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ABSTRACT: 
 
Many tasks in airborne laserscanning require the registration of different scans of the same object. Especially data acquired in urban 
environments with buildings viewed obliquely from different directions need to be aligned. In this paper we propose a method to 
filter these point clouds based on different techniques to speed up the computations and achieve better results with the ICP 
algorithm. A statistical analysis is used and planes are fitted to the data wherever possible. In addition to this, we derive extra 
features that are used for better evaluation of point-to-point correspondences. These measures are directly used within our extension 
of the ICP method instead of pure Euclidean distances. Both the intensity of reflected laser pulses and normal vectors of fitted planes 
are considered. The extended algorithm shows faster convergence and higher stability. We demonstrate and evaluate our approach 
by registering four data sets that contain different oblique views of the same urban region. 
 
 

1. INTRODUCTION 

1.1 

1.2 

General purpose and overview 

Due to their ability to deliver direct 3D measurements, laser 
scanners (LIDAR) are highly operational remote sensing 
devices that can be used for many photogrammetric 
applications. Data can be collected even at night, since LIDAR 
is an active illumination technique. Future need for monitoring 
and observation devices has led to the development of advanced 
technology in this field. Accurate ground-based as well as agile 
airborne sensors have been studied by researchers and 
companies in recent years. Urban regions are scanned, e.g. to 
provide telecommunication companies with up-to-date 3D city 
models. The ever-increasing level of detail and additionally 
measured features are raising interest in the scientific 
community. Currently available laser scanners are capable of 
acquiring the full waveform of reflected pulses, thus enabling 
new methods of data analysis (Jutzi & Stilla, 2006). In addition 
to multiple return analysis, features like intensity of reflected 
pulses and pulse-width can be considered. The collected data 
are registered by using navigational sensors, which typically 
consist of an inertial measurement unit (IMU) and a GPS 
receiver. Airborne laser scanners are able to look obliquely at 
urban environments to obtain information concerning the 
facades of buildings. These data sets resulting from different 
viewing directions need to be co-registered, since navigational 
sensors usually show small errors or suboptimalities (Maas, 
2000). Although the point density is different, that task is 
related to stitching of terrestrial laser scanning data, where there 
exist proven methods in literature (Makadia et al., 2006). While 
these methods provide a rough alignment of the data sets, the 
points have to be fine-aligned to achieve the desired results. 
 
The iterative-closest-point (ICP) algorithm, originally proposed 
by Besl and McKay (1992), is the standard approach to correct 
these discrepancies. In urban areas different scanning directions 
typically lead to shadow effects, occurring at one or more sides 
of buildings. These occlusions are a severe problem if the ICP 

algorithm is applied directly to these point sets, as the classical 
ICP algorithm is susceptible to non overlapping regions 
(Rabbani et al., 2007). It doesn’t consider the underlying 
geometry and may lead to incorrect results by ending up in 
local minima (Rusinkiewicz & Levoy, 2001). To avoid this, our 
method aims at filtering the point clouds before looking for 
correspondences. The filter operation is intended to keep only 
points that are most promising to result in correct pose 
estimation. Consequently, points that form the facades are 
discarded during the registration process. Since we have an 
airborne sensor in oblique configuration, most occlusions occur 
at the rear of buildings and at ground level. In the course of the 
data analysis we automatically detect the ground level and 
remove all points belonging to it. Referring to (Maas, 2000), 
data points on objects with an irregular shape like trees may 
also falsify the matching results. Therefore these points are 
removed in our approach by a robust estimation technique 
(RANSAC). If data originating from typical urban 
environments are processed this way, the remaining points 
mostly belong to the rooftops of buildings. This method was 
used to cut out vegetated areas rather than analysis of the full 
waveform and multiple laser returns for the following reason: 
during the filter operation we derive an additional feature for 
each remaining point, namely its local normal direction. We use 
a combination of this and the intensity value of the reflected 
laser pulses to improve the distance measure of the ICP 
algorithm, which classically takes only Euclidean distances into 
account. The presented approach is applied to test data sets and 
results are shown in the paper.   
 

Related work 

Numerous articles on point cloud registration have been 
published in recent years. In some parts our work follows or is 
based on the ideas presented in other articles that are especially 
mentioned in this section. Since Besl and McKay proposed their 
ICP algorithm in 1992, this approach has become the standard 
solution to the registration problem. Nevertheless, some work 
has been done on alternative concepts for geometric alignment 
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of point clouds, e.g. by relying on the geometry of the squared 
distance function of a surface (Pottman et al., 2004). Other least 
squares matching techniques can be used to establish 
correspondences between data from neighboring strips (Maas, 
2000). Laserscanner data are usually irregularly distributed, 
which is handled by many authors by introducing a triangulated 
irregular network (TIN) structure (Kapoutsis et al., 1998). 
However, we do not follow this approach: during the filter 
operation, we distribute the 3D data to a two-dimensional array 
of an appropriate size, wherein each cell is filled with the 3D 
coordinates of the highest occurring data point at that location. 
This is done to discard all points belonging to the facades of 
buildings. After the filtering of inapplicable points, we are able 
to use the full 3D information and this mapping structure for 
efficient search operations within the ICP implementation. 
 
Many different approaches have been made to improve the 
classical iterative-closest-point (ICP) algorithm. A summary 
and numerical comparison of several ICP variants has been 
given by Rusinkiewicz and Levoy (2001). They introduced a 
taxonomy for categorizing ICP variants. Therein the particular 
category depends on which state of the original algorithm is 
affected: (1) selection of subsets, (2) matching of points, (3) 
weighting of correspondences, (4) rejecting of pairs, (5) 
assignment of an error metric, (6) minimizing of the error 
metric. In their scheme our approach would be classified as 
type one, two and four, since we pre-select some of the points 
in each data set, we affect the matching of these points and 
perform a threshold-based rejection of outliers. Except for this, 
we leave the original ICP algorithm almost untouched. 
 
All known modifications of ICP try to improve robustness, 
speed and/or precision. One critical point of ICP is its lacking 
robustness, because it needs outlier-free data to establish valid 
correspondences (Chetverikov et al., 2005). We overcome this 
problem by using only those points that should correspond well 
to points in the other data sets. Another possibility is filtering of 
correspondences, e.g. by comparing with a dynamic distance 
threshold to detect wrong assignments (Zhang, 1994). Besl and 
McKay (1992) originally suggested establishing point-to-point 
correspondences by evaluation of Euclidean distances. Various 
improved versions and variants have been proposed that use 
alternative distance measures, e.g. by analyzing local surface 
approximations of the data sets (Chen & Medioni, 1992). We 
consider enhancements of the Euclidean distance by taking 
additional features into account while establishing point-to-
point relationships. 
 
Segmentation of the point clouds into planar surfaces is part of 
our approach. Other researchers have presented many different 
techniques concerning this topic. A summary is given by 
Hoover et al. (1996). Some authors are interested in detecting 
planes, spheres, cylinders, cones, and even more primitives. 
Rabbani et al. (2007) describe two methods for registration of 
point clouds, in which they fit models to the data by analyzing 
least squares quality measures. Vosselman et al. (2004) use a 
3D Hough transform to recognize structures in point clouds. 
Among all available methods, the RANSAC algorithm (Fischler 
& Bolles, 1981) has several advantages to utilize in the 3D 
shape extraction problem (Schnabel et al., 2006). We use a 
RANSAC-based robust plane detection method and additionally 
take its score and outlier information to distinguish between 
buildings and irregularly shaped objects like trees. Normal 
vectors are assigned to each remaining data point to use this as 
an additional feature supporting the registration. 
 

2. EXPERIMENTAL SETUP 

We used several commercial-off-the-shelf components for the 
data acquisition: an FPA infrared camera (data not considered 
in this paper), a laser scanning device and an inertial 
measurement unit. The sensors that are briefly described here 
have been attached to a Bell UH1-D helicopter and flights were 
carried out over Munich, Germany. 
 
2.1 

2.2 

Navigational sensors  

The APPLANIX POS AV comprises a GPS receiver and a 
gyro-based inertial measurement unit (IMU), which is the core 
element of the navigational system. The GPS data are used for 
drift compensation and geo-referencing, whereas the IMU 
determines accelerations with high precision. These data are 
transferred to the position and orientation computing system 
(PCS), where they are fused by a Kalman filter, resulting in 
position and orientation estimates for the sensor platform. 
 

Laser Scanner 

The RIEGL LMS-Q560 is a laser scanner that gives access to 
the full waveform by digitizing the echo signal. The sensor 
makes use of the time-of-flight distance measurement principle 
with nanosecond infrared pulses. Opto-mechanical beam 
scanning provides parallel scan lines, where each measured 
distance is approximately geo-referenced according to the 
estimated position and orientation of the sensor. Waveform 
analysis yields intensity and pulse-width as additional features 
of each 3D point in the resulting point cloud. Figure 1 shows a 
rendered visualization of a geo-referenced point cloud, in which 
each point is depicted with its associated intensity. 
 

 
 
Figure 1. Laser data of an urban area scanned in 45° oblique 

view. Flight direction east to west (data set 4) 
 

3. OVERVIEW OF USED METHODS 

3.1 Random sample consensus (RANSAC) 

The random-sample-consensus paradigm (RANSAC) as 
described by Fischler and Bolles (1981) is a standard technique 
to estimate parameters of a mathematical model underlying a 
set of observed data. It is particularly used in case that the 
observed data contain data points which can be explained by a 
set of model parameters (inliers) and such data points that do 
not fit the model (outliers). To apply the RANSAC scheme, a 
procedural method has to be available that determines the 
parameters to fit the model to a minimal subset of the data. In 
this paper we use RANSAC to fit planes to subsets of the point 
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clouds. If we have a set of n points {p1, …, pn} and we assume 
that this set mostly contains points that approximately lie on 
one plane (inliers) and some others that do not (outliers), simple 
least squares model fitting would lead to poor results because 
the outliers would affect the estimated parameters. RANSAC 
estimates a plane only by taking the inliers into account, 
provided that the probability of choosing only inliers among the 
data points is sufficiently high. To compute a plane, we select a 
random sample of three non collinear points (the minimal 
subset) pi, pj, and pk. The resultant plane’s normal vector n0 is 
computed as m = (pi – pj)×(pi – pk), n0 = m/|m| and after that, 
with (x–pi)·n0 = 0 the plane’s Hessian normal form is given. 
Using this representation, we can check all the other points p in 
{p1, …, pn} if they are inliers or outliers simply by computing 
their distance d = |(p–pi)·n0| to the previously obtained plane. If 
the distance d is below a pre-defined threshold, we assess that 
point as inlier. The number of inliers and the average distance 
of all inliers to the plane are used to evaluate the quality of the 
fitted plane. This procedure is repeated several times in order to 
converge to the best possible plane. 
 
3.2 

4.1 

Iterative closest point (ICP) 

The iterative-closest-point algorithm (Besl & McKay, 1992) is 
intended to accurately and efficiently register 3D shapes like 
point sets, line segments, free-form curves, faceted surfaces, or 
free-form surfaces. In this paper we only consider the 
registration of two point sets. In literature usually one point set 
is seen as “data” and the other as “model”, so we follow that 
terminology. It is assumed that both data sets are approximately 
in the same position, which is the case for our data.  
 
During the ICP operation the whole data shape D is iteratively 
moved to be in best alignment with the model M. The first step 
of each iteration is to find the closest point m in M for each data 
point d in D. The identification of closest points between D and 
M should be accomplished by an efficient method, because it is 
the algorithm’s most time consuming part. The result of this 
step is a sequence (m1, m2, …, mn) of closest model points to all 
n data points in (d1, d2, …, dn). The next step of each iteration is 
to find a translation and a rotation that moves the data points 
closest to their corresponding model points, such that the 
average squared (Euclidean) distance is minimized. This 
problem can be solved explicitly by the use of quaternions or 
singular value decomposition. Inconsistencies in the data sets 
due to missing points or occluded objects contribute directly to 
errors in the accuracy of the alignment. After the transformation 
of the data shape, the procedure is repeated and it converges 
monotonically to a local minimum. All the technical details and 
the proof of the last statement are thoroughly described in (Besl 
& McKay, 1992). 
 

4. OUR EXTENSION OF THE ICP ALGORITHM 

Preparing the data 

The basic idea of our approach is to filter the different point 
clouds to get only those points that are most promising to result 
in correct correspondences. By this we can improve the 
convergence behavior of the ICP algorithm, which is 
susceptible to occlusions, shadows and non overlapping regions 
in the data sets (Rabbani et al., 2007). In the first step we want 
to remove all points belonging to facades of buildings, since 
their presence in the data sets depends highly on the viewpoint. 
To achieve this, the 3D data are distributed to a horizontal two-
dimensional array of appropriate size, in which each cell is 

filled with the 3D coordinates of the highest occurring data 
point at that position. The cell size corresponds to the average 
distance of adjacent points, which is dictated by the hardware 
specifications. We do not interpolate or down-sample the data 
during this process, since we keep the original 3D information 
in each cell. Anyway, by suppression of all non-maximal points 
we remove data belonging to the facades. Full waveform 
processing also yields the intensity of reflected laser pulses, 
which will later on be used as an additional feature for the 
registration, but can also provide a gray value for an image 
representation of the obtained 2D array. Figure 2 exemplarily 
shows details of the same urban region, measured in 45° 
oblique view from different directions. 
 

 
data set 1: south to north 

 

 
data set 1: south to north 

 

 
data set 2: north to south 

 
data set 3: west to east 

 

 
data set 4: east to west 

 
Figure 2. Distribution of the points to a two-dimensional array 

and comparison of the four data sets 
 
4.2 Detection of the ground level 

The different scanning directions in Figure 2 are indicated by 
the position of the shadows. Due to active illumination of the 
scene by the airborne sensor, most shadows and occlusions 
occur at the rear of buildings and at ground level. As occlusions 
are not handled by the ICP algorithm, we need to detect the 
ground level and remove all points belonging to it. The 
detection of the ground level is fairly easy for urban 
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environments. We simply analyze the histogram of height 
values derived from the previously generated data matrix. The 
histogram shows a multimodal distribution, in which the laser 
points at ground level appear as the lowest distinct peak (Figure 
3a). It is easy to find the optimal threshold that discards most 
data associated with the ground level by an analysis of local 
maxima and local minima or an expectation-maximization 
(EM) algorithm. Once that level is found, we take out all laser 
points below (Figure 3b). 
 

  
a b 

  
Figure 3. a) Determination of a threshold to remove points at 

ground level, b) remaining points depicted as gray-
value coded height data 

 
4.3 

(1) 

(2) 

(3) 
(4) 

(5) 
(6) 

(7) 

(8) 

(9) 
(10) 

(11) 

(12) 

(13) 

(14) 

Robust elimination of clutter objects 

The residual points in Figure 3b clearly show the contours of 
buildings, but also clutter objects like vegetation remain 
persistent. The following procedure is used to remove these 
irregularly shaped objects: 
 

Choose an unmarked grid-position (i, j) at random among 
the available data in the matrix. 
Check a sufficiently large neighborhood of this position 
for available data, resulting in a set S of 3D points. 
Set the counter k to zero. 
If S contains more than a specific number of points (e.g. 
at least six), continue. Otherwise mark the current 
position (i, j) as discarded and go to step 14. 
Increase the counter k by one. 
Perform a RANSAC-based plane fitting with the data 
points in the specified set S. 
If RANSAC is not able to find an appropriate plane or the 
number of inliers is low, mark the current position as 
discarded and go to step 14. 
Obtain the plane’s Hessian normal form (x–p)·n0 = 0 and 
push the current position (i, j) on an empty stack. 
Pop the first element (u, v) off the stack. 
If the counter k reached a predefined maximum and the 
number of points in S is high enough, store the normal 
vector information n0 at position (u, v) and mark that 
position as processed. 
Check each position in a neighborhood of (u, v) that has 
not already been looked at if it contains data and in that 
case, check if the 3D point lies sufficiently near to the 
plane. If so, push its position on the stack and include the 
point in a new set S’. 
While the stack is not empty, go to step 9. Otherwise 
continue with step 13. 
If the counter k reached its maximum (e.g. three cycles), 
set it to zero and continue with step 14. Otherwise go to 
step 4 with the new set of points S:=S’. 
Go to step 1 until a certain number of runs has been 
performed or no more unmarked data is available. 

 
 
Figure 4. Remaining points after robust elimination of clutter 

objects, color-coded according to the normal 
direction 

 
The suggested method is intended to distinguish between man-
made objects like buildings and clutter objects like bushes or 
trees. In each run, we randomly select a position in the 
previously generated matrix of laser points and try to fit a plane 
to the neighboring data of that position. The RANSAC 
technique provides a robust estimation of the plane’s 
parameters, with automatic evaluation of the quality, e.g. by the 
number of outliers. If the fitted plane is of poor quality, we 
assess the data associated with the current location as clutter. 
Otherwise, we try to optimize the plane fitting by looking for 
all data points that support the obtained plane.  The underlying 
operation is accomplished in steps 9, 10, 11 and 12, which 
actually represent a seed-fill algorithm. The local plane fitting 
process is repeated with the supporting points to get a more 
accurate result. The final plane’s normal vector is stored at all 
positions of points assigned to that plane and the corresponding 
data is classified as building. Figure 4 shows detected rooftops 
for one of the datasets, depicted with an appropriate color-
coding according to their normal direction.  
 
4.4 Executing the ICP algorithm 

Now that we have removed all data that might lead to an 
incorrect registration, we are ready to start the ICP procedure. 
As mentioned in Section 3.2, the most computationally 
inefficient part of ICP is the search operation. We need to 
implement an operator that finds the closest point m in point 
cloud M for each data point d in the other data set D. Many 
improvements of this step have been proposed in literature, 
most of them using efficient search strategies based on k-d-
trees, Voronoi diagrams or a Delaunay tessellation of the data 
(Kapoutsis et al., 1998). In general, this is the best known way 
to handle this issue, especially when dealing with irregularly 
distributed points. However, we do not follow this way because 
we already have all we need: during the filtering of points we 
introduced a two-dimensional data matrix among which the 3D 
data were distributed such that each cell contains the highest 
occurring data point at that position. This non-maximum 
suppression was done to discard the facades of buildings. Now 
we can use this regular grid to perform the search operation 
within the ICP algorithm. Let Μ be the matrix that holds M and 
let D be the matrix containing D. First we specify all indices 
describing cells of D where a 3D point of D is included, 
resulting in a list L. After that we build a look-up table T 
comprising all relevant indices of M in a sufficiently large 
neighborhood Nij of each listed entry (i, j) in L. This has to be 
done only once. The search for closest points is done in every 
iteration of ICP by going through the look-up table T.  
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Figure 5. Assignment of a subset of M to every point in D. Each 

dot represents 3D coordinates together with normal 
direction and intensity 

 
The functionality of the look-up table T is illustrated in Figure 
5. The considered neighborhood Nij at each position (i, j) 
depends on the pre-registration of the data sets. Nij is essentially 
larger than it is depicted here, but it can be scanned reasonably 
fast. At each list entry in L, the assigned subset of M is 
processed to look for the best candidate for a point-to-point 
correspondence. This weighting is classically done by 
evaluation of Euclidean distances between dij and each point m 
in Nij where the minimal distance is chosen. The Euclidian 
distance is defined by: 
 

 ( ) (ED = − ⋅ −d m d m)

N

 (4.1) 
 

Due to the fact that we have an estimated normal direction and 
the measured intensity of the reflected laser pulse as additional 
information, we are able to evaluate the point-to-point 
relationship better than just by Euclidian distances. Given the 
normal direction nd corresponding to data point d and 
accordingly nm corresponding to model point m, their distance 
can be expressed by the angle between these two vectors: 
 
 arccos( ), [0, ]ND D π= ⋅ ∈d mn n  (4.2) 
 
For better performance, the arc cosine in (4.2) can be replaced 
by a predefined look-up table. Finally, if Id and Im denote the 
intensity of the respective reflected laser pulses, a suitable 
distance measure would be: 
 

 , [0I d m ID I I D= − ∈ ,1]  (4.3) 
  
To combine the distances DE, DN and DI for each pair of points, 
the most straightforward approach is a linear combination Dc of 
the distances. The problem of finding a suitable metric Dc 
consists of finding the optimal set of weighting factors α, 
leading to the best performance of the ICP algorithm. Finding 
the optimal distance measure in this sense is difficult, since 
optimality depends on sensor and scene characteristics. One 
possibility to estimate the weighting factors is to analyze 
domain, mean and variance of each component, comparable to 
the Mahalanobis distance metric. After the search for 
corresponding points we have to find a translation and a 
rotation that moves the data points closest to their 
corresponding model points, such that the average squared 
Euclidean distance is minimized. To solve this problem 
explicitly, we use singular value decomposition (SVD) as 
described in (Arun et al., 1987). We briefly summarize the 
essential steps of their method. First the centroids of all points 
among the set of n correspondences are computed: 
 

 
1 1

1 ,
n n

m i d
i in n= =

= =∑c m c

M and D are translated to the origin by cm and cd respectively, 
resulting in the new point clouds: 
 

 { }
{ }

| , 1,..., ,

| , 1,...,
i i i m

i i i d

M i n

D i

= = − =

= = − =

m m m c

d d d c n
 (4.5) 

 

Then a matrix H is defined as 
 

 
1

n
T

i
H

=

=∑ i id m  (4.6) 

 

The singular value decomposition H = UAVT of this 3x3 matrix 
is fast to compute and leads to the optimal rotation R and 
translation t: 
 

  (4.7) ,T
mR VU R= = −t c cd

 

The proof of this is given in (Arun et al., 1987). After 
computation of optimal rotation and translation, we transform 
the data set D with respect to R and t and continue with the next 
ICP iteration until a stop criterion is met. 
 

5. FIRST RESULTS AND EVALUATION 

The proposed method was tested by using four data sets 
containing different oblique views of the same urban region 
(Figure 2). Overall, the different parameterized runs of ICP 
resulted in acceptable alignment of the point clouds when 
visually assessed. It is rather difficult to give a quantitative 
evaluation of the final registration, as the ICP method always 
converges monotonically to a local minimum of the proposed 
distance measure Dc. Instead of using the final sum of all values 
Dc to assess the alignment, one may consider other quality 
measures. Using the average distance between points in one 
data set and corresponding surface-patches in the other set is 
more significant than just counting point-to-nearest-point 
distances for assessment. This point-to-tangent-plane distance 
Dt can easily be quantified since we have the normal direction 
available for every point in M. Given a data point d and the 
direct neighborhood of its corresponding model point m with 
normal directions nm, we define Dt as Dt = min |(d-m)·nm|. The 
sum of all values Dt is used to evaluate the registration’s 
accuracy.  
 

1
i∑ d  (4.4) 

We tried several combinations and weightings of DE, DN and 
DI, and also used DE and DN to perform a threshold-based 
rejection of clearly outlying correspondences. Figure 6 
illustrates the decreasing distance measure Dt against the ICP 
iteration number. The measured pose error decreases 
dramatically with the first iteration and then it converges 
smoothly in few steps. In some degree, the convergence 
behavior depends on the tested parameters. The first group of 
parameters does not include outlier rejection, so the average 
distance is comparatively high even after twenty ICP iterations. 
Threshold based filtering of obviously wrong assigned points 
outperforms influencing the error metric, so this method should 
be used in any case. It should be avoided to lower the threshold 
too much, since this may emphasize a local minimum. In our 
experiments we always kept at least 80 percent of the 
correspondences. Regarding the registration of point clouds 
measured from different directions, we found that the difference 
of intensity can be quite erratic due to active illumination of the 
scene, so we do not suggest using DI in general. In addition to 
rejection of bad correspondences, best results were achieved by 
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a combination of the Euclidean distance DE with the radian 
measure DN of the normal vectors (DE + 10DN). 
 

 
 
Figure 6. Course of the modified ICP algorithm with different 

parameters 
 
At the moment, filtering and registering two point clouds takes 
about 10 minutes on a standard PC, each set containing 150.000 
points. All results presented in this paper were obtained with 
programs that were developed under MATLAB®. Our 
implementation is far from being optimal, and due to a lot of 
unnecessary code for visualization and evaluation, there exists 
some potential to get much shorter computation time. The final 
average displacement of corresponding points is 10 cm (Figure 
6) and that is comparable to the laser’s range resolution. One 
result of the final data alignment is depicted in Figure 7. It is a 
rendered visualization of the registered point clouds, each 
depicted in slightly different color. The respective brightness is 
defined by the intensity of each laser echo.  
 

 
 

Figure 7. Illustrative result of the final data alignment 
 

6. CONCLUSION AND FUTURE WORK 

We proposed a method to filter laser point clouds of urban areas 
based on different techniques to achieve better results when the 
ICP algorithm is applied. Both the intensity of reflected laser 
pulses and normal vectors of fitted planes were considered to 
influence the ICP performance. The extended registration 
algorithm shows faster convergence and higher stability. We 
demonstrated and evaluated our approach by registering four 
data sets containing different oblique views of the same urban 
region. Future work will focus on updating the navigational 
data rather than aligning the point clouds. Up till now we did 
not consider multiple returns for vegetation mapping and 

discarded intensity as distance measure because of the relative 
nature of that signal, so the full waveform information was not 
used at all.  In future work we will put more emphasis on full 
waveform analysis and we will also consider the simultaneously 
recorded IR image data for fusion aspects.  
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