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Wonnhaldestr. 4, 79100 Freiburg, Germany - johannes.breidenbach@forst.bwl.de

b USDA Forest Service, Pacific Northwest Research Station
University of Washington, PO Box 352100, Seattle, WA 98195-2100, USA

c USDA Forest Service, Pacific Northwest Research Station
Anchorage Forestry Sciences Laboratory, 3301 C Street, Suite 200, Anchorage, AK 99503, USA

KEY WORDS: Mixed-effects models, random effects, lidar, forest inventory, stand volume

ABSTRACT:

Similar datasets (inventory plots, stand maps and lidar data) were available for study sites in the USA and Germany. These datasets
are grouped or hierarchical in that several sample plots are located within a stand and the stands are located within two study sites.
Fixed-effects models and mixed-effects models with a random intercept on the stand level were fit to each dataset. Mean lidar raw
data return height and its interaction term with canopy cover as well as its interaction term with the coniferous proportion were found
to be the most influential predictor variables. The mixed-effects models significantly improved the estimates and especially reduced
the bias which was present for numerous stands in the estimates of the fixed-effects models. This resulted in a slight increase of the
variance within the stands. The RMSE for the German study site was higher (34.7% and 29.7% for fixed- and the mixed-effects model
respectively) than on the US study site (19.2% and 16.8% for fixed- and the mixed-effects model respectively). A mixed-effects model
with random effects on the study site and stand level was fit to the combined dataset. It showed almost the same errors as the local
mixed-effects models (17.6% and 29.8% for the US and the German study site respectively). Hence a single model is sufficient to
make estimates for both datasets. The study shows the potential of mixed-effects models in this context. It illustrates that the common
practise of fitting different models for different strata may be unnecessary.

1 INTRODUCTION

Height and density metrics, derived from lidar (light detection
and ranging) point clouds can be used as predictor variables in
statistical models to estimate forest parameters at the stand or plot
level (Næsset, 2004; Andersen et al., 2005, among others). Such
models are usually fit using sample plots where both lidar (co-
variates) and ground-truth information (response) are available.
To map the variable of interest, the entire lidar dataset is gridded
into tiles having the same size as a sample plot. Then the predic-
tor variables are computed and the regression models are applied
to every tile. Compared to plot-based inventories, estimation er-
rors can be significantly decreased for the area of interest (e.g.
a single forest stand), since the number of observations (i.e. the
tiles) is usually much higher than the number of sample plots
within a stand.

The predictor variables derived from lidar data are mainly related
to the vegetation height and structure (e.g., height- and density
metrics, crown cover). The vegetation cover can, under certain
circumstances, also be classified into broadleaf and coniferous
trees. However, information about the site quality or tree species
cannot be derived without additional data. Therefore, predictions
for stands with rare site index classes or tree species compositions
might deviate from the mean model, resulting in a bias.

If the grouping structure (i.e., the stand boundaries) is known, the
deviation from the mean model of plot estimates within a stand
can be utilized to reduce the bias using mixed-effects models
(mixed models). From the statistical point of view, the group-
ing structure has to be considered since the observations are not
independent. In a mixed model, the effects of the variable that
indicates the level of grouping (i.e. the stand-ID) are assumed
to be a random sample of a larger population that vary randomly

around a population mean. This is referred to as random effects.
Mixed models with forestry application were discussed by Lappi
and Bailey (1988). An in-depth description of mixed models is
given for example by Pinheiro and Bates (2002).

In a mixed model, the variance is split into within and between
group variance. The coefficients and standard errors for predic-
tor variables that vary less within than between the groups are
therefore more accurate. Another advantage of a mixed model,
compared to a fixed-effects model with the grouping level as a
dummy variable, is that predictions can also be made for individ-
uals with grouping levels that did not exist in the dataset used to
fit the model (e.g., in our case those stands without sample plots).
In a forest inventory context, a mixed model provides an addi-
tional advantage. A model can be fit to a large dataset (e.g., to
a well inventoried public forest) and subsequently be calibrated
with just a few sample plots for a new forest area (e.g., a small
private forest). (A new model would need to be fit, if a fixed-
effects model were used.)

Publications regarding the estimation of volume and biomass on
the plot level include these of Næsset (2002) who created separate
models for different ages and site qualities and achieved R2 be-
tween 0.80 and 0.93 in a boreal forest and Means et al. (2000) for
Douglas fir stands in the Cascade Mountains (Oregon, USA) who
reported R2 between 0.93 and 0.95. In a study by Packalén and
Maltamo (2006) in a Finnish boreal forest, plot volume was as-
signed to tree species by using the k-MSN method. They report
a RMSE of roughly 24% for estimates of total volume. Aardt
et al. (2006) segmented homogeneous forest units first and used
the lidar vegetation height distribution and the field data for the
units to calibrate prediction models. They report R2 between 0.58
and 0.79 for their study which was located in Virginia (temperate
mixed forests).
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The objective of this research was to develop a single statistical
model for estimates on study sites located in the USA and Ger-
many. Furthermore, we wanted to find out if information about
the stand-level grouping of sample plots can be used to further
improve the regression models. The datasets contain several lev-
els of grouping or random effects: (i) The study sites are two ran-
dom samples of all potentially existing study sites, (ii) the stands
are grouped within the study site and are a random sample of the
stands within each study site. Due to this structure, the resulting
model is referred to as a multi-level or hierarchical model.

2 MATERIAL AND METHODS

2.1 American Dataset

The study site in the USA is part of Capitol State Forest and
is managed by the Washington State Department of Natural Re-
sources. The terrain is moderate with elevations varying from 300
to 425 meters and ground slopes up to 30◦. The forest is com-
posed primarily of Douglas-fir (Pseudotsuga menziesii (Mirb.)
Franco; 81%) and western hemlock (Tsuga heterophylla (Raf.)
Sarg.; 13%). Additional species present include western red
cedar (Thuja plicata Donn ex D. Don; 2%) and few deciduous
hardwoods such as red alder (Alnus rubra Bong.; 3%) and maple
(Acer spp.; <1%). The height of dominant trees in the study area
was approximately 50 meters (table 1). As part of a forest man-
agement study (Curtis et al., 2004), the canopy of the 70-year-old
forest stand was partially harvested in 1998, resulting in four dif-
ferent residual canopy density classes.

A total of 98 fixed area field inventory plots were established
over a range of stand conditions in 1999. Plot sizes ranged from
0.02 to 0.2 ha. Measurements acquired at each plot included
species and diameter at breast height (DBH) for all trees greater
than 14.2 cm in diameter. In addition, total height was mea-
sured on a representative selection of trees using a hand-held laser
rangefinder. A detailed description of the plot measurement pro-
tocol can be found in Curtis et al. (2004). Inventory plot locations
were surveyed with a Topcon ITS-1 total station and are accurate
to within 1 m.

The Saab TopEye lidar system mounted on a helicopter was used
to map approximately 5.25 km2 of the study area in the spring of
1999 (before foliation). Table 2 summarizes the flight parameters
and instrument settings for the data acquisition. Data for each
return included the pulse number, return number for the pulse (up
to four returns were recorded per pulse), X, Y, elevation, off-nadir
angle and intensity.

2.2 German Dataset

The 49 km2 study area is located approximately 60 km north of
Freiburg. Elevations range between 400 and 1050 m above sea
level. The average gradient across the site is approximately 12◦

with some slopes of up to 35◦. The average forest stand is approx-
imately 1.2 ha in size. Tree heights within the study area range
from 5 to 47 m, with an average height of 23 m. Norway spruce
(Picea abies (L.) Karst.; 65%), silver fir (Abies alba; 17%), beech
(Fagus sylvatica L.; 9%) and Scotts pine (Pinus sylvestris; 6%)
are the most common tree species. The forest is managed using
a group selection system, where the regeneration phase may take
several decades (clearcuts are not common in Germany).

A regular forest enterprize inventory was conducted in the second
half of 2003 in the state forest of the study area, using plots po-
sitioned on the intersections of a 100 x 200 m sample grid. The
horizontal accuracy of the inventory plot locations is estimated to

be better than 10 m. Forest characteristics were recorded within
sample plots consisting of four concentric circle plots (i.e. they
have the same centre) with radii of 2 m, 3 m, 6 m and 12 m.
Trees with a diameter at breast height (DBH) greater than 7 cm,
10 cm, 15 cm and 30 cm, respectively, were recorded within the
four circle plots. The heights of the two tallest trees per species
were measured in each plot using a Vertex angle measurement in-
strument. The height of the remaining trees within a plot were
estimated using forest stand height curves and the DBH. Single
tree volumes were calculated using DBH and height as param-
eters for taper and volume functions of the Baden-Württemberg
state forest service (Kon-Allan et al., 2004). Plots intersecting
stand or forest borders were excluded for this study. A total of
1061 inventory plots, with an overall area of 48 ha, were used
as terrestrial reference data for the remotely sensed data. Stand
boundaries were digitized from orthophotos in 2003 and were ad-
justed to meet operational purposes during the field work. Ad-
ditional information describing the stands that could be used as
covariates were not available for this study.

Lidar data were acquired in spring 2003 (before foliation) using
the Optech ALTM 1225 airborne laser scanner. Adjacent swaths
overlapped about 50% (table 2). First and last return laser data
were automatically classified into ground and vegetation hits by
the data provider (TopScan).

2.3 Computation of predictor variables

A digital terrain model (DTM) and a digital surface model (DSM)
was computed for both test sites using the software TreesVis
(Weinacker et al., 2004) for the German and Fusion 2.0 (Mc-
Gaughey et al., 2004) for the American study site. An evalua-
tion of the American DTM, presented in Reutebuch et al. (2003),
found an average lidar elevation error of 22 cm. For the German
study site, a DSM was derived from the first (DSMF) and the last
return (DSML) vegetation returns. Canopy height models (CHM,
CHMF, CHML) were computed by subtracting the DTM from
the according DSMs. The lidar vegetation height was determined
by calculating the difference between the elevation of the lidar
vegetation data (raw data) and the corresponding DTM raster bin
elevation.

Circular subsets of the same radius as the corresponding sample
plot were created from the lidar raw data. The 0th , 25th, 50th,
75th and 100th percentiles and the mean of the lidar vegetation
heights were calculated for each subset to characterize the vegeta-
tion height distribution. Vegetation density metrics were derived
by dividing the range between the highest and lowest measure-
ment into 10 classes and determining the proportion of measure-
ments within each class. Fusion 2.0 was used for the raw data
manipulation.

Since broadleaf trees in leaf-off condition had only a few vege-
tation returns in the last return data, they do not show up in the
CHML. Therefore, a classification of the pixels into those belong-
ing either to coniferous or broadleaf trees was possible by sub-
tracting the CHML from the CHMF. The result was normalized
with the CHMF. By comparison with orthophotos, a threshold of
0.3 was found to separate coniferous and broadleaf pixels well
(equation 1). It should be noted that Larches (Larix spp.) are a
potential problem for this classification approach, since they are
deciduous conifers. However, few Larches were present in the
study area so we felt the classification approach was applicable.

Pi

�
1 (CHMF,i − CHML,i)/CHMF,i ≤ 0.3
0 (CHMF,i − CHML,i)/CHMF,i > 0.3

(1)
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Parameter German study site American study site
Mean Max Mean Max

Trees per ha [ha−1] 411.10 2255.00 309.10 1093.00
Mean heights [m] 23.07 42.56 36.42 51.97
Volume [m3 ha−1] 347.10 1265.00 567.90 1167.00

Table 1. Summary of forest attributes derived from sample plot data for the study sites.

Parameter Characteristic
German study site American study site

Laser pulse frequency 25,000 Hz 7,000 Hz
Scan angle ± 20◦ ± 10◦

Swath width 500-600 m 70 m
Laser pulse density 0.51 m−2 4 m−2

Flying height 900 m AGL 200 m AGL
Flying speed 80 m sec.−1 25 m sec.−1

Beam divergence 0.25 mrad 2 mrad
Vertical accuracy 0.15 m n.a.
Horizontal accuracy 0.45 m n.a.

Table 2. Operating parameters of the Lidar sensors (n.a. = not available).

The ith pixel P will have a value of 1 if it is classified as conifer-
ous and 0 if classified as coming from a broadleaf tree.

The proportion of coniferous trees (coniferous proportion = CP)
at a plot, which is assumed to be equal to the proportion of pix-
els classified as coniferous, was calculated as the sum of conif-
erous pixels divided by the overall sum of pixels within a sam-
ple plot. For numerical reasons, this 0...1 distributed variable
was then stretched between -infinity and infinity using the logit-
transformation (log( p

1−p
)). Since the lidar dataset of the US

study site was not separated into first- and last return data, a com-
putation of CP was not possible.

The percentage of canopy cover (CC) on a sample plot was com-
puted as the number of pixels in the CHM (CHMF for the German
data set) greater than 1 m divided by the total number of pixels
within the plot. As for CP, a logit transformation was applied to
this variable.

2.4 Modeling

Modeling consisted of two steps: (i) Select adequate predictor
variables, (ii) fit mixed models by adding random effects. To
select predictor variables, scatter plots and correlations of the re-
sponse variables over the height metrics were analyzed for the
German study site. The mean vegetation height measured by li-
dar data (mean.l) was found to be the most influential predictor
variable. Since the variance increases as the response variable in-
creases (heteroscedasticity), mean.l was also used as a predictor
variable for the variance function. More precisely, a generalized-
least-squares (GLS) regression was used with weights based on
mean.l2δ where δ was estimated during the fitting of the model
(Pinheiro and Bates, 2002, p. 208).

Since the height metrics vary depending on the canopy structure,
we wanted to know if the model improves as interaction terms
between mean.l and the canopy cover and between mean.l and
the crown shape (expressed as conifer proportion) are considered
(equation 2). We also explored whether or not density metrics
further improved the model. The selected model (fixed-effects
model for the German study site) was then re-fit using data for
the American study site and the coefficients were compared. As
it was not possible to compute the coniferous proportion for the

US study site, this variable was not included in the fixed effect
model for the US data.

The fixed-effects model can be written as

yk = β0 + β1mean.lk + β2CCk + β3CPk+

β4CCk ·mean.lk + β5CPk ·mean.lk + εk,
k = 1, ..., n, εk ∼ N(0, σ2mean.l2δ

k ),

(2)

where yk is the response variable for the kth sample plot, β0..β5

are the coefficients, εk is an independent error term with a vari-
ance model depending on mean.l and δ and n is the number of
sample plots.

In the second step, random effects for the intercept on the stand
level were introduced for the local models (equation 3). Their
results were compared to a global model with random effects for
the intercept on the study site as well as on the stand level. For
the global model, we checked if it was necessary to have a ran-
dom effect for the coefficients. To do this, models with a random
intercept on the study site and the stand level as well as a random
effect for either one of the coefficients (equation 4) were com-
pared with the global model with the random effect only for the
intercept using a F-test.

The following equation is the general form of a local mixed
model

yjk = β0 + b0,j + β1x1,jk + .. + βmxm,jk + εjk

k = 1, ..., nj , bj ∼ N(0, σ2
1),

εjk ∼ N(0, σ2mean.l2δ
k )).

(3)

Here yjk is the response variable for the kth sample plot in the
jth stand, x1,jk..xm,jk are the m fixed effects, β0..βm are the co-
efficients thereof and nj is the number of sample plots within a
stand. The stand random effects b0,j are assumed to be indepen-
dent for different j and the within-group errors, εjk are assumed
to be independent of different j and k and to be independent of
the random effects.

If the response variable of the kth sample plot in the jth stand
within the ith study site is denoted as yijk i=1,2; j=1,...,li;
k=1,...,nj , with li as the number of stands in the ith study site
and b0,i; b0,ij are random effects for the intercept on the study
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site and stand level respectively, an example for the global model
including a random effect on the study site level for the coeffi-
cient of the first fixed effect (b1,i) can be expressed as

yijk = β0 + b0,i + b0,ij + (β1 + b1,i)x1,ijk + ..+

βmxm,ijk + εijk.
(4)

The random effects are, technically speaking, not parameters of
the statistical model. Nevertheless, their values (Best Linear Un-
biased Predictors, BLUPs) can be estimated. Details on the esti-
mation of BLUPs can be found in Pinheiro and Bates (2002).

A leave-one-out cross-validation procedure was used to check for
potential overfitting of the data. A close similarity of the RMSE
and the RMSE of the cross-validation (RMSE.CV) indicates that
the model is not overfitting the data (Andersen et al., 2005). All
statistical analysis were carried out with the software package
R (R-Development-Core-Team, 2006) including the library nlme
(Pinheiro and Bates, 2002) for the fitting of mixed-effects mod-
els.

3 RESULTS

3.1 Selected models

Canopy closure and coniferous proportion as well as their inter-
action with mean.l significantly improved the linear model for the
German study site. The addition of density metrics seemed to en-
hance the model fit significantly but improved the R2 less than
1%. They were therefore not included in the model in order to
keep the amount of predictor variables to a minimum. The se-
lected model of the German study site explains about 70% of the
variance and leads to an RMSE of ca. 35%.

The model including the same predictor variables as the model
for the German study site showed better goodness-of-fit measures
(R2 of 0.86 and RMSE of ca. 17%) for the US study site. Never-
theless, it was also tested, if the model improves as other height
metrics (e.g. the median or the 75th percentile) serve as predic-
tor variables instead of mean.l. But none of the models including
those variables was significantly different from the model includ-
ing mean.l. We concluded that the same predictor variables can
be used for the German and for the US study site. Additional
model attributes and RMSE can be found in tables 3 and 4.

3.2 Mixed effect models

Random effects on the stand level improved the models for both
study sites significantly. In general, it can be observed that the
median residual per stand is closer to zero, while the variance
slightly increases. This also means that the prediction for some
observations gets better, while the opposite is true for others. In
other words, the mixed models lead to a decreased bias with a
trade-off of higher variance. This of course, is most present in
stands where the bias of the fixed effect model was large. How-
ever, the variance within the stands is relatively high, especially
for the German study site. Therefore, the bias will not be elimi-
nated completely (figure 1 and table 5).

For the global model, besides the random effects on the stand
level, only a random effect for the coefficient of the interaction
between the canopy cover and mean.l significantly improved the
model. This suggests, that the other coefficients do not differ
significantly between the study sites. Interestingly, the RMSE
does not increase very much, meaning that this model can be used
for predictions at both study sites.

The global model can be expressed as

yijk = β0 + b0,i + b0,ij + β1mean.lijk + β2CCijk+

β3CPijk + (β4 + b1,i)CCijk ·mean.lijk+

β5CPijk ·mean.lijk + εijk.

(5)

The other models can be written the same way without b0,i and
b1,i for the local models with random effects, without b0,i, b1,i

and b0,ij for the local models with fixed effects only and without
CP for the US models.

3.3 Characteristics of the regression models

The slope of mean.l is slightly higher for the US study site than
for the German site. This is also true for the coefficient of canopy
cover. The models will predict higher volumes with an increase
of canopy cover or an increased number of coniferous trees per
plot. The global model produces almost the same predictions for
given mean.l but differs slightly more from the local models given
canopy cover (figures 2 and 3).
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Figure 2. Comparison of predictions of local fixed-effects mod-
els (FE) with the global mixed model (Ger.=Germany). mean.l
alters, CC and CP are fixed at 100%.

4 DISCUSSION

In this study, we compared fixed-effects models with mixed-
effects models containing random effects on the stand level and
on the study site level. The grouping information was used to
calibrate the mixed models on the stand level using the variance
information of sample plots located within a stand. A drawback
of this method is that this information can only be used reliably
for stands that contain several sample plots if the within stand
variance is high as it was the case in this study.

Reasons for bias in some stands, besides rare tree species and
site indices, might be uncommon taper shapes, varying density of
small trees in the understory (i.e. two layers of trees, which prob-
ably does not change mean.l explicitly) or other incidents that
change the canopy structure but are not reflected in the selected
covariates.
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Coefficients FE model (Ger.) FE model (US) RE model (Ger.) RE model (US) Global model
Est. p-val. Est. p-val. Est. p-val. Est. p-val. Est. p-val.

Intercept -10.12 0.42 77.24 0.24 -3.93 0.74 57.47 0.39 -82.04 0.33
mean.l 15.44 <0.01 9.15 <0.01 14.98 <0.01 10.48 <0.01 14.48 <0.01
CC -11.86 <0.01 -50.00 <0.01 -13.02 <0.01 -35.56 0.01 -13.69 <0.01
CP 5.45 0.14 3.52 0.24 5.86 0.06
mean.l · CC 1.64 <0.01 5.27 <0.01 1.74 <0.01 4.31 <0.01 2.68 <0.01
mean.l · CP 0.57 <0.01 0.59 <0.01 0.36 0.04
δ 0.46 0.34 0.58 0.44 0.46

Table 3. Attributes of the fitted models (Est. = Estimate, p-val. = p-value).

German models American models Both
FE model RE model FE model RE model Global model

RMSE [m3 ha−1] 120.33 103.12 108.96 95.51 103.00
German study site

RMSE [%] 34.67 29.71 29.76
RMSE.CV [%] 34.90 34.40 34.43

American study site
RMSE [%] 19.19 16.82 17.58
RMSE.CV [%] 19.95 18.49 18.69

Both
RMSE [%] 28.16
RMSE.CV [%] 32.35
R2 0.70 0.78 0.86 0.89 0.81

Table 4. RMSE, RMSE of the cross-validation (RMSE.CV) and R2 for the fitted models (FE = fixed effect, RE = random effect).

Stand-ID FE model RE model Global model
SD Bias SD Bias SD Bias

9 117.59 96.24 126.85 95.13 110.91 95.61
8 46.82 49.75 48.97 31.25 50.17 32.24
6 145.39 115.49 128.37 98.74 127.78 96.67
5 90.34 82.60 94.41 75.50 96.20 77.60
4 105.32 86.24 119.01 96.46 120.77 99.31
3 117.69 102.09 123.99 100.16 123.83 98.40
2 50.51 94.66 50.45 40.64 51.27 58.44

Table 5. Standard deviations (SD) of the residuals and bias for the stands on the American study site.
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Figure 1. Residuals of a leave-one-out cross-validation for selected stands at the German study site. Stands with a mean residual > 100
and at least 3 observations were selected for this graph.
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Figure 3. Comparison of predictions of local fixed-effects models
(FE) with the global mixed model (Ger.=Germany). CC varies,
mean.l is fixed at 30 m and CP at 100%.

We assume that differences in the model coefficients for the study
sites can be attributed to variation in the vegetation cover and the
lidar parameters:

1. The US study site is highly productive (high site index) and
is stocked mainly by Douglas-fir, which is one of the fastest
growing tree species in temperate forests. In comparison,
the German study site encompasses a range of productivity
classes, a broader range of elevations and a more diverse mix
of tree species. In addition, the main coniferous tree species

(Norway spruce) does not accumulate as much volume as
Douglas-fir.

2. Although both lidar systems produced small footprint data,
return density, footprint size and flying platforms were sig-
nificantly different. This could influence the penetration
rates through the canopy, amount of shadowing, etc.

However, whether vegetation or lidar parameters have a larger
influence in these study results could not be determined. The
same is true for possible interactions between lidar parameters
and vegetation.

Interestingly, the predictor variable canopy cover improved the
model more on the American study site than on the German study
site. This improvement is likely related to the extensive changes
in the canopy structure resulting from the silvicultural treatments
carried out on the American study site. These treatments resulted
in a wider range of canopy densities than was present on the Ger-
man dataset.

The coefficients of the coniferous proportion indicate that the vol-
ume increases with an increasing amount of coniferous trees on
a plot. This is consistent, since mean.l tends to be smaller for
conifer dominated plots compared to plots dominated by decid-
uous species but having the same mean tree height due to the
conifer crown shape (Breidenbach et al., 2007). Another rea-
son for this effect is probably that the amount of usable timber
is higher for most coniferous species, since the ratio of stem to
branch volume is higher for coniferous trees. Therefore, similar
heights correspond to more volume for conifer dominated sample
plots.

The observed errors for the US study site (∼ 17%) are compa-
rable to those reported by Næsset (2002), but somewhat higher
than those reported by Means et al. (2000) (73 m3 ha−1 opposed
to∼ 95 m3 ha−1). The errors for the German study site are much
higher which is probably due to the wider range of tree species
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and stand types. Another reason could be that the horizontal accu-
racy of the field plot positions for the German study site is worse
than for the US study site. Aardt et al. (2006), whose study site
is probably more similar to the German site, report smaller abso-
lute RMSE (∼ 40-68 m3 ha−1) than we observed for the German
site. However, since the range of stand volumes in their data is
significantly smaller than in this study, the relative errors seem to
be larger.

5 CONCLUSIONS AND FUTURE WORK

A mixed-effects model was fit to data from the USA and Ger-
many. The goodness-of-fit metrics indicate, that the model fit
to the combined data is almost as good as models fit to data for
each site, although the stand conditions and lidar properties var-
ied greatly between the study sites. It should be emphasized that
the random effects at the stand level were able to significantly
reduce the bias that was found at the stand level. The relatively
expensive field data were consequently used twofold: (i) To fit
prediction models, (ii) to reduce the bias by calibrating random
effects and utilizing the information that they provide at the stand
level. Therefore the effectiveness of the money spent to collect
field data was increased using mixed models.

The results of this study indicate that other researchers that strat-
ified their data and used different models for each stratum could
potentially enhance their models with random effects on the level
of these strata. An additional benefit would be that the amount of
data for modeling is then larger.

Future work will strive to better understand the bias observed at
the stand level. The stands, represented as polygons, on the Ger-
man site were delineated based on operational considerations.
Hence, small groups of trees were included with adjacent but
different (in terms of species composition and age) stands to
avoid creating small stands. We speculate that stand delineations
that result in more homogeneous conditions within each stand
will lead to lower within-stand variance and larger between-stand
variance which could further improve the models. Furthermore
it seems to be interesting to determine the contribution of the
different lidar acquisition parameters (e.g. return density, foot
print size) to the coefficients of the regression models. The use of
mixed models can also reduce the number of sample plots needed
for new study areas once a basic model exists. This issue will be
discussed in an other study.
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