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ABSTRACT: 
 
The Wadden Sea is an almost untouched area with a size of about 7300 km2 along the German, Dutch and Danish coast. Because of 
tide the area is flooded two times a day, creating a very special and sensitive ecosystem. In order to protect the Wadden Sea up-to-
date Digital Terrain Models (DTM) of high accuracy are needed to detect morphological changes. Lidar is an adequate method to 
obtain an accurate DTM. However Lidar is not able to penetrate water regions. Thus, raw Lidar data contain several water points, 
which do not belong to the terrain surface, leading to a wrong DTM. 
In this paper we present a supervised classification method to detect water regions from Lidar data using a fuzzy logic concept. 
Starting with raw data points of one strip, the points are grouped into scan lines. Based on training areas for the classes water and 
mudflat the features height, intensity and 2D point density are analysed. The significance level of the assumption that each feature 
differs for both classes is determined. Then, individual weights are derived from this significance level for every feature taking into 
account systematic feature changes depending on the angle of incidence of each laser pulse. A fuzzy logic classification is used to 
distinguish all points into water and mudflat points. Several additional steps are performed in order to refine and improve the 
classification result. Two meaningful examples are presented, which show the capability of this supervised fuzzy classification. 
 
 

1. INTRODUCTION 

The Wadden Sea is a very special and sensitive ecosystem. Two 
times a day the area is flooded and falls dry afterwards. The 
area reaches from Esbjerg, Denmark to Den Helder, 
Netherlands. Almost 60 % of the 7300 km2 is situated in 
Germany. The Wadden Sea represents a unique and protectable 
wildlife habitat. Many plants and animals have developed in 
accordance to the tidal influence and their future depends on the 
existance of the Wadden Sea.  
In order to monitor morphologic changes of the Wadden Sea, 
Digital Terrain Models of high accuracy are needed. Lidar 
proved to deliver high accurate spatial data of mudflats (e.g. 
Brzank et al., 2005). However, Lidar is not able to penetrate 
water. Due to the fact that water still remains in tidal trenches 
and depressions even during low tide, water points are parts of 
the captured Lidar data. In order to calculate a DTM, which 
describes the mudflat surface accurately, water points have to 
be detected and removed, and additional correct height data 
have to be introduced. 
Depending on the available data sources different approaches 
are possible. Two general cases can be distinguished. In the first 
case simultaneous acquisition of Lidar and multispectral image 
data is assumed. In this case, the images can be used to classify 
water with standard classification methods. Lecki et al. (2005) 
pointed out that high-resolution multispectral imagery and 
appropriate automatic classification techniques offer a viable 
tool for stream mapping. Within their analysis, especially water 
was classified accurately. Mundt et al. (2006) demonstrated that 
the accuracy of classification significantly increases by 
combining images and height data.  
Considering the rapid change of water-covered region caused 
by a fast changing water level, Lidar and multispectral data has 
to be captured simultaneously. Taking into account that the 
flight has to be performed during low tide and the weather 
conditions must be adequate for multispectral data capturing, 

available time windows are rather rare and small. This leads to 
much higher costs forcing many customers to order only Lidar 
data. Thus, in the second case, only the Lidar data is assumed to 
be available. Typically, Lidar data providers deliver irregularly 
spaced 3D points and intensity values, which correspond to the 
strength of the backscattered beam echo. Up to now, only a few 
approaches using exclusively the intensity of Lidar data for 
classification were published. Katzenbeisser and Kurz (2004) 
emphasized the fact that classification methods used for remote 
sensing images need to be adapted to intensity data. They 
pointed out that the intensity has only a useful information 
value within open areas where only one echo was detected. 
Hence, other criteria have to be considered in order to filter 
water points from Lidar data. 
In this paper, we extend the previous approach of Brzank and 
Heipke (2006). First, we summarize important physical 
characteristics of Lidar data and previous approaches, which 
were carried out to separate water and land points in Lidar data. 
Then, a new supervised method is presented for classification of 
Lidar data into water and land points. 
First, the raw data points are grouped into scan lines. Based on 
training areas for the classes water and mudflat the significance 
of the difference of the features height, intensity and 2D point 
density is calculated. Then, individual weights are calculated 
using the significance level for these three features, which also 
take into account systematic changes of intensity and 2D point 
density depending on the angle of incidence. Afterwards, a 
fuzzy classification is performed. All required parameters are 
obtained from training areas. Finally, the classification result is 
revised and improved by applying several tests. To illustrate the 
capability of the algorithm, two examples with different 
characteristics regarding Lidar scanner system, point density, 
point distribution etc. are presented. Finally, this paper 
concludes with a summary and an outlook on further 
development issues. 
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2. STATE OF THE ART 

2.1 Physical characteristics of Lidar data within coastal 
areas 

In order to develop a suitable algorithm, which is capable to 
classify Lidar data (raw 3D Lidar points and their intensity 
values), the physical characteristics of common Lidar systems 
as well as the reflection of water and land areas have to be 
considered. Generally, Lidar systems operate in the near 
infrared range. Wolfe and Zissis (1989) describe the absorption 
of infrared radiation depending on the illuminated surface 
material and the wavelength. They point out that the absorption 
for water is significantly higher than the absorption for soil. 
This leads to the fact that the intensity of water points is 
normally lower than the intensity of land points. 
Additionally, as a result of the Rayleigh Criteria, calm water 
surfaces behave like a mirror. Thus, specular reflection occurs. 
Often, a distance measurement can not be accomplished 
successfully because the received radiation energy is not 
distinguishable from background noise. Hence, the point 
density of Lidar data within water areas is normally 
significantly lower than within land areas. 
 
2.2 Systematic changes of intensity and point density 

depending on the angle of incidence 

As pointed out in the previous chapter, intensity and point 
density depend on the characteristics of the illuminated area. 
The reflectance of water is lower in case of near infrared light 
than the reflectance of mudflat. However, also mudflat has quite 
a smooth surface yielding in similar specular reflection 
behaviour of the laser beam. Thus, intensity and 2D point 
density are systematically influenced depending on the angle 
between the laser beam and the surface normal.  
 

Figure 1. Specular reflection in case of (left) horizontal and 
(right) tilted area 
 
Figure 1 illustrates how the laser beam is deflected depending 
on the angle of deflection (α) and the angle of incidence (β), if 
specular reflection occurs. Assuming that the area of interest is 
horizontal (which can be stated approximately for large parts of 
the Wadden Sea) α equals β. In case of tilted regions the surface 
orientation has to be taken into account in order to calculate β. 
Practically, the reflectance behaviour of the laser beam hitting 
water or mudflat is not exactly equal to specular reflection but 
similar. Hence, intensity values of points increase, if β 
decreases. Additionally, more points are measured correctly, if 
β decreases because the intensity is strong enough to trigger a 
correct measurement. In order to obtain accurate classification 
results using intensity and point density, the different 
reflectance properties of water and mudflat, but also the 
systematic changes depending on the angle of incidence, have 
to be taken into account. 
 

2.3 Previous approaches to extract water areas from Lidar 
data 

Brockmann and Mandlburger (2001) developed a technique to 
extract the boundary between land and river water, and applied 
it to data from the German river “Oder”. Based on Lidar data, 
the planimetric location of the river centre line as well as 
bathymetric measurements of the riverbed, the boundary was 
obtained within a two-stage approach. First, the height level of 
the water area was derived by averaging the Lidar points in the 
vicinity of the river centre line. Afterwards, a DTM of all Lidar 
points (including also points of the water surface) was 
calculated. Then, the 0 m contour line of the difference model 
of the Lidar DTM and the water height level was derived. This 
contour line is called “preliminary borderline”. Within step two, 
the bathymetric points of the preliminary water area were 
combined with all Lidar points outside the preliminary water 
area. Then, a DTM representing the riverbeds instead of 
waterlevel was calculated. Afterwards, the final borderline was 
obtained by intersecting this DTM including the riverbeds and 
the height level of water area. 
Mandlburger (2006) proposed another method based on the 
same input data, which also detects the borderline of a river. 
First, the Lidar points are transformed into the river-axis 
system. Then, segments with a fixed length in flow direction are 
created. All points for each segment are used to create a profile 
across flow direction. After removing all outliers (vegetation 
and water points etc.), bank slopes of both sides are generated 
by an adjusted line. Then, one border point for each side is 
calculated by intersecting these lines with the prior known 
water height. Finally, all border points are transformed back 
into project coordinate system and linked. 
Brzank and Lohmann (2004) (see also Brzank et al., 2005) 
developed another algorithm which separates water regions 
from non-water regions based on a DSM calculated from Lidar 
data. The main idea is to detect reliable water regions and 
expand those using height and intensity values. For that 
purpose, local height minima were extracted from the DSM, 
which represent potential seed zones of water areas. This step 
was followed by a region growing procedure using height and 
intensity data of the DSM grid points. In comparison to the 
previously mentioned algorithms, no additional information, 
such as water height or river axis is necessary. However, results 
were not satisfying, because systematic changes of intensity 
were not modelled. 
 
2.4 Fuzzy classification concept  

In order to classify water points from Lidar data in the Wadden 
Sea, the first two concepts described in section 2.3 are not 
sufficient. The algorithm of Brockmann and Mandlburger 
(2001) as well as Mandlburger (2006) require additional data, 
such as water height, approximate position of water and 
bathymetric data. However, these data are not available for the 
Wadden Sea. Moreover, the algorithms do not use further 
available information such as intensity and point distribution. 
The method of Brzank and Lohmann (2004) is also not 
sufficient, because systematic changes of intensity are not 
modelled. Furthermore, the method is not capable of dealing 
with different water heights within one water region. This 
remarkable effect occurs, because water height changes over 
time because of tide. Data of several flight strips are linked 
together in order to calculate a DSM. The time difference in 
capturing flight strips can lead to different height levels within 
one and the same water region. 
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Hence, Brzank and Heipke (2006) developed a new algorithm 
which focuses on classifying water points in Wadden Sea using 
only raw Lidar data. In contrast to previous approaches, 
classification is carried out for each flight strip separately in 
order to avoid different water heights within one region. The 
classification uses a fuzzy logic concept. A membership value 
for the class water μi(x) is calculated for every point based on 
its feature values and their weights. Six different features are 
used: height, intensity, slope, missed points, segment length and 
1D point density. While height and intensity are measured 
directly for every point, all other features are defined based on 
points of the same scan line. 
The classification is performed for each scan line using a 
hysteresis threshold method. After classification, several 
additional routines are performed in order to control and 
improve the classification result. 
Brzank and Heipke (2006) proved that this method is capable to 
classify water regions. The algorithm has many advantages:  
 

- All feature values can be obtained either directly from the 
measured point or in connection with other points of the 
same scan line. 

- The classification is carried out for each scan line 
separately, making the classification very fast. 

- The classification is done for every flight strip avoiding 
height changes due to time differences. 

- The classification uses a certain weight for every feature 
taking into account the individual benefit of this feature for 
the classification. 

 
However some facts are not taken into account: 
 

- Systematic changes of intensity and point density across 
the flight direction are not be modelled. 

- The needed classification parameters are not derived 
from data. The user has to set these values. 

- The features missed points, segment length and 1D point 
density refer to one scan line, leading to a more noise 
depended classification result. 

- The features missed points, segment length and 1D point 
density are correlated, which is not considered in the 
classification process. 

 
3. CLASSIFICATION OF WATER POINTS WITH 

SUPERVISED FUZZY LOGIG CONCEPT 

Based on the evaluation in chapter 2.4, fuzzy classification 
(Brzank and Heipke, 2006) was improved. First, the number of 
features was reduced to height, intensity and 2D point density. 
The features missed points, segment length and 1D point 
density were replaced by the new feature 2D point density. 
Thus, for every point the number of Lidar points inside a given 
polygon is determined. The centre of the polygon is given by 
the point of interest. Then, the number is divided by the size of 
the polygon. Furthermore, the feature slope was removed. 
In order to tackle systematic changes of intensity and 2D point 
density their weights depend on the angle of deflection of the 
measured point. This leads to a new formula to calculate the 
entire membership value of class water (equation 1). 
 
 
 
       (1) 
 
 

h, i, p, α individual height, intensity, 2D point 
density and angle of deflection 

δH, δI(α), δP(α) weight for features height, intensity, 2D 
point density 

μH(h), μI(i,α), μP(p,α) membership value water of features 
height, intensity, 2D point density 

μ(h,i,p,α) entire membership of class water 
 
3.1 Determination of classification parameters from 

training areas 

In order to classify Lidar data into water and mudflat with the 
proposed fuzzy logic concept several classification parameters 
are needed. Table 1 shows these parameters and their function. 
As pointed out earlier, all parameter are to be derived 
automatically from training areas. 
 

classification parameter function 
two thresholds to limit the 
application range of the 
membership function, 
(intensity and 2D point 
density) 

transforms crisp height value 
into fuzzy membership value 
for height (intensity and 2D 
point density) 

constant weight for height describes how useful the 
feature height is evaluated for 
the selected data set 

individual weight for 
intensity (2D point density) 

describes how useful the 
feature intensity (2D point 
density) is evaluated for the 
selected point 

water thresholds - low and 
high 

classification of fuzzy 
membership value of every 
point into class water or 
mudflat 

Table 1. Classification parameters and their function 
 
First, training areas for the classes water and mudflat are 
determined. Typically, prior knowledge is used to define these 
areas. Then, all Lidar points inside these areas are extracted. 
Afterwards, the mean height and the corresponding standard 
deviation for all water and mudflat training areas are calculated. 
Due to a systematic dependency of intensity and 2D point 
density on their angle of incidence, the mean values and 
standard deviations are not significant. Hence, the mean 
intensity (2D point density respectively) must be referenced 
either with the angle of incidence β or the angle of deflection α. 
For reason of simplicity, we use in this paper only α. In order to 
calculate α, the flight trajectory must be available. Based on the 
actual position of the plane for each scan line α can be 
calculated for every point. If β should be used, the difference 
between the angle of deflection and the corresponding surface 
normal must be determined. For this purpose, the DTM is 
needed. Afterwards, the feature values of intensity and 2D point 
density of every point can be associated with the corresponding 
angle. These value pairs are used to fit a monotonically 
decreasing function for both classes. Generally, every function, 
which describes the systematic dependency correctly, can be 
used. We chose a function with 4 parameters (see equation 2), 
which was formerly used as weight function in linear prediction 
with robust filtering (Kraus and Pfeifer, 1998). 
 
 
       (2) 
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Figure 2 shows a typical result of function fitting for intensity 
of both classes. It can be seen that intensity decreases, if the 
angle of deflection increases.  
 

 
Figure 2. Intensity for both classes as a function of the angle of 
deflection α 
 
3.1.1 Determination of membership function and their 
corresponding thresholds 
 
In order to transform a crisp feature value into a fuzzy 
membership value, a membership function and two thresholds, 
which limit the application area of the membership function, are 
needed. We define a straight line as membership function. In 
case of the feature height the determined mean value of class 
mudflat is used as lower threshold with membership value 0, 
while the mean value of class water is used as upper threshold 
with membership value 1. In case of intensity and 2D point 
density, the adjusted functions are used. The individual 
threshold low (high) of every point equals the adjusted value of 
function mudflat (water) using the certain angle of the point of 
interest. 
 
3.1.2 Determination of individual weights 
 
In order to calculate the entire membership value of every point 
individual weights have to be determined. We define the weight 
to be in the range of 0 up to 1, where 0 means that the feature is 
not suited and 1 means that the feature is most useful for 
classification. For the feature height, only one constant weight 
is determined, because the height values do not depend on the 
angle of deflection. In case of intensity and 2D point density an 
individual weight depending on the angle at the point of interest 
is obtained. In order to calculate the constant weight of the 
feature height, all training areas for water are combined and the 
mean⎯x and standard deviation⎯s is computed. The training 
areas of mudflat are processed in the same way. Then, the 
values are used to create the Gaussian distribution of the 
probability density (Figure 3). 
 

 
Figure 3. Probability density function of feature height for 
classes water and mudflat  

It can be stated that the higher the overlapping rate of both 
distributions the less useful the feature height is to separate 
between water and mudflat. Based on this conclusion, the level 
of significance for the assumption that both distributions are 
different (H0: ⎯xwater ≠ ⎯xmudflat) is calculated using a statistical 
test. Equation 3 displays the used test statistics tf. Then, the 
corresponding weight is derived from the level of significance 
by linear interpolation. For that purpose, two constraints are set. 
If the level of significance is 50% the weight amounts to 0. In 
case of 100% the weight is 1. 
 
 
     (3) 
 
 
 
For intensity and 2D point density the determination of the 
individual weight is very similar. The adjusted values for 
mudflat and water are calculated using the estimated features of 
equation 2. The residuals of all observations of one class are 
used to calculate the standard deviation. Again, both Gaussian 
distributions are derived and the level of significance is 
determined leading to the individual weight depending on the 
angle of deflection of the point of interest. 
 
3.1.3 Determination of water thresholds  
 
After determination of weights the entire membership value of 
every training point can be calculated using equation 1. Then, 
the mean of all entire membership values of class water and 
mudflat as well as the standard deviation are derived. Now, the 
two Gaussian distributions of the entire membership value are 
created. To find the low and high water thresholds the user 
defines two specific ratios (we normally use 1/10 and 10) of 
probability density water and probability density mudflat. The 
values that match these ratios are used as low and high 
thresholds. 

 
Figure 4. Determination of water threshold low and high 
 
Remark: Generally, a membership value can only lie in the 
range of 0 to 1. For that reason (see chapter 3.1.1) two 
thresholds are used in order to limit the use of the membership 
function. In case of classification all points with feature value 
below threshold low get a membership value of 0, while all 
points with feature value above threshold high get a 
membership value of 1. However, in the analysis of training 
areas the use of the membership function is not limited leading 
to membership values below 0 and above 1. This is necessary in 
order to create normal distributions of the entire membership 
value water (see Figure 4). 
 

4. EXAMPLES 

In order to demonstrate the ability of the algorithm, two 
examples are presented in the section. The first example 
contains a part of a flight strip of the campaign “Friedrichskoog 
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2005”, which is situated at the coast of the North Sea next to the 
estuary of the river Elbe. The flight was carried out by the 
German company Toposys using their Lidar system Falcon II. 
The second example is a part of a flight strip of the campaign 
“Juist 2004”. The flight was carried out by German company 
Topscan using an ALTM2050 from Optech in order to capture 
Lidar data of the East Friesian island Juist and its surrounding.  
 

 
Figure 5. Orthoimage of Lidar campaign “Friedrichskoog 2005” 
(left) and  Lidar points of a part of a flight strip – intensity 
coded (right) 
 

Figure 5 (left) shows an orthoimage (size: 1.5km length, 1.3km 
width) of the campaign “Friedrichskoog”. In the image some 
tidal trenches filled with water as well as a huge water covered 
swale can be seen. Figure 5 (right) displays captured Lidar 
points of a part of a flight strip. The points are coded in relation 
to their intensity (low intensity – bright colour, high intensity – 
dark colour). It can be seen that the intensity values in the 
middle of the strip are significantly higher than at the border. 
Hence, a systematic dependency of the deflection angle exists. 
 

  
Figure 6. Orthoimage of Lidar campaign “Juist 2004” (left) and 
Lidar points of a part of a flight strip – intensity coded (right) 
 
Figure 6 displays an orthoimage (size: 4km length, 2.6km 
width) of campaign “Juist”. There is a huge tidal trench situated 
south of the island. Again, intensity values are significantly 
smaller for water than for mudflat. However, a systematic 
dependency of intensity is not obvious. 
Based on the orthoimage a training area for each class was 
manually selected. Afterwards, all classification parameter were 
derived from automatic analysis of the training areas. Figure 7 
and 8 show the dependency of both classes from angle of 
deflection for features intensity and point density. The blue 
(pink) line marks the average feature value of class water 
(mudflat), while cyan (ochre) area indicates the single standard 
deviation of all residuals. As was already obvious from Figure 
5, intensity of points from campaign “Friedrichskoog” is 
systematically influenced by the angle of deflection. Intensity 
of water and land differ strongly in case of a small angle of 
deflection. The more the angle increases, the more the 
intensities for both classes resemble each other. At the border of 
the flight strip the intensity of water and land do not differ 
significantly. Hence, the intensity weight within the 
classification has its maximum for α = 0 and decreases, if α 
increases. At the border of the flight strip, intensity is not 
considered in the classification. In contrast to the intensity, the 
point density only differs marginally between classes water and 

mudflat. The scan pattern has almost no holes for both training 
area. Hence, the individual weight of point density is always 0. 
 

Figure 7. Determination of systematic changes of intensity (up) 
and point density (down) depending on the angle of deflection - 
Friedrichskoog 
 
The intensity and point density of Lidar points from the 
campaign “Juist” only slightly depend on the individual angle 
of deflection. However, intensity and point density of both 
classes significantly differ from each other for all angle of 
deflection. Thus, both features are effective within 
classification. 
 

Figure 8. Determination of systematic changes of intensity (up) 
and point density (down) depending on the angle of deflection - 
Juist 
 
Based on automatically determined classification parameters, 
the classification of both datasets was performed. Afterwards, 
classification discrepancies were detected and removed. Finally, 
every classification result was smoothed in order to suppress 
classification noise. Results are displayed in Figure 9 and 10. 
Figure 9 (left) shows the classification result of campaign 
“Friedrichskoog”. Based on a visual comparison of the 
classification result with the orthoimage it can be stated that the 
overall correctness is satisfying. However, some points within 
tidal trenches are misclassified due to waves and noisy intensity 
values. Most highly noisy misclassified points were supressed 
by performing additional checks and smoothing leading to the 
result displayed in Figure 9 (right). 
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Figure 9. Water (blue) and mudflat (yellow) points after 
classification (left), additional checks and smoothing (right) - 
Friedrichskoog 
 
The classification result of campaign “Juist” is visibly slightly 
better. There are only a few misclassified points due to waves 
and intensity noise. 
 

 
Figure 10. Water and mudflat points after classification (left), 
additional checks and smoothing (right) – Juist 
 
In order to evaluate the overall correctness, water and mudflat 
areas were manually digitized from aerial images and the 
resulting areas were used as reference for the automatically 
derived classification. Table 2 lists the results. The correctness 
of campaign “Juist” is higher than for “Friedrichskoog”. Two 
reasons can be found. On one side, intensity does not differ 
significantly for all points while point density is not used for the 
classification “Friedrichskoog”. In case of “Juist”, all features 
differ significantly. Furthermore, height increases very slowly 
at the transition zone from water to mudflat in case of 
“Friedrichskoog” making it very difficult to derive correct 
results. For campaign “Juist” height changes are larger at the 
transition zone leading to a more accurate classification. 
 

 Friedrichskoog 2005 Juist 2004 
Number of 

classified points 1.257.518 1.469.405 

Classified water 
points 592.577 517.858 

Classified land 
points 664.941 951.547 

 Water Land Water Land 
Classified water 

points 
527.641 64.936 510.339 7.519 

Classified land 
points 

4.127 660.814 5.886 945.661 

Correctness [%] 89.0 99.4 98.5 99.4 

Table 2. Evaluated classification results 
 

5. CONCLUSION AND OUTLOOK 

A supervised fuzzy classification approach to separate Lidar 
points into the classes water and mudflat is introduced. The 
algorithm is based on the original Lidar data and classifies 
every flight strip. For the analysis the features height, intensity 
and 2D point density are used. The classification is based on the 
fuzzy logic concept. All necessary classification parameters are 
derived from training areas. Two different examples are 
presented to illustrate the capability of this algorithm. They 
demonstrate that the classification algorithm is able to deliver 
accurate results for different Lidar scanner types. 

Future work will focus on the determination of highly precise 
DTMs for the whole investigated areas. Fur this purpose, 
bathymetric data has to be included in the calculation in order 
to fill areas, which are classified as water. 
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