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ABSTRACT

The robust detection of buildings in aerial images is an important part of the automated interpretation of these data. Applications are
e.g. quality control and automatic updating of GIS data, automatic land use analysis, measurement of sealed areas for public authority
uses, etc. As additional data like laser scan data is expensive and often simply not available, the presented approach is based only on
aerial images. It starts with a seeded region growing algorithm to segment the entire image. Then, photometric and geometric features
are calculated for each region. Especially, robust form features increase the reliability of the approach. A numerical classification is
performed to differentiate the classes building and non-building. The approach is applied to a test site and the classification results are
compared with manually interpreted images.

1 INTRODUCTION

The detection of buildings is an important task for the interpreta-
tion of remote sensing data. Possible applications for automatic
building detection are the creation and verification of maps and
GIS data, automatic land use analysis, measurement of sealed ar-
eas for public authority uses, etc.

Buildings are significant objects in remote sensing data and di-
rectly indicate inhabited areas. In most cases, buildings are well
recognizable by a human interpreter. An automatic system that is
able to emulate a human operator is desired.

In the presented approach we concentrate on aerial images with a
resolution of0.3125 m

pixel
, because often additional costs or sim-

ple unavailability prevent the utilization of additional sensor data.

The different approaches for building detection in remote sens-
ing data differ in the used type of input data. Often, multi sensory
data, e.g. SAR, infrared, stereo or laser scan images, is available
as additional information that can improve the object extraction.
Some approaches, like the presented one, work only on RGB im-
ages. The following section discusses some of them.

C. Lin and R. Nevatia (Lin and Nevatia, 1998) propose a building
extraction method, that is based on the detection of edges in the
image. It is assumed that the searched rectangular buildings can
be distorted to parallelograms. The edges are taken as building
hypothesis and classified by use of a feature vector and additional
features like shadow. The found buildings are modeled as 3D
objects.

G. Sohn and I. J. Downman (Sohn and Dowman, 2001) deal with
building extraction in low-resolution images. They start with a
Fourier transform to find dominant axes of groups of buildings,
assuming that buildings are aligned parallel along a street. Due
to the low image resolution, the building contours can only be
found including gaps. Theses gaps are closed using the afore
detected dominant axes. The regions found and relations between
each other, are stored in a tree. The tree is used to find building
structures.

The present approach is divided into a low-level and high-level
image processing step. The low-level step includes image seg-
mentation and postprocessing: first, the input RGB image is

transformed to HSI and the intensity channel is taken as input
for a region growing segmentation algorithm to get a segmented
image. The seed points of this algorithm are set flexibly under
consideration of the red channel. The segmentation result is post-
processed to compensate effects like holes in the regions and to
merge roof regions which are separated into several parts. The
regions are taken as building hypotheses in the following steps.

The high-level step includes feature extraction and final classi-
fication: first, a preselection is performed to reduce the number
of building hypotheses by use of the region area and color. Dur-
ing the feature extraction, photometric, geometric and structural
features are calculated for each hypothesis like:

• geometric features
– object size: area, circumference
– object form: roundness, compactness, lengthness, an-

gles, etc.
• photometric features

– most frequent and mean hue
• structural features

– shadow, neighborhoods

Furthermore, the main axes of building hypotheses are calculated.
They define a hexagon describing the region’s contour. Eventu-
ally, a numerical classification is performed to decide whether a
building hypothesis is a building or not.

The remaining part of this paper is organized as follows: in sec-
tion 2 the initial segmentation procedure is described. Section 3
shows how and which features are used for the following classifi-
cation step. The classification itself is described in section 4. The
experimental results are presented in section 5 and the paper is
summarized in section 6.

2 LOW-LEVEL PROCESSING

This section describes all low-level processing steps including
preprocessing, where the input image is transformed, image seg-
mentation, using a seeded region growing algorithm, and a post-
processing step, that allows merging of regions that fulfill special
conditions.
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2.1 Image preprocessing

The input images are available as raster data in RGB color space.
To get a single band grey value image as input for the segmen-
tation algorithm, the input RGB image is transformed to HSI. To
get the intensity channelI of the HSI transformation, the fol-
lowing equation is used, where weights are set according to the
perception of the human eye:

I = 0, 299 ·R + 0, 587 ·G + 0, 114 ·B (1)

The color angleH is calculated independent from the saturation
and intensity and later used as a region feature:

H1 = arccos

"
1
2
((R −G) + (R −B))p

(R −G)2 + (R −B)(G−B)

#
(2)

H =

(
2π −H1 , if B > G

H1 , else
(3)

The saturationS is calculated using equation 4:

S =
max(R, G, B)− min(R, G, B)

max(R, G, B)
(4)

2.2 Seeded region growing algorithm

For the initial segmentation of the input image, a seeded region
growing algorithm is used to find homogeneous roof regions in
the image. The seed points are regularly distributed over the im-
age with a seed point raster size set with respect to the expected
roof size. For an input resolution of0.3125 m

pixel
, an appropri-

ate raster size is 15 pixel to ensure that nearly every roof region
is hit. This is not possible with a standardsplit and merge al-
gorithm. As input channel of the region growing algorithm, the
intensity channel is taken, calculated as described before in sec-
tion 2.1. Attempts to use more than one channel as input for the
region growing algorithm were made, but led to inferior results.

The seeded region growing algorithm starts at the pixel position
of each seed point and compares this pixel’s value with the neigh-
boring pixel values. If the neighbor pixel values lie inside a given
tolerancetT , the neighboring pixels belong to the same region as
the seed point. The region growing goes on recursively with the
newly added pixels and ends, when no new neighboring pixels
which fulfill the condition can be found. Pixels which already
belong to a region are omitted. An example of an image segmen-
tation made with the described procedure is shown in Fig. 2A.

To take only promising seed points, not a simple raster is taken
as described up to now. The input image is divided into equally
distributed regions of the size of the seed point raster. For each
region a histogram of the red channel is calculated. Provided that
building roofs are red, brownish or grey, the red channel indicates
the existence of roofs.

For each region, an arbitrary pixel with a red channel correspond-
ing to the maximum histogram value is chosen. In order to avoid
seed points in shadow regions, this value has to be larger than
a thresholdtS . Fig. 1 shows the red channel of a typical part
of an input image and the corresponding histogram. The region
growing step results in a completely segmented image.

0 25512835
grey value

count n

Figure 1: Red channel of a typical part of the input image, B)
Histogram with thresholdtS = 35 for selection of seed points.

2.3 Image postprocessing

The aim of the postprocessing step is to improve the image seg-
mentation for the following feature extraction and classification.
The postprocessing consists of two steps. The first step is opening
and closing of the segmented image. The second step is merging
of special regions.

2.3.1 Opening and closing By use of opening and clos-
ing operators, the ragged edges of the regions (see Fig. 2) are
smoothed and small holes in the regions are closed. As a conse-
quence of the improvement of the region contours, the features
used for classification of the regions can be calculated more pre-
cisely. In Fig. 2B, the result of opening and closing operations is
shown.
A) B)

Figure 2: Example of the erosion and dilation step: A) image
segmentation, B) image segmentation after applying of dilation
and erosion, undersized and oversized regions are not considered.

2.3.2 Merging of regions The most important postprocess-
ing step is the merging of regions belonging to the same roof. In
Fig. 3 two examples of roofs that have been segmented into two
different regions and the corresponding input images are given.
Many roof regions are split at the roof ridge. Especially, com-
plex roof structures like gable roofs, dormers, towers, roof-lights
and superstructures lead to multiple regions for only one building,
which complicates the subsequent classification.

Figure 3: Two examples of roofs that consist of more than one
region.

The complete merging procedure is depicted in Fig. 4. The left-
most image in Fig. 4 shows a symbolic example of an input im-
age, that is the basis for the next steps.
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Figure 4: Steps of the merging procedure.

The segmented regions are dilated two times. Assuming that
buildings cast a shadow, roof candidates with adjoined shadow
regions are determined. Therefore, a shadow detection algo-
rithm, performing a simple threshold operation as described in
section 3.4.2, is applied to the input image. Subsequently, only
shadow regions with straight borders are considered. The seg-
mented regions are dilated two times. Regions now significantly
overlapping with shadow regions, i.e. the intersection area is
larger than a thresholdS1, are joined with overlapping neigh-
bor roof candidate regions (see Fig. 4). Again, the intersection
area has to be larger than a second thresholdS2. Eventually, the
merged roof regions are eroded two times to restore the original
region size.

Figure 5: The result of a successful merging: labels of Fig. 3
merged together.

3 FEATURE EXTRACTION

This section describes the used numeric features which are ex-
tracted for each roof hypothesis. The result of the feature ex-
traction, the numeric feature vector, is the basis for the following
classification.

3.1 Preselection

To reduce calculation time, a preselection is performed, which
sorts out implausible roof hypotheses. Roof hypotheses that are
sorted out are eliminated and kept unconsidered during the clas-
sification. Therefore, the preselection has to be carried out care-
fully to prevent the loss of correct roofs. The features used for
the preselection step are the region area and the mean hue angle.

3.1.1 Area The area of a roof hypothesis is calculated by
counting the pixels of a region including holes. A hypothesis
is assumed valid if theareafulfills equation 5.

30 pixels< area < 25000 pixels (5)

3.1.2 Mean hue angle The second exclusion criterion is the
color of a roof hypothesis. Therefore, the mean hue value of the
pixels belonging to the corresponding region is calculated. Fig. 6
shows an example histogram of hue values for a roof region. The
mean hue angleHm is calculated as follows:

• in the range from360◦ to 540◦ the hue value histogram is
extended periodically

• if more than5% of the pixels’ hue values lie between0◦ and
20◦ or 340◦ and360◦ respectively:

– calculate the mean in the range from180◦ to 540◦

• else:
– calculate the mean in the range from0◦ to 360◦

360°0° 540° color

count

color angle

0°

360°

unroll

count

angle

red red

Figure 6: Example histogram of hue values for one roof hypoth-
esis.

As explained before, roofs of buildings are perceptible in the red
channel. All roof hypotheses with a mean hue valueHm close to
green, see equation 6, are rejected.

115 < Hm < 125 (6)

3.2 Geometric features

This section describes the geometric features used and how they
are calculated.

3.2.1 Size features The size features of a roof hypothesis
chosen are theareaandcircumference. The area is already cal-
culated during the preselection step as described in section 3.1.1.
The calculation of the circumference of a building is depicted in
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Fig. 7: the left image shows a segmented roof candidate region,
the right one shows its contour calculated with an outlining pro-
cedure. The counted contour pixel are used as circumference.

Figure 7: Outlining procedure: segmented roof region and region
contour.

3.2.2 Form features Form features are very important be-
cause the form can distinguish buildings from natural objects.
Buildings are normally constructed with right angles. The fea-
tures used are thereforeroundness, compactness, lengthnessand
characteristic anglesof a region.

Theroundness is calculated independently of the region’s size
as ratio of area to the square of the circumference. It ranges from
0 to 1.

roundness =
4π · area

circumference2
(7)

Thecompactnessof a region is defined as number of erosion steps
that are necessary to remove the region in complete.

In (Baxes, 1994), different types of region axes are introduced.
The main axis is defined as the line between two contour points
that have the maximum distance among each other.

The two ancillary axes are defined as vertical lines to the main
axis with the maximum distance from the contour to the main
axis. For each side of the main axis one ancillary axis is defined.

The cross axis is defined as vertical line to the main axis that
connects two contour points with the maximum distance to each
other.

The axes calculation results in six points which lie on the contour
of the investigated region. The corresponding hexagon approxi-
mates the region’s shape. An example of such a hexagon is shown
in Fig. 8.

α

main axis

cross axis

β

ancillary axes

Figure 8: Approximating hexagon model.

The anglesα andβ, as depicted in in Fig. 8, are used as additional
features. In most buildings these two angles are approximately

right angles: on the left hand side of Fig. 9 a segmented building
and its corresponding angles is illustrated. The described angles
actually are approximately right angles. On the right hand side of
Fig. 9 a segmented forest region is shown. Here, the angles are
not close to being right angles.

Figure 9: Examples for roof hypothesis.

The featurelengthnessis also based on the calculated axes of a
region. It is the ratio of the main axis length to the cross axis
length.

Finally, it is measured how frayed a region is. Pixels that lie
inside the hexagon and do belong to the investigated region
(hexagon area inside) are counted, as well as the region pixels
that lie outside the hexagon (hexagon area outside). The ratio
of hexagon area insideto hexagon area outsideis a feature that
describes how frayed a region is.

Rectangular buildings with smooth contours fill the hexagon in
complete, in contrast to e.g. parts of a segmented forest.

3.3 Photometric features

Two photometric features are calculated that are based on the hue
angle histogram of the region pixels.

3.3.1 Hue angle After applying a threshold on the intensity
channel to discard shadow regions, the maximum value of the
hue angle histogram of a region is taken as a feature.

3.3.2 Mean hue angle Additionally, the mean hue angle of a
building hypothesis as already described in section 3.1.2 is cho-
sen as a feature.

3.4 Structural features

Structural features use information about neighboring regions and
shadow.

3.4.1 Neighborhoods Buildings are usually not freestand-
ing but appear in groups. Consequently, buildings with other
buildings nearby are more probable than single buildings. For
each building hypothesis the neighboring buildings are counted.
Neighbor means that the distance center to center is smaller than
a thresholdTN . The number of neighboring buildings is used to
support or reject unsteady hypothesis.

3.4.2 Shadow The acquisition of aerial images requires good
weather conditions, so the existence of shadow can be used for the
extraction of buildings. Shadows are expected next to buildings,
and therefore give hints to where buildings are.

The extracted shadow regions, shown in Fig. 10B, are obtained
by a threshold decision on the intensity channelI of the input im-
age. Only shadow regions with straight borders are considered.
The first feature derived from extracted shadow is the general ex-
istence of shadow next to a building, the second is the ratio of
region pixel that overlap with shadow, after a double dilation of
the region.
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A) B)

Figure 10: A) Input image in grey scale, B) Extracted shadow
regions.

4 CLASSIFICATION

The classification is divided into a numerical and a contextual
part, that are applied one after another. The context analysis is
used as additional information to support the numerical classifi-
cation. Result of the classification is a numeric rating in the range
of [0, 1].

4.1 Numerical classification

The numerical classification is carried out first. All numeric fea-
tures, described in section 3 are taken as input vector for a linear
regression classifier. A more detailed description of the used clas-
sifier and a calculation scheme can be found in (Meyer-Brötz and
Scḧurmann, 1970).

Table 1 gives an overview of the used feature vector. The learning
sample was generated by manual classification of a test dataset
and consists of about 120 representative feature vectors for each
class, building and non-building. The a-priori probabilities for
the two discriminated classes are set to0.5.

feature occurring values for buildings
in learning sample

region adjoins shadow 0 < x
mean hue angle 0 < x < 43 or 190 < x < 360

hue angle 0 < x < 43 or 180 < x < 360
region area 200 < x < 5000

area/circumference 2 < x < 10
lengthness 3 < x < 4

compactness 3 < x < 15
roundness x < 0.3

area/ shadow area x < 0.8
hexagon area inside/outside 0.8 < x < 1.1

form angles 88 < x < 93

Table 1: List of numeric features used.

Only regions that have passed the preselection described in sec-
tion 3.1 are used as building hypothesis and classified.

4.2 Contextual Classification

The numerical classification results in a probability for the class
building. This is used as input for the contextual classification
step. All building hypotheses having a probability below a thresh-
old are assigned to the class non-building. For the others the
surrounding building hypotheses are counted. If no neighboring
buildings based on the numerical classification and the threshold

decision exist, the probability for the investigated building hy-
pothesis itself is reduced by0.1. If at least one building hypoth-
esis region is in proximity, the probability for the investigated
building hypothesis itself keeps the value of the numerical classi-
fication.

5 RESULTS

This section shows and discusses the results of the proposed ap-
proach. Additionally, the validity of the approach is discussed.

5.1 Evaluation Method

The evaluation of the approach is based on manually segmented
buildings in three test images (≈ 53ha), cp. Fig. 11.

Figure 11: Part of an original image, resolution0.3125 m
pixel

.

Two measurements for a detection evaluation as described in (Lin
and Nevatia, 1998) were made:

detection percentage =
100 · TP

TP + TN
(8)

branch factor =
100 · FP

TP + FP
(9)

Two measurements are calculated by comparing the manually de-
tected buildings and the automatic results (cp. Fig. 12), where TP
(true positive) is a building detected by both a person and the
automatic approach, FP (false positive) is a building detected by
the automatic approach but not a person, and TN (true negative)
is a building detected by a person but not by the automatic ap-
proach. A building is rated as detected, if at least a small part of
it is detected by the automatic approach; alternatively, it could be
required that at least a certain fraction of the building area has to
be detected.

Thedetection percentage (DP ) describes how many of the ex-
isting buildings in the scene are found by the automatic approach,
thebranch factor (BF ) gives a hint on how many buildings are
found erroneously. TheDP is 100% if the whole image is clas-
sified as class building. In this case also theBF would be very
large. The goal is to maximize theDP while keeping theBF
low.
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Figure 12: Classification result: Building polygons marked in
blue.

5.2 Evaluation results of a test dataset

The analysis is tested on a set of three images of about1500 ×
1200 pixels. Each image contains about 120 buildings. The re-
sults are shown in detail in Table 2 and the mean values for the
whole test site in Table 3.

image TP FP TN DP BF

W1 89 28 18 83.2% 23.9%
W2 109 34 24 82.0% 23.8%
W3 85 21 31 73.3% 19.8%

Table 2: Evaluation results of three test images.

mean values of images DP BF

W1, W2, W3 79.5% 22.5%

Table 3: Mean results of three test images.

5.3 Validity of the results

The classification uses a knowledge base that was optimized to
the test data set of a rural area. The approach runs satisfactorily
in regions of small towns with characteristic one family houses,
small apartment houses, and industrial areas. One aspect of the
classification was to reliably detect or reject vegetation areas, that
are not dominant in downtown areas. The knowledge base is
also not optimized for detection of multistory buildings and town
houses. Due to the modular structure of the proposed approach,
the knowledge base can be easily expanded to other situations.

The approach was additionally tested on a set of IKONOS im-
ages with a spatial resolution of 1.0m. This test was done with-
out manual parameter tuning. Due to the lack of a precise manual
segmentation, a numerical evaluation was not done, but the re-
sults look comparably good to those of the tested aerial images
(see Fig. 13). Oversegmentation caused by not optimally adapted
thresholds during low-level processing does not affect the detec-
tion result, since it is based on robust features.

Figure 13: Classification result of an IKONS image: Building
polygons marked in blue.

6 CONCLUSIONS

We propose an algorithm to detect buildings in aerial images. A
seeded-region growing algorithm is used to segment the entire
image. A preselection reduces the feature extraction to only plau-
sible hypothesis. The classification is based on robust features,
especially form features. The numerical linear regression clas-
sifier is extended by a contextual classification, considering the
surroundings of a building.

To evaluate the building detection approach, it is tested on a
site of≈ 53ha. The results in Table 3 show that the proposed
approach is applicable. Other approaches sometimes achieve
smallerbranch factors. However they mostly concentrate on
small images. This leads to a smallerbranch factor. In the
present approach, test sites including large vegetation areas are
used. In consideration of today’s available computing power, rep-
resentative test sites have to be tested to get expressive results.

The runtime of the present approach depends on the image con-
tent. The low-level processing requires the major part of the pro-
gram runtime. The algorithm’s runtime on a 2.8GHz Pentium4
computer is 45 to 75 minutes for an image of 6400 x 6400 pixels.
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