on the accuracy of the produced GMTI tracks.
As usually many targets use the same road segments, a significant
gain results from fusing several “road tracks”. In addition the un-
derlying sensor-to-target geometry is continuously changing with
time as GMTI radar is essentially an airborne, i.e. a moving, sen-
sor system. For this reason the fusion of “road tracks” produced
at different instants of time is expected to improve the achievable
accuracy of track-generated road maps even more, finally leading
to high-precision road maps.

Sensor registration or misalignment errors usually cause serious
problems in sensor data fusion. In other words, in a given sen-
sor data fusion application it cannot always be taken for granted
that the data originating from various distributed sensors can be
transformed into a common coordinate system. For mitigating
the corresponding bias errors, the tracking-driven generation of
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accurate road maps with reference to the individual sensor coor-
dinate system can well be used. Precisely extracted road maps
with reference to the coordinate system of the individual sen-
sors can easily be matched with each other by using particular
road map features such as characteristic curves or crossings. By
this a compensation of relative bias errors can easily be achieved.
A contribution to remove also absolute bias errors is obtained
by matching tracking-generated road maps with geo-referenced
maps stored in a topographical data base.

2 ELEMENTS OF GMTI TRACKING

In a BAYESian view, a tracking algorithm is an iterative updat-
ing scheme for conditional probability density functions (pdf)
������

�� ‘background’� that statistically describe the kinemat-
ical state vector �� of a target at discrete revisit times �� given
both, the accumulated GMTI sensor data �� � ����

�
��� up to

time �� and all available background information. �� denote the
data of the radar scan at time �� relevant for the target currently
under track.

Each update of �������� consists of a prediction step that ex-
ploits the target dynamics model and road map information if
it is available. The prediction is followed by a subsequent fil-
tering step, where the newly received sensor data are processed
by making use of the underlying sensor model. Retrodiction (or
smoothing) is a backwards directed iteration for calculating the
conditional probabilities ��������, � � �, that describe the past
target states �� given all sensor data up to the present time ��.
This process is illustrated by the following scheme:

prediction: ��������
����

dynamics
������
road maps

������
���� (1)

filtering: ������
����

sensor model
�������
new data��

������
�� (2)

retrodiction: ������
��

dynamics
�����

model
��������

��� � � �� (3)

By assuming suitable cost criteria (e.g. MMSE (10)), the prob-
ability density functions �������� provide state estimates ����
with related covariance matrices ���� (� 	 �: prediction, � � �:
filtering, � � �: retrodiction), which can be written as:

���� �

�
����
�����

�
� ���� �

�
���� ����

����
�����

�
� (4)

The subscripts denote that the quantities are related to �� based
on all measurements up to and including ��. As in any practi-
cal application ambiguity due to the uncertain origin of the sen-
sor data or particular sensor models must be taken into account,
the densities in general prove to be finite mixtures (11, 12, 13),
i.e. weighted sums of individual probability densities.

Let the kinematical state vector of a ground moving target at time
�� be given by its current position �� � �
���� 
���� 
����

� and
velocity ��� in earth-fixed Cartesian coordinates:

�� �
�
�
�
� � ��

�
�

��
� �
���� � � � � 
����

�� (5)

Due to the small agility of ground targets, acceleration compo-
nents are omitted. In a flat-earth approximation, we in particular
have: 
���� � 
���� � �. In the ground coordinate system the
target dynamics is modeled by a linear system equation with ad-
ditive white Gaussian noise (10, 11). With a scalar plant noise

variance ��
����� given by ������ � ����������������	�������

(parameters �� and �� discussed below), 3D diagonal matrices
� � 	
��
�� �� ��, � � 	
��
�� �� ��, and a noise component
�� � 
��� ��, let us consider the following realization (14):

�� � 	��������� �
������� (6)

with matrices 	����� and
����� given by:

	����� �

�
�� ��� � ������

� ����������	����

�
� (7)


����� � ������

�
��
�

�
�� (8)

According to this dynamics model, the velocity ��� is described by
an ergodic MARKOV process with �
 ��� � � �. The corresponding
autocorrelation function is given by �
 ��� ���

�� � ��� ���
���� �
������� �, � 	 �. This expression gives a clear meaning to the
modeling parameters �� (limiting speed) and �� (maneuver cor-
relation time) in the plant noise variance ������. In contrast to
the dynamics model used in (1), the model naturally introduces a
‘speed limit’ ��, while �� may characterize different target types.

3 A MODELING OF ROADS

A given road through a real road network is mathematically de-
scribed by a continuous 3D curve 
� in Cartesian ground coor-
dinates. For the sake of simplicity the effect of crossroads is not
considered here. See (8) for a more detailed discussion. Let 
�

be parameterized by the corresponding arc length �. The exploita-
tion of digitized road maps provides the data base for a piecewise
linear approximation of the road curve 
� � � �� 
���� by a
polygonal curve 
. Let us furthermore assume that the curve 

is characterized by �� node vectors

�	 � 
���	�� � � �� � � � � ��� (9)

From the these quantities ��� � normalized tangential vectors

�	 �
��	�� � �	�

���	�� � �	��
� � � �� � � � � �� � � (10)

can be derived. The EUCLIDian distance ���	�� � �	�� between
two adjacent node vectors, however, is usually not identical with
the distance �	 � �	����	 actually covered by a vehicle when
it moves from �	 to �	�� along the road. Besides the vectors �	
the scalar quantities �	 � ��	�� � �	� should therefore enter
into the road model to make it more realistic. The differences
�	 � ���	�� � �	�� � can evidently serve as a quantitative mea-
sure of the discretization errors we have to deal with. Using the
characteristic functions defined by

�	��� �

�
� for � 
 
�	� �	���
� else

� � � �� � � � � �� � ��

(11)

we obtain a mathematically simple description of the polygon
curve
, by which the road
� is approximated:


 � � 
 
��� �
� � �� 
��� �


����
	��

�
�	 � ��� �	��	

�
�	���

with: 
���	� � 
��	� � �	� � � �� � � � � ��� (12)

The accuracy by which the road is represented by the node vec-
tors �	 can be described by a covariance matrix �	 character-
istic of each node �. Typically these quantities, which are to
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Figure 1: Representation of a road.

be used in road map assisted tracking, are not easily available as
part of a geographical information data base. In case of tracking-
generated road map, reliable estimates for these quantities do ex-
ist, as will become clear below. In summary a road segment is
simply described by the pair 
� � ��	��	�


�
	�� (eventually

complemented by the numbers �	). See Figure 1 for illustration.

4 CONTINUOUS TIME RETRODICTION

According to the introductory remarks, the track of a road moving
vehicle, i.e. the collection of expectations and covariance matri-
ces �����������

�
��� provides by itself a first approximation of the

road used by the vehicle. Due to low sensor update rates, missing
detections, or fading phenomena, Doppler blindness etc., how-
ever, the accuracy and sample density of such track generated
road maps may be insufficient.

In applications we therefore wish to produce a suitable interpo-
lation between adjacent ‘node vectors’ and the related ‘mapping
error’ covariance matrices. This interpolation should take full
advantage of the available knowledge of the targets’ kinematical
state vector and the related track accuracy as well as of back-
ground information on the vehicle’s behavior, i.e. the target dy-
namics model.

Given two adjacent nodes vectors ������ , ���� with their related
accuracies ������ , ����, we at first have to decide whether it is
reasonable to create an additional node at all. Obviously another
node is necessary if there are curves or turns to be expected. Vice
versa, for a more or less rectilinear road segment only very few
nodes are required.

An intuitively clear indication for the existence of a winding road
is given by comparing the direction of the velocity vector es-
timates ������� , ����� at subsequent instants of time ���� and ��,
which by definition are proportional to estimates of the tangential
vectors to the road at the locations ������ and ���� . The decision
also depends on the quality of these velocity estimates.

To introduce an additional node vector, let us denote by ���� the
angle between the velocity estimate ����� and one of the axes of the
coordinate system. The corresponding angle for the actual veloc-
ity vector is a random variable approximately normal distributed
with a variance given by ����. Let ���� the corresponding angle
of the difference vector ������ � ����. An intuitively plausible
decision criterion whether an additional node is to be introduced
is thus given by:

����� � �����
������ 	 ��� (13)

If the inaccuracy of the heading estimates is large, subsequent
headings are allowed to differ more than in case of more pre-
cise estimates. It seems to be reasonable to choose the decision
parameter around One. Evidently, the estimate of the complete

rl|k

rl+1|k

ϕ  l|kl|k
−ψ

rl|k

.

Figure 2: Adding a new node vector.

kinematical state vector enters into this criterion. See Figure 2
for a characteristic example and an intuitive interpretation of this
criterion.

Given an additional node is to be introduced, let us consider the
probability density ���������� with � � � � �, typically � �
�
�

if �� � ���. This density expresses the available knowledge
about the kinematical target state at an intermediate instant of
time ���� � ���� � ��. From this density an intermediate node
vector of the road and a tangential vector can be derived. By
considering several ��� ��� � � � an indication of the arc length � of
the road between the positions ���� and �� can be obtained.

Standard probability reasoning yields:

��������
�� �

	
��� �����������

�� ������
��� (14)

In this expression the pdf �������� is already known and in many
cases at least approximately given by:

������
�� � � ���� ����� ������ (15)

where ���� and���� denote the expectation vector and the covari-
ance matrix of a GAUSSian pdf. For the remaining factor in the
previous integrand we obtain according to BAYES’ rule:

�����������
�� � �����������

���� (16)

�
���������� ��������

����

����� ���������� ������������

� (17)

According to Equation 1,the probability density ������������ �
� ������ ��������� ��������� describes the knowledge available
after data processing at time ���� and is also available. The transi-
tion density ���������� directly results from the target dynamics
model (Equation 6) and is given by a GAUSSian as well:

���������� � � ���� 	���������� 
������ (18)

with
����� � 
�����

�
����� . Algebraic reasoning finally yields:

�����������
�� � � ������ �� �� (19)

� � �������� ���������� � 	�������������� (20)

� � �������� ��������������
�
����� (21)

������ � ��������	
�
������

��
������ (22)
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Insertion into Equation 14 leads to a modified version of the well-
known Rauch-Tung-Striebel formulae (11):

��������
�� � � ������ ������� ������� (23)

������ � �������� ������������ � ������� (24)

������ � �������� ������������ ���������
�
����� (25)

������ � 	������������� (26)

������ � 	�������������	
�
����� �
������ (27)

5 ON ROAD MAP ASSISTED TRACKING

A first tracking-generated road map can be used for improving
the track quality for a second vehicle moving on the same road.
The resulting ‘road map assisted’ track in return will provide a
better estimate of the underlying road. In this section we briefly
sketch how road map information can be incorporated into the
tracking process. For details see (3, 8).

In case of road moving targets it seems reasonable to describe the
kinematical state vector ��� of road targets at time �� by its posi-
tion on the road �� (i.e. the arc length of the curve) and its scalar
speed ���: ��� � ���� ����

�. The model for describing the dynam-
ical behavior of road targets is therefore a 2D version of equa-
tion 6. By making use of the related transition density �������

�
����

the predicted density in road coordinates is given by

�������
���� �

	
������ ���

�
���

�
���� ���

�
�����

����� (28)

The BAYESian formalism previously discussed can directly be
applied to road targets, if it is possible to find a transformation
operator ���� by which the predicted density �������

���� in
road coordinates can be transformed into ground coordinates:

�������
����

� �
 �
in road coordinates

road network
���������
road map errors

�������
����

� �
 �
in ground coordinates

� (29)

When available in ground coordinates, the linearized versions of
the transforms from ground coordinates to sensor coordinates and
vice versa, ���� and ����, can be used to represent the densities
in sensor coordinates, where the filtering step is to be performed.
To this end, we write the density �������

���� as a sum over the
�� road segments considered:

�������
���� �


����
	��

������������� ���������� (30)

In equation 30 ��������� denotes the probability that the tar-
get moves on the segment � given the accumulated sensor data
���� and is calculated in reference (3, 8). According to these
references ������������� can be calculated from the probabil-
ity density in road coordinates and is approximately given by a
Gaussian.

The inverse transform is simply provided by individually project-
ing the densities ����������� on the road (i.e. after the filtering
step). Before the subsequent prediction is performed, it seems to
be reasonable to apply a second-order approximation to the mix-
ture densities:

�������
�� �


��
	�


������� ����������� (31)

� �
�
�
�
�� �

�
���� �

�
���

�
� (32)
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Figure 3: A GMTI tracking scenario.

6 DISCUSSION OF AN EXAMPLE

We discuss an example illustrating the iterative process of tracking-
driven road map extraction sketched above.

6.1 A Simplified Scenario

Figure 3 shows a simulated and idealized, but non-trivial GMTI
tracking scenario. On a road network a single ground vehicle is
moving from ‘Start’ to ‘End’. On its way it passes two regions,
where it is not detectable by the radar sensor due to terrain ob-
scurations. The second obscuration hides an intersection. The
vehicle stops twice for several minutes (stars). Obviously, during
these periods the vehicle is not detectable by a GMTI radar.

Directly before and after the second terrain obscuration the de-
tection probability of the radar is significantly reduced due to the
phenomenon of ‘Doppler blindness’. In such regions the radial
velocity of the moving vehicle relative to the moving sensor plat-
form is equal or close to the corresponding radial velocity of the
ground patch surrounding the vehicle. For this reason the skin
echo of the vehicle can in most cases no longer be discriminated
from the ground clutter returns by using Pulse-Doppler signal
processing (STAP: Space Time Adaptive Processing (15)). The
vehicle is thus masked by the ‘clutter notch’ of the GMTI radar.

The revisit interval of the simulated GMTI radar is 12 s. It is
located in a distance of 100 km along the y-axis (stand-off radar).
Its measurement accuracy (standard deviation) is 20 m in range
(i.e.. along the y-axis) and 400 m in cross-range (i.e. along the x-
axis). The corresponding Minimum Detectable Velocity (MDV)
is 2 m/s. In this simplified example we exclude the treatment
of false or unwanted radar returns and consider well-separated
ground moving vehicles only. The total observation time is one
hour (300 scans).

6.2 Simulation Results

Figure 4 shows the major and minor semi-axes of the error el-
lipses related to the position estimates of the vehicle as a function
of the tracking time (solid and dashed lines, respectively). These
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Figure 4: Filtering covariances (major/minor eigenvalues).
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Figure 5: Tracking error (localization, speed).

quantities are simply obtained by applying Kalman filtering for
tracking as there are no false returns or other vehicles in the vicin-
ity. We observe four pronounced peaks which correspond the ter-
rain obscurations, the vehicle stops, and the regions where the
radar is Doppler-blind. The mean values of the semi-axes are 364
m and 109 m, respectively.

In figure 5 the tracking error, i.e. the distance between the simu-
lated true vehicle state and the corresponding estimates, are dis-
played for a single run as a function of the tracking time (TLE:
Target Localization Error, TSE: Target Speed Error). The corre-
sponding mean values are 498 m and 4.9 m/sec, respectively. In
the temporal evolution of the localization error only two peaks are
visible. The orientation of the road is by chance along the result-
ing predictions in the situations where the other peaks occurred
in the previous figure.

Figure 6 shows the major and minor semi-axes of the error el-
lipses of the retrodicted position estimates of the vehicle as a
function of the tracking time (solid and dashed lines, respec-
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Figure 6: Retrodiction covariances (major/minor eigenvalues)
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Figure 7: Filtering covariances (major/minor eigenvalues)
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Figure 8: Tracking error (localization, speed)

tively). Obviously the error covariance matrices are much re-
duced in size (mean values 161 m and 41 m, respectively) and are
used for describing the road map errors as discussed in the previ-
ous sections. The retrodicted state estimates of the road-moving
vehicle are used for approximating the road.

This first approximation of the road map, which was reconstructed
by the track of a first road moving vehicle, is now used for ‘road
map assisted tracking’ of a second vehicle using the same road.
In Figure 7 the resulting major and minor semi-axes of position
error ellipses are shown. The mean values are 260 m and 46 m, re-
spectively. Evidently, these quantities are much smaller than the
corresponding quantities obtained in the previous case. In par-
ticular, the pronounced peaks in the time periods when the target
stops are significantly smaller. The same tendencies can be ob-
served in Figure 8, which shows the tracking errors for localiza-
tion and speed (mean values: 256 m and 3.4 m/sec, respectively).
As expected, by road map information only a slight improvement
in the velocity estimates is obtained.

The next step for improving the underlying road map to be ex-
tracted consists in applying retrodiction to this track being more
accurate than the track used in the first step of the iteration.

In Table 1 the mean values of the accuracies previously discussed
are summarized. P and p denote the major and minor eigenvalues
of the corresponding covariance matrices. Even by this first iter-
ation for reconstructing a road map from GMTI tracks an error
reduction in position of about 30 – 50% can be obtained if this
road is used for road map assisted tracking. We expect that by it-
erating this procedure under different sensor-to-target geometries
and with a more refined continuous time retrodiction technique,
such as described in section 4, highly accurate roads can finally
be obtained.
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tracker P [m] p [m] TLE [m] TSE [m/s]
no road 364 109 489 4.9
road 250 46 256 3.4

Table 1: Relevant accuracies (mean values).

7 CONCLUSIONS

We discussed ground moving vehicle tracking as a means for ex-
tracting road map information from GMTI radar data. The re-
sulting tracking-generated road maps are highly up-to-date. By
iteratively applying the described procedures, the produced maps
can be highly precise as well. Moreover, their accuracy in each
node is quantitatively described. The proposed approach to road
map extraction is essentially based on a temporal integration of
the received sensor data and by this differs in nature from meth-
ods based on pattern recognition in a single image.

We summarize some aspects, which might be of particular inter-
est in view of sensing applications:

� Tracking-driven road extraction can be beneficial in situa-
tions or scenarios where reliable road maps are not or not
yet available, where the road maps provided by geograph-
ical information systems are not up-to-date, or where the
accuracy of existing road maps is insufficient.

� In certain applications roads or road-like ‘lines of communi-
cation’ exist only temporarily or may change with time. As
practical evidence shows, even in typical off-road scenarios
structures similar to roads quickly evolve, as a ‘second’ ve-
hicle usually moves in the ‘tracks’ of its precursor.

� As usually many targets use the same road, a significant gain
results from fusing several ‘road tracks’. For airborne GMTI
radar the sensor-to-target geometry is continuously chang-
ing. Therefore the fusion ‘road tracks’ produced at different
times improves the achievable accuracy even more.

� Sensor registration or misalignment errors usually cause se-
rious problems in multiple sensor data fusion. For mitigat-
ing these phenomena, precisely extracted road maps can be
matched with each other, thus compensating relative bias
errors. For removing absolute bias errors, matching with
geo-referenced road maps can be used.
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