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ABSTRACT: 
 
Automatic registration of image sequences has been a subject of research for many years, both in the photogrammetric and computer 
vision communities. As part of the automation, linear orientation methods are used to obtain approximations for a subsequent bundle 
adjustment solution. Linear solutions can be at time "too general" particularly in a sense that they mostly employ uncalibrated cameras, a 
fact leading to severely unstable results in most photogrammetric problems such as the case for the direct linear transformation (DLT) in a 
nearly flat terrain. Furthermore, to the best of our knowledge, none of them handle more than two or three images simultaneously without 
imposing several theoretical constraints that cannot be guaranteed in practical imaging missions. In this paper a sub-optimal linear 
solution for the exterior orientation parameters of image sequences is developed. The proposed method is demonstrated on an aerial 
image strip. The paper shows that the method successfully generates reliable and accurate approximations both for the orientation 
parameters as well as for tie point coordinates. For an automatic extraction of the latter, the Scale Invariant Feature Transform (SIFT) 
algorithm is applied. 

 
1. INTRODUCTION 

 
It is commonly accepted both in photogrammetry and computer 
vision communities that bundle adjustment is a "golden 
standard" method for recovering exterior orientation parameters 
from image sequences (Hartley et al., 2001). A bundle 
adjustment process requires, however, good initial values for all 
the six exterior parameter, as well as approximations for the 3D 
coordinates of the tie points. To avoid the need for 
approximations, a great deal of effort has been put on 
developing general algorithms that provide linear solutions to a 
variety of orientation problems (see e.g., Hartley et al.,2001; 
Rother and Carlsson, 2001; Carlsson and Weinshall, 1998). 
Many of them address a general problem in which the entire set 
of camera intrinsic (calibration) and extrinsic parameters is 
unknown. These solutions are stable and perform successfully 
only in cases where no limitations on either the acquisition 
geometry or the underlying object space are present. However, 
for typical photogrammetric problems these solutions have not 
yet proven useful. For example, the solutions proposed by 
Hartley et al. (2001) and Rother and Carlsson (2001) require a 
reference plane across any two images in a sequence. Carlson-
Weinshall duality algorithm (1998) requires a specific number 
of points in a given number of images. Fitizgibbon and 
Zisserman (1998) offer the use of the trifocal-tensor in a close 
or open sequence. The trifocal-tensor does not suit, however, 
the photogrammetric process because of its requirement for tie 
points to appear in three sequential images. In the standard 
photogrammetric process, with 60 percent overlap between 
images, applying this model will relate to only 20 percent of 
each image. Furthermore, most of the works do not refer to the 
global exterior orientation parameters and produce only a 
relative solution. Pollefeys et. al (2002a) offer a solution that is 

based on sequentially linking and reconstructing image after 
image, which is then followed by a bundle adjustment.  

In this paper a framework for an automated photogrammetric 
solution is presented. Our objectives are reducing the operator 
input to a minimum and eliminating the reliance on initial 
values for the computation of the exterior orientation 
parameters. The proposed solution requires neither knowing the 
order of the images nor their overlapping percentage. The only 
external information required is the ground control points and 
their corresponding image points. Solutions that follow a similar 
line can be found in Nistér et al. (2004) where a sequence of 
video frames is oriented and in Oliensis (1997) where an 
iterative solution for weak motion (short baselines) image 
sequences is presented. 

As an outline, our solution detects first tie points in image pairs. 
For this purpose the SIFT strategy (Lowe, 2004; Lowe 1999) is 
used as described in Section 2. Following the autonomous 
extraction of the tie point, comes the geometric computation. 
The proposed geometric framework is founded on the Essential 
matrix (Hartley and Zisserman, 2003). The Essential matrix 
between every image pair is calculated and the five relative 
orientation parameters are extracted. The geometric concept of 
the pose estimation and the scene reconstruction are given in 
Section 3. Section 4 presents experimental results and Section 5 
concludes the paper. 
 

2. EXTRACTION OF CORRESPONDING POINTS  
 
The Scale Invariant Feature Transform - SIFT (Lowe, 2004; 
Lowe 1999) is a methodology for finding corresponding points 
in a set of images. The method designed to be invariant to scale, 



rotation, and illumination. Lowe (2004) outlines the 
methodology as consisting of the following four steps:  
1. Scale-space extrema detection – using the difference of 

Gaussian (DoG), potential interest points are detected.  
2. Localization – detected candidate points are being probed 

further. Keypoints are evaluated by fitting an analytical 
model (mostly in the form of parabola) to determine their 
location and scale, and are then tested by a set of 
conditions. Most of them aim guaranteeing the stability of 
the selected points.  

3. Orientation assignment – orientation is assigned to each 
keypoint based on the image local gradient. To ensure scale 
and orientation invariance, a transformation (in the form of 
rotation and scale) is applied on the image keypoint area. 

4. Keypoint descriptor – for each detected keypoint a 
descriptor, which is invariant to scale, rotation and changes 
in illumination, is generated. The descriptor is based on 
orientation histograms in the appropriate scale. Each 
descriptor consists of 128 values. 

With the completion of the keypoint detection (in which 
descriptors are created) the matching process between images 
begins. Matching is carried out between the descriptors, so the 
original image content is not considered here. Generally, for a 
given keypoint, matching can be carried with respect to all the 
extracted keypoints from all images. A minimum Euclidian 
distance between descriptors will then lead to finding the 
correspondence. However, matching in this exhaustive manner 
can be computationally expensive (i.e., O(N2) with N the 
number of keypoints). Common indexing schemes cannot be 
applied to improve the search here because of the descriptors 
dimensionality. However, an indexing paradigm, called Best 
Bin First (BBF), is proposed by Beis and Lowe, (1997). The 
BBF algorithm reduces the search to a limited number of the 
most significant descriptors values and then tries locating the 
closest neighbor with high probability. Compared to the 
exhaustive matching, this approach improves the performance 
by up to two orders of magnitude, while difference between the 
amount of matched points is small. Our proposed solution 
follows Schaffalitzky and Zisserman (2002) and Brown and 
Lowe (2003) where all key points from all images are organized 
in one K-d tree. Once a set of matching points has been 
generated, another filtering process is applied. This process is 
based on the RANSAC algorithm (Fischler and Bolles, 1981). 
The fundamental matrix of the image pairs is calculated and 
points that do not satisfy the geometric relation are filtered out 
as outliers. Based on the matching, the order of images within 
the image sequence is determined. When applying the SIFT 
method for aerial images the huge image size may lead to the 
extraction of numerous keypoints. Excess of information is 
valuable for redundancy; however, it comes with high 
computational cost. Experiments show, however, that even 
downscaling the aerial image resolution satisfying amount of 
keypoints has been provided. In comparative research presented 
by Mikolajczk and Schmid (2003) the SIFT method has shown 
superiority over classical methods for interest point detection 
and matching. 
 
Figure 1 shows the matched keypoints on an extract of two 
overlapping aerial images. Generally, the algorithm extracted 
~4000 keypoints per image, out of them 339 points were 
matched with less than 5 pixels offset between corresponding 
points. 146 keypoints have satisfied the geometric model with 

less than 1 pixel between corresponding points. It is noted that 
seven points are needed for computing the Fundamental matrix. 
Experiments on different images with different characteristics 
(e.g., vegetation, urban scenes) exhibited similar results.   
 

 
Figure 1. Matched keypoints in an aerial image pair extract 

 
3. THE GEOMETRIC FRAMEWORK 

 
The input for the geometric process is a set of matched points 
for all overlapping images. In addition, the Ground Control 
Points (GCPs) and their corresponding image points are 
provided. The solution considers the intrinsic parameters to be 
known. The process consists of two main steps: first is finding 
the relative orientation between all image pairs in the sequence. 
The second is a simultaneous computation of a transformation 
that takes into account the relative orientations and optionally 
the control points. This step is performed linearly as a single 
optimization process. 
 
3.1 Relative Orientation  
 
The first step is the linear computation of the Essential matrix 
for each of the overlapping image pairs. The minimum number 
of required tie points ranges between five (Nistér, 2004; Philip, 
1996) to seven (Hartley, 1997).  
Extraction of the rotation and translation parameters from the 
Essential matrix can be carried out as proposed by Hartley and 
Zisserman (2003). We begin with a singular value decomposing 
of the Essential matrix: E=UDVT where U and V are chosen 
such that det(U)>0 and det(V)>0. Assuming that the first 
camera matrix is P = [I | 0], the second camera matrix can be 
one of four possible choices:  
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A reconstructed point X will be in front of both cameras only in 
one of the four possible solutions. Thus, testing with a single 
point to determine if it is in front of both cameras is sufficient 
for the choice between the four possible solutions of P’ (Hartley 
and Zisserman, 2003). To fine-tune the relative orientation 
parameters, a non-linear geometric optimization can now take 
place. 

An important issue to account for is the degeneracy of the 
Essential matrix which arises in the following cases (Torr et al., 
1999): 

1. All points and camera centers laying on quadratic 
surface (e.g., cone, cylinder). 

2. There is no translation between the images.  
3. All tie points lie on the same plane in object space. 

Cases (1) and (2) are also a degeneracy of the bundle 
adjustment algorithm. Cases (2) and (3) are more common. For 
these cases there is a simpler geometrical model – the 
Homography. From a Homography one can retrieve the relative 
orientation parameters as proposed by (Tsai et al., 1982). To 
choose between the Essential matrix and the Homography, Torr 
et al. (1999) proposes a measure they call Geometric Robust 
Information Criterion (GRIC) that computes scores to the 
fitness of the geometrical model for a given dataset. This 
measure is also used by Pollefeys et al. (2002b). An alternative 
way to avoid the degeneracy as in case (3) is using the five 
point algorithm (Philip, 1996; Nistér, 2004). However, then a 
tenth degree polynomial must be solved.  
 
3.2 Global Registration  
 
Following the computation of the relative orientation 
parameters, we are provided with two camera matrices for each 
image - one, which is fixed (when the image is the first in the 
pair) and the other, which is relative (when the image is the 
second). The first and the last images have only one camera 
matrix. The task of concatenating the relative orientation 
parameters into one global model is divided into two subtasks: 
concatenating rotations and concatenating translations. The first 
subtask can be described by a recursion formula: 

i
ii
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1

+
+ = a   Where 331 ×= IR   (1) 

where 1+ii
mR a is the rotation in the m-th model between the 

images i and i+1. Concatenating the camera centers (translation) 
in the sequence (the second subtask) is a more complicated 
process. Here, similarly to the first subtask, there are two 
translation vectors for each image in the sequence (apart of the 
first and last) one is fixed (in the origin) and the other is 
relative. However, in contrast to the rotations, with the 

translation concatenation all vectors are defined up to a scale 
factor only. The scale ambiguity of each vector affects the size 
of the reconstructed scene from each image pair, as Figure 2 
demonstrates. In Figure 2, C1 and C2 are the camera centers of 
the first and the second images. C3 is the actual position of 
image 3, so the scale of the translation vector t23 is correct – the 
scenes reconstructed from images 1, 2 and images 2, 3 fit. 
Contrary to C3, a camera position in C3’ leads to reconstructed 
scenes that differ in scale. The recursion formula of the 
translation concatenation should, therefore, have the form of: 
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sm and tm are the scale factor and the translation vector of the m- 
model between images i and i+1.  
 

 
Figure 2. Influence of the translation scale factor on the 
reconstructed scene. 
 
For solving all the translation scale factors together with the tie 
point coordinates we now develop a simultaneous and linear 
solution. The solution is derived from the camera matrix, P that 
fulfills the relation x=PX, with X the coordinate vector of a 
point in object space, and x is the image coordinate vector. Both 
are given in homogenous coordinates (the last term of X and x 
is set to 1). P may be decomposed into: 
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with K is the camera calibration matrix and I a 3x3 identity 
matrix. By substituting (1) and (2) into (3) a recursion formula 
for the P matrices can be written as 
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leading when inserted into the x=PX relation to 
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As K and Ri are known i∀ , they are of no interest. We, 
therefore, rewrite Equation (4) as follows  
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with xKRx 1)(ˆ −= . Equation (5) provides a linear form for 
the estimation of the point coordinates, X, Y, and Z, and the 
scale s. Notice that with this model a point is reconstructed from 
all its instantiations in all images. Each image point contributes 
two independent equations. There is still one ambiguity left, 
namely the scale of the first model. This ambiguity is solved by 
the absolute orientation (into the object space reference frame). 
Generally, for each of the components (i.e., tie points and 
camera matrices) one has to find a similarity transformation, 
Xw=HsXm, to the object space reference frame via the GCPs, 
with Hs of the form: 
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and λ as the model scale. Linear solutions to this problem have 
been offered by several authors, e.g., a quaternion based 
solution (Horn, 1987), orthogonal matrices (Horn et al., 1988) 
and the Rodriguez matrix (Pozzoli and Mussio, 2003).  
 
An approach that simultaneously integrates the solution for the 
scale parameters, tie point coordinates and the absolute 
orientation parameters is now presented. For a control point that 
appears in an image, it is possible to use equation (7)  

 

Ws XPHx 1−=     (7) 
 
with P as any projection matrix in the model space that acquires 
the point Xw, and Hs given in Equation (6). In a simultaneous 
solution, the scale factor λ in Hs can be replaced by the scale 
factor as given in Equation (2) for the first image pair. Hs 
becomes now an Euclidian transformation with only six 
parameters, where λ = 1. 

 
Substituting Hs

-1 into equation (4) and multiplying both sides by 
(KR)-1 will lead to: 
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Equation (9) provides a linear form for the estimation of the 

scale factors sm, the global translation T̂ and the nine rotation 
matrix terms. In this representation a 3D affine transformation is 
solved. This model requires at least four control points. 
Restricting the solution to a 3D rotation (namely maintaining 
the orthonormality) can be achieved by using the identity matrix 
instead of the singular values in the SVD of R. Using Equation 
(5) for tie points and (9) for control points, we are provided with 
a simultaneous and linear solution. This solution allows having 
the external effect of control points and the internal constrains 
of the tie points weighted in simultaneously. Furthermore, 
control points that appear in only one image can also be taken 
into account. This solution offers an alternative to the two steps 
procedure. However, it is noted that it is not optimal in the sense 
of solving nine parameters explicitly instead of an orthonormal 
rotation matrix. Experiments with this method yield good 
results only under specific configurations. 
 

4. EXPERIMENTAL RESULTS 
 

The proposed method is now investigated using synthetic and 
real data. The sensitivity of the geometric model to additive 
Gaussian noise is tested first, followed by an application of the 
process on a strip consisting of four images. 
 
4.1 Synthetic Data 
 
A synthetic configuration that follows typical mapping-mission 
characteristics was designed with the following parameters, 
flying altitude, 1700 m, terrain variation ranging between 0-
200m, and a focal length of 153 mm. The test set consisted of 
four images in a sequence with 60 percent overlap. The pitch 
and roll angles were in the range of ±2o. For each image pair 
~50 tie points were provided. Six ground control points were 
used. To investigate the sensitivity of the proposed to random 
errors Gaussian noise with zero mean and standard deviation 
ranging between 0.0 and 0.3 mm has been added to image 
coordinates of control and tie points. The maximum standard 
deviation (0.3 mm) is equivalent to an error of 20 pixels for 
scanning resolution of 15µ. 
 
Given this input, fundamental matrices were computed and 
normalized by the known interior camera parameters to form 
the Essential matrix. Then, a decomposition of the Essential 
matrix to the rotation and translation components was carried 
out, followed by up to five (non-linear) iterations to optimize 
the computed R and t values. The transformation into a global 
reference frame was computed using Equations (5) and (6). 
Rodriguez matrices were used to represent rotations. For each 
noise level 100 trials were performed. Results were evaluated 
by three measures: the std. of the 3D Euclidean distance 
between the computed object point coordinates and the actual 
ones, both for tie and control points (Figure 3), the offsets in the 
camera positions, again in terms of std. of the 3D Euclidean 
distances (Figure 4) and the angular error of the three camera 
rotation parameters (Figure 5). Results were compared to 
bundle adjustment solution, as shown in Figures 3-5. The 
experiments show that even in the presence of a severe noise 
reasonable and acceptable solutions can be achieved by the 
proposed geometric model. Indeed, bundle adjustment solution 
performs better than the sub-optimal solution, which is of no 
surprise, but the fact that the results obtained using our method 



do not fall too far from the optimal solution makes it a good 
candidate to precede any subsequent optimal solution. Also, the 
deviations in orientation parameters fairly compare with 
accuracies obtained with typical GPS/INS systems. 
Furthermore, under realistic noise level, these results satisfy the 
requirements of some applications – thus avoiding a subsequent 
use of bundle adjustment. 
 
4.2 Real Images  
 
An experiment with a strip consisting of four aerial images with 
flying altitude of 1800 m, and a focal length of 152 mm is now 
presented. Eight GCPs were available for this image set. The 
four images are arranged in an L shape form (see Figure 6); 
their order is not provided as an input. The image coordinates of 
the GCPs were manually digitized. Tie points were generated 
using the SIFT procedure. Globally there were ~1000 matched 
keypoints. About 300 matched points between images with 
similar orientation (image pairs 1-2 and 3-4), and about 60 
matched points for image pair 3-4. Between image triplets about 
10 common points were detected. 
 
To evaluate the quality of the two-steps method the orientations 
were computed first by this procedure only, and then using a 
bundle adjustment solution. For the bundle adjustment solution 
the parameters originating from the linear procedure were used 
as initial approximations. To evaluate the difference between 
solutions we compare the reconstructed tie point coordinates 
between the two-steps solution and the bundle adjustment. 
Results show that the mean distance between the two methods is 
0.33 m. However, the accuracy estimate of the points achieved 
by the bundle adjustment procedure is about ±1 m. This 
difference is within the uncertainty range of the tie points 
coordinates. These results are in agreement with those achieved 
by the synthetic data experiments in Section 4.1 and indicate 
that the proposed method can be used as an independent 
solution when achieving high level of accuracy is not a concern 
and also as an initial values generator for a bundle adjustment 
solution. 
 

5. SUMMARY AND CONCLUTIONS 
 
Recent years have seen a significant progress made in 
automation of registration processes. At the same time advances 
have been made in the field of multi-view geometry. This paper 
has demonstrated the integration of these two disciplines. No 
assumptions on the order of the image sequence have been 
made to execute the proposed linear solution for estimating the 
camera parameters. Experiments made have demonstrated 
robustness and stability of the proposed geometric solution even 
to severe noise levels. Those with real data showed that even 
with non-standard image configuration a full automation can be 
achieved. 
 

 
Figure 3. Mean error of the reconstructed points. The X-axis is 
the noise level in millimeters and the Y-axis represent the 
ground error (distance) in meters. The error bars represent ± 2σ 
of the accuracy range as resulted from the trials for each noise 
level. 
 

 
Figure 4. Mean error of the reconstructed image positions 
parameters. The X-axis is the noise level [mm] and the Y-axis 
represents the image positions error (distance) [m]. The error 
bars represent ± 2σ of the accuracy range as resulted from the 
trials for each noise level.  
 

 Figure 5. Mean error of the reconstructed camera angles. The 
X-axis is the noise level in mm and the Y-axis represent the 
angular error [o]. The error bars represent ± 2σ of the accuracy 
range as resulted from the trials for each noise level 



 
Figure 6. Outline of the aerial image arrangement used for the 
experiment. Triangles depict control points. 
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