PERFORMANCE EVALUATION OF A LOCALIZATION SYSTEM RELYING ON
MONOCULAR VISION AND NATURAL LANDMARKS

Eric Royer'*, Maxime Lhuillier , Michel Dhome", Jean-Marc Lavest

TLASMEA UMR6602 CNRS et Université Blaise Pascal, 24 avenue des Landais - 63177 AUBIERE Cedex
Eric.ROYER@lasmea.univ-bpclermont.fr —http://www.lasmea.univ-bpclermont.fr/Personnel/Eric.Royer/

KEY WORDS: Vision, Reconstruction, Performance, Real-time, Navigation

ABSTRACT:

We present a real-time localization system based on monocular vision and natural landmarks. In a learning step, we record a reference
video sequence and we use a structure from motion algorithm to build a model of the environment. Then in the localization step, we use
this model to establish correspondences between the 3D model and 2D points detected in the current image. These correspondences
allow us to compute the current camera localization in real-time. The main topic of this paper is the performance evaluation of the
whole system. Four aspects of performance are considered : versatility, accuracy, robustness and speed.

1 INTRODUCTION

In this paper we evaluate the performance of an algorithm de-
signed to compute the localization of a camera in real-time. Only
one camera and natural landmarks are required. In a first step, we
record a video sequence along a trajectory. Then this sequence
goes through a structure from motion algorithm to compute a
sparse 3D model of the environment. When this model has been
computed, we can use it to compute the localization of the cam-
era in real-time as long as the camera stays in the neighborhood
of the reference trajectory. We have developed this system for
outdoor autonomous navigation of a robotic vehicle, but other
applications such as indoor robotics or augmented reality can use
the same localization system. The main topic of the paper is the
performance evaluation of the localization system. The algorithm
is only briefly presented here, more details can be found in (Royer
et al., 2005).

As soon as a map of the environment is available, it is possi-
ble to compute a localization for the camera with reference to
the map. Several approaches for building the map are possible.
Simultaneous Localization And Mapping (SLAM) is very attrac-
tive because localization is possible as soon as the system starts
working. But map building is the most computer intensive part,
so doing this with monocular vision in real-time is difficult. How-
ever, monocular SLAM has been achieved in real-time (Davison,
2003). But the main drawback is that it’s not possible to handle
a large number of landmarks in the database. Computing a local-
ization from the video flow can also be done by ego-motion esti-
mation or visual odometry (Nistér et al., 2004). But this method
is subject to error accumulation because there is no global op-
timization and the localization accuracy decreases with the dis-
tance covered.

Another possible approach is to build a map first and use this
map to localize the camera. The main advantage is that there is
no real-time constraint on map building. So algorithms providing
more accuracy can be used. This approach has been used several
times for robot localization. Cobzas et al. (2003) use a camera
mounted on a rotating platform and a laser range finder to build
a panoramic image enhanced with 3D data of the environment.
After the 3D model is built, a single 2D image is enough to com-
pute the localization of the camera. Kidono et al. (2002) also use

*Corresponding author.

a map building step before the localization. Map building con-
sists in recording the video sequence along a reference trajectory,
then localization is possible in the neighborhood of this trajec-
tory as in our method. It works under the assumption that the
ground is planar and the sensors used are a stereo vision rig and
an odometer. In our case, the ground can be irregular and we use
only one calibrated camera. Camera calibration is important in
order to use fish eye lenses with up to 130° field of view. Map
building is done with a structure from motion algorithm.

In section 2 we briefly present the algorithms we use to build the
map from the reference video sequence, and how this map is used
for the localization process. In section 3 we show some localiza-
tion results and we discuss the performance of the system. Four
aspects of performance are considered : versatility, accuracy, ro-
bustness and speed. The results come from experiments carried
out indoors and outdoors. The results provided by the vision al-
gorithm are compared to the ground truth whenever possible.

2 ALGORITHM
2.1 Map building

Every step in the reconstruction as well as the localization re-
lies on image matching. Interest points are detected in each im-
age with Harris corner detector (Harris and Stephens, 1988). For
each interest point in image 1, we select some candidate corre-
sponding points in a rectangular search region in image 2. Then
a Zero Normalized Cross Correlation score is computed between
their neighborhoods, and the pairs with the best scores are kept to
provide a list of corresponding point pairs between the two im-
ages. This matching method is sufficient when the camera doesn’t
rotate much around the optical axis which is the case when the
camera is mounted on a wheeled robot. Matching methods with
rotational invariance might be used depending on the application
but they would require more computing power.

The goal of the reconstruction is to obtain the position of a subset
of the cameras in the reference sequence as well as a set of land-
marks and their 3D location in a global coordinate system. The
structure from motion problem has been studied for several years
and multiple algorithms have been proposed depending on the as-
sumptions we can make (Hartley and Zisserman, 2000). For our
experiments, the camera was calibrated using a planar calibration

pattern (Lavest et al., 1998). Camera calibration is important be-
cause the wide angle lens we use has a strong radial distortion.
With a calibrated camera, the structure from motion algorithm is
more robust and the accuracy of the reconstruction is increased.
In our robotic application, the motion is mostly along the optical
axis of the camera. Point triangulation must be done with small
angles, which increases the difficulty of obtaining an accurate 3D
reconstruction.

In the first step of the reconstruction, we extract a set of key
frames from the reference sequence. Then we compute camera
motion between key frames. Additionally, the interest points are
reconstructed in 3D. These points will be the landmarks used for
the localization process.

2.1.1 Key frame selection If there is not enough camera mo-
tion between two frames, the computation of the epipolar geom-
etry is an ill conditioned problem. So we select images so that
there is as much camera motion as possible between key frames
while still being able to match the images. The first image of the
sequence is always selected as the first key frame I;. The sec-
ond key frame I is chosen as far as possible from I; but with at
least M common interest points between I; and /. When key
frames I, ... I, are chosen, we select I,,+1 (as far as possible
from I,,) so that there is at least M interest points in common be-
tween [,41 and [,, and at least N common points between I, +1
and I,,—1. In our experiments we detect 1500 interest points per
frame and we choose M = 400 and N = 300.

2.1.2 Camera motion computation For the first three key
frames, the computation of the camera motion is done with the
method given by Nistér (2003) for three views. It involves com-
puting the essential matrix between the first and last images of
the triplet using a sample of 5 point correspondences. There are
at most 10 solutions for . Each matrix £ gives 4 solutions
for camera motion. The solutions for which at least one of the
5 points is not reconstructed in front of both cameras are dis-
carded. Then the pose of the remaining camera is computed with
3 out of the 5 points in the sample. This process is done with
a RANSAC (Fischler and Bolles, 1981) approach : each 5 point
sample produces a number of hypothesis for the 3 cameras. The
best one is chosen by computing the reprojection error over the
3 views for all the matched interest points and keeping the one
with the higher number of inlier matches. We need an algorithm
to compute the pose of the second camera. With a calibrated cam-
era, three 3D points whose projections in the image are known are
enough to compute the pose of the camera. Several methods are
compared by Haralick et al. (1994). We chose Grunert’s method
with a RANSAC approach.

For the next image triplets, we use a different method for com-
puting camera motion. Assume we know the location of cameras
(' through Cn, we can compute camera C'n+1 by using the lo-
cation of cameras C'y—1 and C'y and point correspondences over
the image triplet (N — 1, N, N +1). We match a set of points X’
whose projections are known in each image of the triplet. From
the projections in images N — 1 and /N, we can compute the
3D coordinates of point X*. Then from the set of X and their
projections in image N + 1, we use Grunert’s calibrated pose
estimation algorithm to compute the location of camera C'n 1.
In addition the 3D locations of the reconstructed interest points
are stored because they will be the landmarks used for the local-
ization process. The advantage of this iterative pose estimation
process is that it can deal with virtually planar scenes. After the
pose computation, a second matching step is done with the epipo-
lar constraint based on the pose that has just been computed. This
second matching step allows to increase the number of correctly
reconstructed 3D points by about 20 %.

2.1.3 Hierarchical bundle adjustment The computation of
camera C'y depends on the results of the previous cameras and er-
rors can build up over the sequence. In order to correct this prob-
lem, we use a bundle adjustment which provides a better solution.
The bundle adjustment is a Levenberg-Marquardt minimization
of the cost function f(CF,---,CN, X", -+, X™) where C
are the external parameters of camera 4, and X7 are the world
coordinates of point j. For this minimization, the radial distor-
sion of the 2D point coordinates is corrected beforehand. The
cost function is the sum of the reprojection errors of all the inlier
reprojections in all the images :

N M
f(Cé7"'7Cé‘V7X17"'>X]M):Z Z d2(mZ>P'LX])

i=1 j=1,j€J;

where d? (:cf, P,z%) is the squared euclidian distance between
P; X7 the projection of point X7 by camera 4, and mf is the cor-
responding detected point. P; is the 3 X 4 projection matrix built
from the parameters values in C; and the known internal param-
eters of the camera. And J; is the set of points whose reprojec-
tion error in image ¢ is less than 2 pixels at the beginning of the
minimization. After a few iteration steps, J; is computed again
and more minimization iterations are done. This inlier selection
process is repeated as long as the number of inliers increases.

Computing all the camera locations and use the bundle adjust-
ment only once on the whole sequence could cause problems
because increasing errors could produce an initial solution too
far from the optimal one for the bundle adjustment to converge.
Thus it is necessary to use the bundle adjustment throughout the
reconstruction of the sequence. So we use the adjustment hier-
archically (Hartley and Zisserman, 2000). A large sequence is
divided into two parts with an overlap of two frames in order to
be able to merge the sequence. Each subsequence is recursively
divided in the same way until each final subsequence contains
only three images. Each image triplet is processed as described
in section2.1.2. After each triplet has been computed we run a
bundle adjustment over its three frames. Then we merge small
subsequences into larger subsequences and we use a bundle ad-
justment after each merging operation. In order to merge two
subsequences, we compute a best-fit rigid transformation so that
the first two cameras of the second subsequence are transformed
into the last two cameras of the first subsequence. Merging is
done until the whole sequence has been reconstructed. The re-
construction ends with a global bundle adjustment. The number
of points used in the bundle adjustment is on the order of several
thousands.

2.2 Real-time localization

The output of the learning process is a 3D reconstruction of the
scene : we have the pose of the camera for each key frame and
a set of 3D points associated with their 2D positions in the key
frames. At the start of the localization process, we have no as-
sumption on the vehicle localization. So we need to compare the
current image to every key frame to find the best match. This
is done by matching interest points between the two images and
computing a camera pose with RANSAC. The pose obtained with
the higher number of inliers is a good estimation of the camera
pose for the first image. This step requires a few seconds but is
needed only at the start. After this step, we always have an ap-
proximate pose for the camera, so we only need to update the
pose and this can be done much faster.

The current image is noted I. First we assume that the camera
movement between two successive frames is small. So an ap-
proximate camera pose (we note the associated camera matrix

Py) for image I is the same as the pose computed for the pre-
ceding image. Based on Py we select the closest key frame I},
in the sense of shortest euclidian distance between the camera
centers. Ij gives us a set of interest points Ay, reconstructed in
3D. We detect interest points in I and we match them with Ay.
To do that, for each point in Ay, we compute a correlation score
with all the interest points detected in I which are in the search
region. For each interest point in Ay we know a 3D position,
so with Py we can compute an expected position of this point in
I. In the matching process the search region is centered around
the expected position and its size is small (20 x 12 pixels). Af-
ter this matching is done, we have a set of 2D points in image |
matched with 2D points in image I, which are themselves linked
to a 3D point obtained during the reconstruction process. With
these 3D/2D matches a better pose is computed using Grunert’s
method through RANSAC to reject outliers. This gives us the
camera matrix P; for I. Then the pose is refined using the iter-
ative method proposed by Aragjo et al. (1998) with some modi-
fications in order to deal with outliers. This is a minimization of
the reprojection error for all the points using Newton’s method.
At each iteration we solve the linear system JJ = e in order to
compute a vector of corrections § to be subtracted from the pose
parameters. e is the error vector formed with the reprojection
error of each point in x and y. J is the Jacobian matrix of the
error. In our implementation, the points used in the minimization
process are computed at each iteration. We keep only the points
whose reprojection error is less than 2 pixels. As the pose con-
verges towards the optimal pose, some inliers can become outliers
and conversely. Usually, less than five iterations are enough.

3 PERFORMANCE EVALUATION
3.1 Versatility

This localization system was used with several cameras in differ-
ent kind of environments. We used normal and fish eye lenses
with a field of view ranging from 50° to 130°. The localiza-
tion system is performing well both indoors and outdoors with
changing weather conditions (cloudy, sunny, or with snow on the
ground) with a single learning sequence. According to the envi-
ronment we used different methods to evaluate the accuracy and
the robustness of the algorithm. The results of these experiments
are detailed in the following paragraphs.

3.2 Accuracy

3.2.1 Indoor experiments To evaluate the accuracy of the lo-
calization we used a table where we could measure the position
of the camera with a 1 millimeter accuracy ina 1.2 m x 1.0 m
rectangle. We first recorded a reference video sequence on the
left side of the table. The trajectory was a 1.2 m long straight
line oriented along the optical axis of the camera (Z). Figure 1
illustrates the setup with two images taken on each side of the lo-
calization area (1 m apart). Another pair of such images is present
on Figure 9. Most of the objects visible were along the wall of
the room which was about 3.5 m in front of the localization area.
There were 13 key frames and we built a 3D reconstruction from
these images. Then we moved the camera by 10 cm increments in
X or Z in the localization area in order to cover the whole rect-
angle. For each position we ran the localization algorithm and
compared the position given by the vision algorithm to the true
position measured on the table. This gave us 131 measurements:
the position error e;,; was made for X = 0.1¢ and Z = 0.1j
for each (4,7) € {0..11} x {0..10}. For each lateral deviation
(X = constant) we computed the average value of the error
and the standard deviation. The result is shown on Figure 2. As

Localization area

Reference sequence

Figure 1: Setup for the indoor experiment

Localization error (meters)

} Lateral deviation (meters)

0 0.2 0.4 0.6 0.8 8

Figure 2: Localization error for a given lateral deviation (average
value and standard deviation)

long as we stay on the reference trajectory, the localization error
is only a few millimeters. The order of magnitude of the error
depends on the distance of the observed 3D points. The outdoor
experiments show a ten fold increase in localization error because
the objects observed can be at 30 m rather than 3 m.

We also made an experiment to evaluate the rotational accuracy.
The camera was mounted on a rotating platform. The angle of the
platform can be read with about £0.1° accuracy. We compared
the orientation « provided by the vision algorithm to the angle
ap given by the platform. We used the same fish eye lens as
in the previous experiment, providing a 130° field of view (in
the diagonal) and we made a measurement for each angle from
apg = —94° to ap = 94° with a 2° increment. The reference
trajectory was a straight line (1 m long) oriented along the optical
axis (which was in the 0° direction). The result of this experiment
appears on Figure 3. The algorithm was not able to provide the
pose of the camera when the angle reached 95° because there
were not enough point correspondences. The angular accuracy
measured with this setup is about +0.1°, which is about the same
as what can be read on the platform. The algorithm provides a
useful angular information for a deviation up to 94° on either
side with this camera. Of course, with such an angular deviation
from the reference frame, the part of the image which can be used
is very small, and the localization becomes impossible if there is
an occultation in this area. Images captured for 0°, 45° and 90°
are shown on Figure 4.

3.2.2 Outdoor experiment For outdoor situations, the cam-
era is mounted on the roof of a robotic vehicle along with a Dif-
ferential GPS (DGPS) sensor to record the ground truth. Accord-
ing to the manufacturer, the DGPS has an accuracy of 1 cm in
an horizontal plane (it is only 20 cm along a vertical axis with
our hardware). Measuring the accuracy of our algorithms is not
straightforward. Two operations are needed so that both data sets
can be compared. First the GPS sensor is not mounted on the ve-
hicle at the same place as the camera. The GPS is located at the

0.4 T T T T T T T T T
angular error (degrees)

03| 4

80 60 -40 20 0 20 40 60 80
Rotation angle (degrees)

Figure 3: Angular error

Figure 4: From left to right images taken at 0°, 45° and 90°
orientation, with interest points correctly matched

mid-point between the rear wheels of the car, while the camera is
between the front wheels. So the two sensors don’t have the same
trajectory. From the GPS positions, we computed a “’virtual” GPS
which indicates what a GPS would record if it was at the same
place as the camera. In addition, the 3D reconstruction is done
in an arbitrary euclidian coordinate system, whereas the GPS po-
sitions are given in another coordinate system. So the whole 3D
reconstruction has to be transformed using a rotation, translation
and scale change. The approach described by Faugeras and Her-
bert (1986) is used to compute this transformation. After these
transformations have been made, for each camera we are able to
compute the error on the position in meters. Because of the lack
of accuracy of the DGPS along the vertical axis, all the localiza-
tion errors reported for the outdoor experiments are measured in
an horizontal plane only.

Four sequences called outdoor: through outdoora were recorded
by driving manually the vehicle along a 80 m trajectory. The four
sequences were made approximately on the same trajectory (with
at most a 1 m lateral deviation), the same day. Each sequence
was used in turn as the reference sequence. So we made twelve
experiments : we computed a localization for outdoor; using
outdoor; as the reference sequence for each j € {1,2,3,4}
and i # j. A few images extracted from outdoor; are shown
in Figure 5. The positions of the key frames computed from this
sequence are shown in Figure 6 (as seen from the top) along with
the trajectory recorded by the DGPS. Depending on the sequence,
the automatic key frame selection gave between 113 and 121 key
frames. And at the end of the reconstruction there were between
14323 and 15689 3D points.

We define two errors to measure the reconstruction and the lo-
calization accuracy. We want to distinguish the error that is at-

Figure 5: A few images from outdoori

-330 328 -326 324 322

Figure 6: Position of the key frames (circles) with reference to
the trajectory recorded by the DGPS (continuous line). Whole
trajectory on top and close up view at the bottom (units in meters)

tributed to the reconstruction algorithm and the error coming from
the localization algorithm. The reconstruction error is the av-
erage distance between the camera positions obtained from the
structure from motion algorithm and the true positions given by
the DGPS (after the two trajectories have been expressed in the
same coordinate system). The reconstruction error for each of
the sequences was 25 cm, 40 cm, 34 cm and 24 cm for a 80 m
long trajectory with two large turns. This error is mostly caused
by a slow drift of the reconstruction process. It increases with
the length and complexity of the trajectory. That means the 3D
model we build is not perfectly matched to the real 3D world and
computing a global localization from this model would give at
least about 30 cm of error.

However, in many applications, a global localization is not re-
quired. For example, in our application a robot needs to compute
a self-localization so that it is able to follow the reference trajec-
tory. In this case, we only need to compute the distance between
the current robot position and the reference trajectory as well as
the angular deviation from the reference trajectory. A global lo-
calization is not necessary, only a relative position with respect
to the reference trajectory is needed. We define the localization
error in order to measure the error we make in computing this rel-
ative localization with the vision algorithm. We need a somewhat
more complicated definition for the localization error. First we
compute the lateral deviation between the current robot position
and the closest robot position on the reference trajectory. This is
illustrated on Figure 7. The robot position is always defined by
the position of the middle point of the rear axle of the vehicle.
This position is directly given by the DGPS. When working with
vision it must be computed from the camera position and orien-
tation. First we apply a global scale to the 3D reconstruction so
that the scale is the same between the GPS data and vision data.
We start with the localization of the camera C; given by the lo-
calization part of the vision algorithm. From C'; we compute the
corresponding GPS position G (it is possible because we mea-
sured the positions of the GPS receiver and the camera on the
vehicle). Then we find the closest GPS position in the reference

1.15m

Reference trajectory.

Replayed trajectory

Figure 7: Computing the lateral deviation from the reference tra-
jectory

Latepal deviation {meters)

— b
1 .

7

0

-1

=18

e+07 Be+07 Be+07 1e+08 126408
Time (microseconds)

Luc%hfatwn error (neters)

de07 6e+07 Be+07 1e+08 1,2e+08
Tine (nicroseconds)

Figure 8: Lateral deviation (top) measured with the DGPS dg
(blue) or with vision dy (red) and localization error € (bottom)

trajectory : we call it Go. At point Gy of the reference trajectory,
we compute the tangent T and normal N to the trajectory. The
lateral deviation computed with vision is v = GoG1 - N. The
lateral deviation is computed from the GPS measurements as well
and we get d¢ (in this case we have directly G and G1). d and
Jv are the same physical distance measured with two different
sensors. Then the localization error is defined as € = 0y — dg.
From this we can compute the standard deviation of e for a whole
trajectory : we call this the average localization error.

We computed the average localization error for each of the twelve
experiments : the smallest was 1.4 cm, the largest was 2.2 cm and
the mean over the twelve videos was 1.9 cm. Figure 8 shows the
lateral deviation and localization error for one experiment with a
1.9 cm average localization error. To make sure that it is a valid
method to measure the localization accuracy, we used a control
law to drive the robotic vehicle. We used in turn the GPS sensor
and the vision algorithm to control the robot. Both methods al-
lowed to drive the robot with the same accuracy (4 cm in straight
lines and less than 35 cm lateral deviation in curves for both sen-
sors). This shows that the accuracy of the GPS and the vision al-
gorithm is equivalent for the autonomous navigation application.
The error can be attributed more to the difficulty of controlling
the robot than to the localization part.

3.3 Robustness

3.3.1 Indoor experiment We made two experiments to eval-
uate the robustness of the localization algorithm. First, we made
no change to the environment between the reference sequence
and the localization step, but up to 6 persons went in front on the
camera to mask a part of the scene. In the second experiment,
we started the localization process with the same environment as
in the reference sequence and we gradually modified the scene.

Figure 9: Images for the off-axis occultation experiment. Top
left : reference image on axis, top right : off-axis image with no
occultation. Second and third rows : occultation by 1 to 6 persons

Number of persons | 0 | 1 | 2| 3 4 |5 6

position error 201 1] 1 1 1 2
on axis (mm)
position error 8 | 11 | 4|11 |20 | 44| 132

off axis (mm)

Table 1: Localization error for the occultation experiment

We moved or removed some objects, changed the illumination,
and added some occultations. The modifications were made in 8
steps. For both experiments, we recorded the error between the
computed localization and the true localization. We did this for
two different camera positions : one on the reference sequence
(on axis) and one for a position with 1 m lateral deviation from
the reference trajectory (off axis). The reference trajectory was
the same as in the indoor accuracy experiment. Figure 10 shows
the closest key frame found and some of the images for which the
localization was computed. Correctly identified interest points
are also drawn. Figure 9 shows the images used in the off axis
occultation experiment. The localization error is given in Table 1
for the occultation experiment and in Table 2 for the scene mod-
ification experiment. These results show that the algorithm is
robust to large changes in the environment (modifications of the
scene, occultations and changing light conditions). The reason
is that we have a large number of features stored in the database
and only a few of them are needed to compute an accurate local-
ization. Moreover the constraints on feature matching are severe
enough so that additional objects that are added to the scene are
not taken erroneously as inliers. The performance degradation is
visible only with a large lateral deviation and strong changes to
the environment.

3.3.2 Outdoor experiments For outdoors use, a localization
system must be robust to changes in illumination and weather.
Since the system was developed, we have had the opportunity to

Modification | 1 2 3 4 5 6 7 8
step

error on 1 1 2 0 2 5 2 5
axis (mm)

error off 20 1 16 | 18 | 24 | 51 | 100 | 21 | 183
axis (mm)

Table 2: Localization error for the scene modification experiment

Figure 10: Images for robustness evaluation on axis : original
image (A), occultation by 6 persons (B), modifications step 2 (C),
step 4 (D), step 6 (E) and step 8 (F)

Figure 11: Localization robustness to weather changes

try it under different conditions. The robot was able to localize
itself and to navigate autonomously in bright sunlight (even with
the sun in the field of view of the camera) and with snow on the
ground even if the reference sequence was recorded on a cloudy
day without snow. Figure 11 shows the reference sequence on
the left with all the interest points available in the database. Two
images extracted from navigation experiments are shown on the
right with the interest points correctly identified. The map build-
ing process is also robust to moving objects in the scene. We have
been able to compute 3D reconstructions for sequences with up
to 500 m long including pedestrians and moving vehicles (Royer
et al., 2005).

3.4 Speed

The timings were made on a 3.4 GHz Pentium 4 processor with
an image size of 640x480 pixels and 1500 interest points detected
in each frame. The code uses the SSE2 instruction set for all the
image processing. The reconstruction time for a sequence such as
outdoory is about 1 hour. The whole localization runs in 60 ms.
Detecting interest points takes 35 ms, matching takes 15 ms and
computing the pose takes 10 ms.

4 CONCLUSION

We have presented a localization algorithm and shown its perfor-
mance under different conditions. It has been used both indoors
and outdoors and with various cameras. The accuracy with refer-
ence to the learning trajectory is good enough for most robotic ap-
plications. Guidance applications based on this localization sys-
tem have been successfully conducted outdoors with an accuracy
similar to those obtained with a differential GPS sensor. The al-
gorithm runs in real-time for the localization part. The approach

proposed here works well for our intended application : that is
driving a robot near the reference trajectory. For more complex
navigation tasks either wide baseline matching techniques or a
map with more keyframes from different viewing locations would
be necessary. Future work will be more directed towards an im-
provement of robustness to changes in the environment. Even
if the experiments presented in this paper have shown that the
localization algorithm is robust to some changes, it may not be
enough for an ever changing environment. For example in a
city, cars parked along the side of the road change from day to
day, trees evolve according to the season, some buildings are de-
stroyed while others are built or modified. So our goal is to have
a method to update the map automatically in order to take these
modifications into account.

REFERENCES

Aratijo, H., Carceroni, R., and Brown, C., 1998. A fully pro-
jective formulation to improve the accuracy of Lowe’s pose es-
timation algorithm. Computer Vision and Image Understanding,
70(2):pp. 227-238.

Cobzas, D., Zhang, H., and Jagersand, M., 2003. Image-based
localization with depth-enhanced image map. In International
Conference on Robotics and Automation.

Davison, A. J., 2003. Real-time simultaneous localisation and
mapping with a single camera. In Proceedings of the 9th Interna-
tional Conference on Computer Vision, Nice.

Faugeras, O. and Herbert, M., 1986. The representation, recogni-
tion, and locating of 3-d objects. International Journal of Robotic
Research, 5(3):pp. 27-52.

Fischler, O. and Bolles, R., 1981. Random sample consensus: a
paradigm for model fitting with application to image analysis and
automated cartography. Communications of the Association for
Computing Machinery, 24:pp. 381-395.

Haralick, R., Lee, C., Ottenberg, K., and Nolle, M., 1994. Re-
view and analysis of solutions of the three point perspective pose
estimation problem. International Journal of Computer Vision,
13(3):pp. 331-356.

Harris, C. and Stephens, M., 1988. A combined corner and edge
detector. In Alvey Vision Conference, pp. 147-151.

Hartley, R. and Zisserman, A., 2000. Multiple view geometry in
computer vision. Cambridge University Press.

Kidono, K., Miura, J., and Shirai, Y., 2002. Autonomous visual
navigation of a mobile robot using a human-guided experience.
Robotics and Autonomous Systems, 40(2-3):pp. 124-1332.

Lavest, J. M., Viala, M., and Dhome, M., 1998. Do we need an
accurate calibration pattern to achieve a reliable camera calibra-
tion ? In European Conference on Computer Vision, pp. 158—174.

Nistér, D., 2003. An efficient solution to the five-point relative
pose problem. In Conference on Computer Vision and Pattern
Recognition, pp. 147-151.

Nistér, D., Naroditsky, O., and Bergen, J., 2004. Visual odometry.
In Conference on Computer Vision and Pattern Recognition, pp.
652-659.

Royer, E., Lhuillier, M., Dhome, M., and Chateau, T., 2005. Lo-
calization in urban environments : monocular vision compared to
a differential GPS sensor. In Conference on Computer Vision and
Pattern Recognition.

