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ABSTRACT:

In this paper we address the automatic 3D interpretation of facades from terrestrial image sequences making two novel contributions:
First, we employ Implicit Shape Models (Leibe and Schiele, 2004) coherently for the detection as well as for the delineation of windows,
allowing to learn the appearance of windows and their outline from training data. Second, we use model selection to choose the most
appropriate model for the configuration of windows in terms of rows or columns. These components are complemented by plane
sweeping for the 3D determination of the windows or rows / columns made up from them. Results show the feasibility of the approach.

1 INTRODUCTION

Facade interpretation from terrestrial wide-baseline image se-
quences has been a focus of research since the seminal paper of
(Dick et al., 2004). They interpreted buildings in line with the
trend in computer vision towards statistical generative models.
Particularly they employ Reversible Jump Markov Chain Monte
Carlo (RIMCMC) (Green, 1995) allowing to add and delete new
parameters and therefore also objects. The results are impressive
though restricted to a limited number of objects as the models
are generated manually. A more geometric approach is taken
by (Werner and Zisserman, 2002). They make use of the regu-
lar structure of buildings, particularly the existence of vanishing
points. Specific geometric regularities such as the symmetries of
dormer windows are used to obtain a high-quality textured model.
Yet, the existence of these regularities is presumed to be known.

Our first main contribution of this paper lies in employing Im-
plicit Shape Models — ISM (Leibe and Schiele, 2004)) coherently
for the appearance based detection as well as for the delineation
of windows. While we used information of corners to delineate
windows only on dark facades and employed black rectangles for
bright facades in (Mayer and Reznik, 2006), we now delineate
the outline of whole windows on any kind of facade via ISM.

The second main contribution can be seen as an inversion and
at the same time extension of (Alegre and Dallaert, 2004) and
(Brenner and Ripperda, 2006). We invert, as we do not split the
facade, but rather detect and delineate objects and group the con-
stituents into rows, columns, and finally also grids. We extend
the above work as we employ model selection based on Akaike’s
Information Criterion (AIC) to compare different groupings. Ba-
sically, individual windows always lead to the best likelihood as
they can adapt to the individual shapes of windows. Only by
taking into account the lower number of parameters for rows,
columns, etc., they will prevail. One particular contribution is
to show how the likelihood term has to be interpreted to come
up with meaningful results for our delineation of windows based
on ISM. (Dick et al., 2004) have also used model selection, but
to switch between different interpretation for windows, namely
with and without an arc, etc.

We assume, that a wide-baseline image sequence is given, and
employ (Nistér, 2004), which makes the reconstruction much
more stable by additionally presuming that an (approximate) cal-
ibration is available. 3D Reconstruction leads to camera parame-
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ters and 3D points. From the latter we compute the facade planes
via Random Sample Consensus — RANSAC (Fischler and Bolles,
1981). We orient the planes using the vertical vanishing points in
the images, again employing RANSAC. All images looking at a
particular facade are projected on its plane and combined using
a consensus-based approach (Mayer, 2007) allowing to get rid of
partial occlusions. We use a sampling distance of 1 cm to normal-
ize the further processing.

We first describe appearance based detection and delineation of
windows on the facade plane images based on ISM in Section 2]
Section [3]is devoted to model selection for the decision between
a representation based on individual windows or rows or columns
of windows. Plane sweeping leading to the determination of the
depth, i.e., the 3D shape of windows, is described in Section
The paper ends with conclusions.

2 DETECTION AND DELINEATION OF WINDOWS
BASED ON IMPLICIT SHAPE MODELS

We employ Implicit Shape Models — ISM (Leibe and Schiele,
2004) for the detection of windows, but also for the delineation
of their outline.

For training we cut out image patches containing windows, in
our case 120 windows of modern type. We note that none of
the windows shown in our results is part of the training set and
that we use the patches as well as their horizontally mirrored ver-
sions, making the algorithm more invariant to the viewing direc-
tion. The rectangular outlines of the windows are manually delin-
eated (cf. (red) rectangle in Figure a)). Only in elliptical areas
around the corners of the outline (cf. Figure[T]d)) Forstner points
(Forstner and Giilch, 1987) are extracted. The image patches
around the Forstner points shown in Figure[T]b) are the basis for
the appearance based detection of windows together with their
arrangement relative to the center of the window computed from
the manually delineated outline marked as yellow lines in Figure
[[]a). For the delineation, the relation of the patches to the corners
of the outline is used marked as blue lines in Figuresa) and ¢).

For the retrieval, i.e., for the detection of the windows, Forstner
points are extracted with the same parameters as for training, but
in the whole image (cf. Figure ] a)). Patches around the points
with a size of 35 pixels are then matched via cross correlation
to all patches in the training data. If the cross correlation coeffi-
cient is above an empirically found threshold of 0.75, the match
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Figure 1: Training — a) Window with manually given outline of window (red rectangle), Forstner points at corners of window outline
(red crosses) as well as their relation vector to the center of the window (yellow lines) and to their corresponding corner of the outline
(blue short lines); b) Image patches around Forstner points; c¢) Detail of a) focusing on the relation of Forstner points to the corner of
the window; d) Elliptical areas around window outline (white) where Forstner points are extracted.

is accepted and the vector relating the training patch to its center
is used to generate a hypothesis for the center of the window in
an initially empty accumulation image. The hypotheses are inte-
grated via a Gaussian of the average size of the windows used for
training and local maxima of the resulting function are regarded
as hypotheses for windows. The patches which led to the maxima
are hypotheses for corners of window outlines.

To precisely delineate the windows, we employ the relation be-
tween the centers of the training patches and the given outline of
the windows marked as blue lines in Figure[T]a) and ¢). E.g., the
point marked in red in the upper left corner of the dark window
pane in Figure[d]a) has been matched by cross correlation to the
training patch marked in red just left above the “b” of Figure[d]b).
Figure [d] c) shows how the center of the patch marked by a thick
red cross is related to the corner of the outline of the window
marked by a small yellow cross. From the corner of the outline
the two neighboring sides of the rectangle from the training data
are drawn (cf. Figures[]c) and d)). The result is a hypothesis for
parts of the window outline.

The hypotheses for window outlines as in Figure[d]d) are accumu-
lated over all points in the given image and all training patches.
The result is a distribution for the window outline as in Figure 2]
a) which is finally smoothed (cf. Figureb)) and normalized by
setting the largest value in the window to one.

Figures 3] and 5] give two results for distributions of window out-
lines. The distributions for the window outline are input to a
Markov Chain Monte Carlo — MCMC (Neal, 1993) Maximum
A Posteriori (MAP) estimation procedure. The employed prior
punishes too small and too wide or too high windows. The likeli-
hood function is the sum over the distribution along the window
outline (e.g., cf. red line in Figure E] a)).

3 MODEL SELECTION: INDIVIDUAL WINDOWS,
ROWS, AND COLUMNS

In the preceding Section we have described how to detect and de-
lineate individual windows such as in Figure[7]a). Yet, windows
are usually not arranged randomly, but in rows, columns, or grids.

a b
Figure 2: Distribution for window outline — a) accumulation; b)
smoothing

Figure 3: a) Facade and b) distribution for window outlines

Rows and columns, in this paper defined to have the same hori-
zontal or vertical distance between windows of the same size, can
be built by analyzing the horizontal or vertical arrangement. Yet,
it is often not clear if one should represent a facade by means of
individual windows or by rows or columns of windows. E.g., Fig-
ure[7]shows a configuration which can be represented adequately
by means of columns, but not in terms of rows. Basically, in terms
of an optimum fit described in the form of the likelihood always
the individual windows will be preferred as they can optimally
adapt to the data. Thus, one needs a way to reward arrangements
of objects and one way to do this is to consider that they can be
described by smaller number of parameters.
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Figure 4: Retrieval — a) Forstner points; b) Training patches with the patch just left above the “b” being matched to the red cross at the
upper left corner of the window pane in a); ¢) Relation of the center of the patch (red cross) to the window outline in the training data
(left cross for position — lengths of sides from training data); d) Hypothesis for parts of the window outline

b
Figure 5: a) Facade and b) distribution for window outlines

The above problem is thus regarded as a problem of model se-
lection. Numerous ways have been devised to balance the com-
plexity of a model, e.g., described by the number of parameters
or their accuracy, on one hand and the adaptation to the data, i.e.,
the likelihood, on the other hand. Two well known are Minimum
Description Length — MDL (Rissanen, 1978) and AIC — Akaike’s
information criterion (Akaike, 1973). A very good analysis of the
relations of these two means as well as their characteristics, their
strengths, and weaknesses can be found in (Schindler and Suter,
2006). For its simplicity and as we found it to work well for our
application, we employ AIC, though recent work on composition
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Figure 6: Determination of the likelihood in the distribution for
the window outline — a) Given image with outline in red; b) min-
imal size

such as (Geman et al., 2002) prefers MDL. Particularly, we use
AIC =k —2nln(L)

with k the number of the parameters of the model, n the number
of observations, and L the likelihood of the outline. The num-
ber of parameters is four (width, height and center coordinates)
for every individual window and five for a row or column (four
parameters for window shape plus — horizontal or vertical — spac-
ing). The likelihood is determined in the normalized distribution
image described in Section[2]above by means of MCMC. Figurel[]
a) shows how the distribution is sampled at one position with the
outline given in red. The idea is that every boundary point gives
one observation of the likelihood which are multiplied leading to
the multiplication factor for the log-likelihood.

A couple of experiments led to experience that it is not sufficient
to just sample the given distribution for windows. We concluded
that one also has to reduce the determination of the likelihood to
a minimal setup. Thus, we derived from the sampling theorem
that for a window consisting of parallel lines the minimum size is
a length of just above three pixels. We accordingly resample the
distribution image to this minimum size (cf. Figure@b)) for the
computation of the likelihood for AIC. (Note: For the delineation
the original resolution is used to obtain a higher accuracy.)

Results for this procedure are given in Figure [§] For all three
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Figure 7: Model Selection — Representation of facade by a) individual windows; b) by rows; c) by columns of windows, the latter
consisting of windows with the same size and a constant horizontal or vertical spacing.

given as well as many other facades we tested our procedure on
we selected the correct model. If there is an obvious structure on
the facade, it is reflected in significantly different AIC values as

in Figure

4 3D RECONSTRUCTION VIA PLANE SWEEPING
AND RESULTS

The result from the above procedure are the outlines of windows
on the facade images possibly restricted to form horizontal rows
or vertical columns. As we use image sequences as basis, we can
also determine the 3D extent of the windows on the facade planes.
To do so, we follow (Baillard and Zisserman, 1999) and (Werner|
land Zisserman, 2002) and employ plane sweeping, in this case
in the direction of the normal of the individual facade plane. The
determination of the depth for individual windows is based on the
sum of the least squares differences between the projections of
the plane into the individual images to their average image. This
is computed for a meaningful range of depth values for windows
and the result is the depth value for the minimum of the sum. For
rows or columns we sum up the contributions of all images of a
row or column at a particular depth.

Figure shows four images of a sequence with seven images and
Figure 0] the result for three manually coarsely marked facades.
In Figures [T1] and [T2] further results are given showing in both
cases two again coarsely marked facades respectively. While for
the first three facades rows of windows were chosen by model se-
lection, it decided for the two facades of the second example, that
they are better described by means of columns, and for the two
facades of the third example it selected individual windows, as
the columns with different window sizes do not fit to our models.
Please note that our rows and columns consist of windows with
the same shape and a constant distance in either horizontal or ver-
tical direction and we do the selection for the whole facade. The
3D reconstruction was done mostly reliably and accurately and
led to the windows behind the facade marked by green rectangles

which can be seen in Figures [0} [TT] and[T2}

5 CONCLUSIONS

We have presented two novel contributions for the interpreta-
tion of facades consisting of individual windows, i.e., no glass
facades, from terrestrial image sequences, namely the coherent
use of Implicit Shape Models for the delineation of windows and
model selection based on Akaike’s information criterion (AIC)
for selecting between individual windows and rows and columns
constructed from them. Combined with plane sweeping we ob-
tain a 3D interpretation of facade planes including the windows.
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Concerning future work we think into different directions. First,
we need to do model selection for individual rows and columns
in a more flexible way by using RIMCMC. Then, we want to
create more detailed models of the windows including mullions
and transoms, the appearance of both possibly learned in an ap-
pearance based hierarchy. On a more global level we want to
integrate other objects such as doors on the ground level but also
architectural details around windows possibly including their 3D
structure as well as balconies. For the latter plane sweeping might
be a solution for some shapes of balconies.

On a more global level we consider composition Systems
et al., 2002) as an important theoretically sound basis for our hier-
archical modeling ranging from the window details to grids made
up of windows and other architectural objects. Another question
is a statistically sound link between discriminative and generative

modeling such as in (Tu et al., 2005).
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Figure 8: Results for Model Selection using AIC — C: Columns, R: Rows, W: Individual Windows — selected model in bold

Figure 9: Images one, three, five, and seven of sequence Ostbahnhof-1
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Figure 11: Result for sequence Ostbahnhof-2 with columns of windows constructed from ten images — explanation cf. Figure [I0]
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Figure 12: Result for sequence Bordeaux-3 with individual windows constructed from eleven images — explanation cf. Figure[T0]
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