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ABSTRACT: 

 

The determination of building models from unstructured three-dimensional point cloud data is often based on the piecewise 

intersection of planar faces. In general, the faces are determined automatically by a segmentation approach. To reduce the complexity 

of the problem and to increase the performance of the implementation, often a resampled (i.e. interpolated) grid representation is 

used instead of the original points. Such a data structure may be sufficient for low point densities, where steep surfaces (e.g. walls, 

steep roofs, etc.) are not well represented by the given data. However, in high resolution datasets with twenty or more points per 

square-meter acquired by airborne platforms, vertical faces become discernible making three-dimensional data processing adequate. 

In this article we present a three-dimensional point segmentation algorithm which is initialized by clustering in parameter space. To 

reduce the time complexity of this clustering, it is implemented sequentially resulting in a computation time which is dependent of 

the number of segments and almost independent of the number of points given. The method is tested against various datasets 

determined by image matching and laser scanning. The advantages of the three-dimensional approach against the restrictions 

introduced by 2.5D approaches are discussed. 
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1. INTRODUCTION 

Numerous disciplines are dealing with the problem of geometric 

surface modelling from unstructured point clouds. These are, 

for example, computer vision, reverse engineering, or 

photogrammetry. In this article, we are studying segmentation 

for the purpose of building modelling from large, three-

dimensional point clouds. Our ambition is the definition of a 

highly robust approach with respect to the method used for 

point sampling (i.e. image matching or laser scanning), 

measurement noise, scaling issues, and coordinate system 

definition implying three-dimensional applicability. 

Additionally, a low time complexity is required in order to 

process huge datasets. 

 

The typical workflow from data (point) acquisition towards the 

final, geometrical surface model (e.g. triangulation or 

constructive solid geometry) consists of the following steps: 

Calibration (i.e. elimination of systematic effects), registration 

(in photogrammetric context often referred to as orientation), 

minimization of the influence of measurement noise (referred to 

as filtering or smoothing), and finally, surface modelling. 

Systematic errors should be eliminated by instrument 

calibration prior to the measurement (i.e. by the manufacturer) 

or a posteriori during data processing (if the behaviour of the 

systematic errors is known) or by self-calibration of the system 

(e.g. Lichti & Franke (2005) for terrestrial and Kager (2004) for 

airborne laser scanners). In this paper, we do not discuss 

calibration and registration, while the other two steps, namely 

random error (i.e. noise) elimination and modelling are 

considered. The starting point is therefore a set of points in 

three-dimensional Cartesian space without systematic but with 

random errors. 

 

By means of segmentation, points with similar attributes are 

aggregated, thus, introducing an abstraction layer. This 

simplifies subsequent decision making and data analysis, as 

compound objects defined by multiple points are represented by 

segments. Higher level objects are easier to deal with compared 

to original point cloud handling, simplifying many applications 

such as object detection, recognition or reconstruction. 

Additionally, the data volume decreases significantly when 

handling the segments' parameters only instead of the original 

point cloud. Thus, the computation time of subsequently 

applied algorithms may decrease. 

 

In general, the workflow for building reconstruction from point 

cloud data can be separated in three steps: Building detection, 

determination of planar faces representing individual roof 

planes and finally model generation. Point cloud segmentation 

as described within this article provides planar faces which can 

be used for the determination of building models thus, 

supporting the latter two steps. The first step, namely building 

detection, is not discussed in the following, as we assume to 

initiate building modelling from given, two-dimensional 

boundary polygons for each building. Numerous approaches for 

the automated determination of building boundaries can be 

found in literature. For example, Rottensteiner et al. (2004) and 

Haala & Brenner (1999) describe methods integrating laser 

scanning and multi-spectral image data, Maas & Vosselman 

(1999) introduced a triangle-mesh based approach demonstrated 
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on laser scanning data and, Zebedin et al. (2006) describe a 

method based on matched points. Brenner (2003) gives an 

overview on automatic and semi-automatic systems for building 

reconstruction from image and laser scanner data. 

 

Many approaches for the determination of planar faces for roof 

modelling from point clouds acquired from airborne platforms 

can be found in literature (e.g. Maas & Vosselman (1999), Lee 

& Schenk (2002), Filin (2004), or Vosselman & Dijkman 

(2001)). To reduce the complexity of the problem and to 

increase the performance of the implementation, often a 

resampled (i.e. interpolated) grid representation is used instead 

of the original points (e.g. Alharty & Berthel (2004), 

Rottensteiner et al. (2005)). Such a data structure may be 

sufficient for low point densities, where steep surfaces (e.g. 

walls, steep roofs, etc.) are not well represented by the given 

data. However, in high resolution datasets with twenty or more 

points per square-meter acquired by airborne platforms, vertical 

faces become discernible making three-dimensional data 

processing adequate. 

 

Characteristics and acquisition of unstructured point clouds, 

basic characteristics of segmentation and the computation of 

highly robust, local regression planes are introduced in Section 

2. Our segmentation algorithm is presented in Section 3, 

starting with a comparison to a grid-based approach our work 

was inspired by. In Section 4 results derived from image 

matching and laser scanning point clouds are presented. In 

Section 5, we discuss the characteristics of 2.5D and 3D 

segmentation and analyze the performance of our approach. 

 

 

2. RELATED WORK 

So far, we stated the applicability of our segmentation approach 

on unstructured point clouds, but without defining our 

understanding of the latter terminus. This is done in Section 2.1, 

followed by the definition of our understanding of segmentation 

in order to avoid misunderstandings (Section 2.2). The 

determination of highly robust, local regression planes for every 

given point is of crucial importance for our segmentation 

algorithm. Therefore in Section 2.3, the basic characteristics of 

the method used are presented. 

 

2.1 Acquisition of Unstructured Point Clouds 

We define an unstructured point cloud as a set of points, 

obtained from a random sampling of the object’s surface in a 

three-dimensional way. No additional definition according to 

the reference frame (e.g. a reference direction) or the metric 

(e.g. scaling) are made. Numerous acquisition methods for the 

determination of such point clouds do exist. As we are studying 

the reconstruction of buildings in this article, we are 

concentrating on data acquisition methods from airborne (i.e. 

helicopter or airplane) and satellite borne platforms. The point 

determination is performed either directly through polar single 

point measurement (e.g. Lidar – light detection and ranging – 

often referred to as laser scanning or synthetic aperture radar 

(SAR) often performed by satellites) or indirectly (e.g. 

stereoscopic image matching). However, all these techniques 

deliver unstructured point clouds according to our definition. 

The segmentation results presented in this paper were derived 

from point clouds determined by image matching (IM) and 

airborne laser scanning (ALS), both acquired from airborne 

platforms. 

 

2.2 Segmentation of Point Clouds 

Segmentation refers to the task of partitioning a set of 

measurements in the 3D object space (point cloud) into smaller, 

coherent and connected subsets. These subsets should be 

'meaningful' in the sense that they correspond to objects of 

interest (e.g. roofs, trees, power cables) or parts thereof (roof 

planes). Often, the segments are assumed to take the form of 

simple geometric primitives (e.g. planar patches). In this case 

segmentation and extraction of the primitives are typically 

performed simultaneously, rather than sequentially. We assume 

that the resulting segments Ri (a sub-set of points) of R (all N 

points) meet the following requirements (Hoover et al., 1996): 

 

1. U
N

i 1=
Ri = R (requires the definition of a rejection-

segment) 

2. Ri I Rj = {}, for Njiji ≤≤∧≠ ,1  

3. Ri is a connected component in the object space, for 

Ni ≤≤1  

4. P(Ri) == true for some coherence predicate P, 

Ni ≤≤1  

5. P(Ri U Rj) == false for adjacent Ri, Rj with 

Njiji ≤≤∧≠ ,1  

 

(1)-(2) state that the resulting segmentation is a partitioning of 

the original point cloud, i.e., a decomposition into disjunct sub-

sets. The connectivity requirement (3), which is straightforward 

in image processing (since there, connectivity is defined in 

terms of the 4- or 8- neighbourhood on the pixel grid), requires 

a definition of neighbourhood (topology) for unstructured point 

clouds. This could be done, for example, by considering two 

points as neighbours if they are connected by an edge in the 

Delaunay triangulation; however, obtaining the Delaunay 

triangulation is computationally costly (in particular, for large 

point clouds). Hence, we use a criterion based on the Euclidean 

metric: Ri is a connected component if the distance of any point 

to its nearest neighbour in the segment is below a given 

threshold. The coherence predicate in (4) simply states that the 

points must lie on (or near) the same instance of a parametric 

primitive (in our case, a planar patch). Finally, (5) requires that 

the points belonging to two adjacent segments lie on two 

separate planes (otherwise, the segments are merged). 

 

2.3 Robust Local Regression Planes 

It can be assumed that the normal vectors (short: normals) of 

local regression planes of points belonging to a segment (i.e. 

plane) are almost identical. According to the given task, several 

requirements for the plane fitting algorithm are introduced. 

These are the capability to handle a high noise level, robustness 

at sharp surface features (e.g. planes intersecting at a common 

edge) and mode seeking behaviour due to the uncertainty of the 

distribution of the measurement errors which might not be 

symmetric. 

 

Commonly used methods for regression plane estimation are, 

for example, moving least squares (e.g. Levin, 1998) or 

iteratively reweighted least squares (e.g. Hoaglin et al., 1983). 

Unfortunately, both methods are sensitive against non-

symmetric point density. Additionally, the former is not robust 

against noise while the latter may handle noise well, but the 

result can be influenced by a single lever point (breakdown 

point of zero percent). The Random Sampling Consensus 

Algorithm (RANSAC) (Fischler & Bolles, 1981) is often 
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referred to in literature. But RANSAC does not consider 

statistics, behaves slow and has an insufficient breakdown point 

with respect to our task. Furthermore, RANSAC uses the object 

space (i.e. point position) only and cannot take additional 

parameter (e.g. local normals) into account. Therefore, we 

developed a method which fulfils the stated requirements as 

much as possible while achieving acceptable computation time 

as well. It is based on the Fast Minimum Covariance 

Determinant (FMCD) approach, described by Rousseuw & van 

Driessen (1999) for application in the field of data mining. Filin 

(2004) investigated a prior approach described by Rousseuw in 

the field of ALS-point classification and indicated it as too slow 

for that application. By introducing heuristics, the performance 

of this approach is sufficient for the given task. 

 

 

3. METHODOLOGY 

Our research has been inspired by a grid-based (in the following 

referred to as 2.5D) approach described by Pottmann & Wallner 

(1999). The method’s application to building modelling was 

first described by Peternell & Pottmann (2002). We compare 

this method to our algorithm which is applicable on three-

dimensional point clouds and behaves independent from the 

coordinate system definition. By means of a sequential 

implementation of the clustering algorithm used, the time 

complexity of the three-dimensional approach behaves better 

than the 2.5D-implementation by Pottmann et al. 

 

3.1 Distance Measure between Planar Faces 

Hierarchical clustering in the four-dimensional feature space 

defined by the local regression planes of the given points 

(Section 2.3) requires an appropriate distance measure. A plane 

in three-dimensional Cartesian coordinates is defined by 

 

 zayaxaa 32100 +++=    (1) 

 

with 
321 ,, aaa representing the local unit normal vector of the 

plane and a0, the normal distance of the plane to the origin of 

the coordinate system. To determine a three-dimensional 

measure of distance between two planes ),,,( 3210 aaaaA = and 

),,,( 3210 bbbbB = , we define the distance d over an area of 

interest Γ in the following way: 

 

 ( ) ( )∫ΓΓ +++= dxdydzzcycxccBAd
2

3210

2
,  (2) 

 

where nnn bac −=  

 

The integrand of (2) represents the squared difference of the 

orthogonal distances from a point to the two planes A and B. 

Thus, the integral over all squared distances within Γ can be 

interpreted as a mean squared distance between these planes, if 

it is normalized by the volume of Γ. As we consider squared 

differences, greater differences become a higher weight. But this 

does not matter, as we aim at the determination of similar planes 

(i.e. with small differences). The application of this measure in 

2.5D space over a planimetric, rectangular Γ (as described by 

Peternell & Pottmann (2002)) obviously is dependent on the 

definition of the reference direction (in general z). The distance 

measures d for two planes (A, B) enclosing an angle of one 

degree, intersecting within the system’s origin (a0 = b0 = 0) and 

rotating around the y axis are shown in Figure 1 (chain dotted 

line). The behaviour of a three-dimensional d (Eq. 2) with a 

bounding box (dashed line) and a bounding sphere (continuous 

line) are superimposed. While for the 2.5D case the distance 

measure becomes useless for inclination angles between 45° and 

135° respectively 225° and 315° (the measure increases at least 

by a factor of two and becomes infinite in the worst case 

occurring if a plane is vertical), the box-based 3D measure is 

almost and the sphere-based measure really is constant. 

 

 
Figure 1. Relation of inclination angle against the horizontal xy-

plane and different distance measures d demonstrated by two 

planes (inclined by 1°) rotated around the y-axis. 

 

3.2 Implementation 

A global clustering approach requires the evaluation of the 

distance measure d for each pair of given points. This results in 

a time complexity of O(n²) with n representing the number of 

points given. Considering datasets with millions of points, this 

is not feasible. Therefore, we replaced the determination of the 

distance matrix by a sequential evaluation of the given plane 

parameters. This reduces the time complexity to O(m) with m 

representing the number of detectable planar faces. 

 

The clustering in feature space is used to determine seed-

clusters. For each seed-cluster, a region growing is performed. 

This is done by assigning points to the plane segment if they are 

within a normal distance band around the seed-cluster’s plane 

and if the distance d between the points’ normals and the seed-

cluster’s regression plane is smaller than a predefined threshold. 

If no more seed-cluster can be determined, the remaining points 

are assigned to the rejection class. Afterwards, a connected 

component analysis in object space and a merging of similar 

components considering feature and object space are performed. 

 

Figure 2 shows the segmentation of a building from an 

unstructured point cloud. The distance measure used in feature 

space, the normal distance threshold in object space and the 

standard-deviation (σ) used to determine outliers during robust 

plane estimation have been set to 0.1m. Figure 2(a) and (b) 

show the determination of segment 1, (c) and (d) of segment 2, 

and (e) and (f) the final segmentation of the building including 

vertical walls. (a) and (c) show the points of the seed-clusters 

(large black dots). Points accepted in object and feature space 

are shown in light grey. Subsequently, a robust regression plane 

is fitted through these points using a 3σ threshold for outlier 

detection. The results of the plane fitting are shown in (b) and 

(d). Accepted points are shown in light grey; outliers in dark 

grey. The small light grey dots in (c) and (d) represent points 

already assigned to segment 1; black points have not been used 

so far. 
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Points accepted in object space but neglected in feature space 

are shown in (a) and (c) in dark grey. Algorithms taking into 

account object space only (e.g. RANAC) might use these points 

as support for the final plane determination. This may introduce 

problems for example along the intersection of two planes. As 

demonstrated by (c), numerous points along the gable of the 

roof were assigned to the plane defining the dormer. Without 

the normals’ based decision criterion, these points might have 

been assigned to the dormer plane. 

 
Figure 2. Segmentation of a building. (a) and (b) show the 

determination of segment 1; (c) and (d) of segment 2. (e) and (f) 

show the final segmentation including vertical walls. 

 

 

4. APPLICATIONS 

As mentioned in Section 2.1, digital image matching and 

airborne laser scanning are well suited for the determination of 

unstructured point clouds of a landscape. In the following, we 

present building models derived from segmentation results 

which were determined by the described segmentation 

algorithm. The building models were generated by piece-wise 

intersection of planar faces. Similar approaches can be found in 

literature (e.g. Maas & Vosselman (1999), Park et al. (2006)). 

In general, roof landscape modelling from airborne point clouds 

results in 2.5D descriptions of real world objects. This 

introduces restrictions with respect to the achievable level of 

detail. For example, roof overhangs can not be considered and 

vertical walls are defined at the eaves. Due to the high point 

density of the given dataset (~20 points per square-meter), 

numerous points at vertical façades have been determined 

(confer Figure 2), allowing to reconstruct the real position of 

the vertical walls (i.e. a planar representation of façades). 

Subsequently, roof overhangs can be modelled properly. The 

high point density was enabled by a helicopter borne platform at 

a low flight level. The large opening angle (±22.5°) of the 

scanner used (Riegl LMS-Z560i) (http://www.riegl.com) and 

multiple overlaps allowed the acquisition of the façade points. 

 
Figure 3. Detailed model of a building determined by piece-

wise intersection of planar faces based on the segmentation 

shown in Figure 2. 

 

The second example was derived from a matched point cloud. 

The images have been acquired by a Vexcel UltracamD 

(http://www.vexcel.com). The matching was done using the 

software Match-T from Inpho (http://www.inpho.de). Compared 

to the ALS data noise level is higher. Thus, a larger 

neighbourhood (i.e. more points) was used to determine the 

local regression planes. Hence, the minimum size of discernible 

faces is larger compared to the processed ALS data. 

Nevertheless, the segmentation and the building model derived 

from the matching points appear plausible (Figure 4), 

demonstrating the robustness of the segmentation with respect 

to the data acquisition method used. 

 

 
Figure 4. Segmentation of a matched point cloud (left) and 

building model (right). 

 

 

5. DISCUSSION 

Cadastral information is normally based on the polygonal 

boundaries of buildings at the terrain level. In most cases, this 

2.5D polygon differs from the normal projection of the eaves on 

the terrain as most roofs have an overhang. 2.5D building 

modelling approaches cannot cope with this, making the 

resulting models unsuitable for gathering or updating cadastral 

information. However, we demonstrated that the determination 

of the real position of vertical walls from high density ALS data 

is possible (Figure 2) using a three-dimensional segmentation 

approach. The integration of this information in the modelling 

process is shown in Figure 3. In this example, it was not 

possible to determine the real position of all walls. In Figure 5 

points on vertical walls (white lines) acquired by airborne laser 

scanning are shown. Obviously, the distribution of these points 

depends on the flight configuration. Thus, it can be influenced 

by an adequate flight planning. 
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Figure 5. Points on vertical planes (façades). 

 

To demonstrate the effect of data resampling (i.e. grid 

interpolation) on the segmentation of the point cloud, a regular 

grid (25 cm) was derived from the dataset shown in Figure 2 by 

means of linear prediction (σ = 5 cm). Figure 6 shows the 

segmentation of this grid. Several erroneous segments were 

found along the intersection lines of touching segments. 

 

 
Figure 6. Segmentation of a 25 cm grid derived from the 

original point cloud. The smoothing of the grid interpolation 

causes erroneous segments. 

 

Figure 7 shows the differences of the exposure and slope 

determined from the parameters of the planar faces derived from 

the original and the resampled point cloud (confer Figure 2 and 

6). The differences of the planes 1 to 6 are not significant and 

seem to be randomly distributed, while the planes 7 and 8 show 

significant differences. These are the smallest faces (i.e. the are 

supported by the least number of points) representing the 

triangular faces of the huge dormer. As no reference data is 

available, we are not able to decide which parameters are the 

correct ones. 

 

 
Figure 7.  Differences of exposure and slope determined from 

the parameters of the planes derived from the original and the 

resampled point cloud. 

The segmentation of buildings as presented in this paper 

including connected components analysis takes about a second. 

To investigate the time performance behaviour of the 

segmentation in more detail (not considering the connected 

components analysis), synthetically generated datasets were 

used. These datasets are three orthogonal prisms with rotation 

axes that are collinear with the axes of the coordinate system 

and thus, intersecting at the origin of the coordinate system. 

Every prism consists of n rectangular planes defined by m 

points. A normally distributed random noise was added in 

normal direction to each plane. Figure 8 shows such an object 

defined by 12 planar faces per prism. The original object is 

shown left while the segmentation result is shown right.  

 

 
Figure 8. A synthetically generated dataset consisting of 36 

planar faces, aligned in numerous directions with respect to the 

coordinate system. The left figure shows the original planar 

faces. The segmentation is shown right. 

 

Increasing the number of object points defining similar objects 

(i.e. equal extension, 12 faces per prism, different point spacing 

(n=constant; m=increased)) by a factor of 150 (720 to 114,156 

points) increases the computation time of the segmentation by a 

factor of 4 only (1.3 to 6.1 sec.). The computation time for the 

segmentation is shown as solid line in Figure 9 (left). Figure 9 

(right) shows the relation of an increasing number of faces 

while the number of points is almost constant (n=increased; 

m•n=30,000). In this example, the number of faces is increased 

by a factor of 6 (9 to 54 faces) while the computation time 

increases by a factor of 3 (1.1 to 3.2 sec.). The time for normal 

estimation is shown as dotted line in both diagrams. It scales 

almost linear by the number of given points. 

 

 
Figure 9. Influence of the number of points (left) and the 

number of faces (right) on the computation time. 

 

 

6. CONCLUSIONS 

Many building modelling approaches based on unstructured 

point clouds acquired from airborne platforms (i.e. airplane or 

helicopter borne) generate 2.5D representations of the real 

world objects for different reasons. On the one hand, most 

available datasets do not provide enough information to model 

vertical structures (i.e. façades) or even roof overhangs in a 

proper manner. On the other hand, approaches based on gridded 
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data structures are commonly used as they are likely to increase 

the performance. 

 

However, currently available data acquisitions systems allow for 

the determination of numerous structures on vertical walls of 

buildings and similar objects by means of appropriate flight 

conditions (low flight level, great opening angle, multiple 

overlaps, …). Furthermore, the restrictions of 2.5D can be 

overcome by introducing real three-dimensional point cloud 

segmentation and subsequent modelling approaches. We 

presented such a segmentation approach in detail which was 

originally inspired by a 2.5D approach. By means of a smart 

implementation of the algorithm, the time complexity of the 

problem was reduced, thus resulting in lower computation time 

with respect to the original, 2.5D approach. 

 

The segmentation algorithm was tested on point clouds acquired 

by laser scanning and image matching. The results, which 

appear reliable, were used for subsequent determination of 

building models. This was done using an approach based on 

piece-wise intersection of touching plane segments. 

 

The presented comparison of 2.5D and 3D data processing 

demonstrated that the determined plane parameter may differ 

significantly, especially for small faces with less support points. 

These results should be analyzed further using reliable ground 

truth measurements. 
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