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ABSTRACT: 
 
Interest in full-waveform airborne laser scanning (ALS) data has significantly increased with the release of waveform digitizers by 
commercial vendors. Despite the recent widespread availability of full-waveform data, the full potential of this type of data has yet 
to be realised. Some of the most promising applications for waveform data can be found in various fields of forestry, in which ALS 
data can aid in understanding single-tree characteristics. Waveform data can provide both vertical and horizontal information on 
forests. In this article, we study the feasibility of using full waveform data for tree identification. This study also considers the 
applicability of methods designed for use with conventional data, the possibility of generating methods that could use considerably 
denser point clouds extracted from full-waveforms, as well as the applicability of single descriptive or distinct waveform 
characteristics for tree species classification and tree parameter extraction. In addition, waveform data is compared with terrestrial 
close-range images. Superimposing waveform data on registered close-range images offers an excellent opportunity for 
understanding the waveform in greater detail.  
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Airborne laser scanning (ALS) has become a commercially 
accepted tool for modelling our environment. For the past 
decade, the majority of commercial applications have 
concentrated on using the last and first pulses. Recently, ALS 
vendors have expanded the provided number of returns, thereby 
enabling users to more easily gain information between the first 
and last pulses. Typically, between two to five returns have 
been employed, though some ALS systems can register the full-
waveform.  
 
The methods and problems of interpreting recorded waveforms 
have recently been studied by Hofton et al. (2000) and Wagner 
et al. (2006). Current methods for waveform processing focus 
on using a Gaussian decomposition of the signal to derive 
individual echoes, derived from the main scatterers in the path 
of the laser beam (Wagner et al., 2006; Reitberger et al., 
2006a). 
 
ALS data has become popular for estimating forest parameters. 
The two main feature extraction approaches for deriving forest 
information from ALS point clouds have been based on 
statistical canopy height distribution (e.g., Næsset 1997) and 
individual tree detection (e.g., Hyyppä and Inkinen, 1999; 
Persson et al., 2002). Distribution-based techniques typically 
use regression, non-parametric or discriminant analysis for 
forest parameter estimation. Individual-tree-based approaches 
use the neighbourhood information of canopy height point 
clouds and the pixels of CHMs for extracting such features as 
crown size, as well as individual tree height and location. 
Finally, forest inventory data are estimated using existing 
models and statistical techniques. 
 
Before current commercial small-footprint waveform digitizers 
became available, some forest parameters were statistically 

extracted using large-footprint waveform laser altimeters such 
as "Scanning Lidar Imager of Canopies by based on Echo 
Recovery" (SLICER) and "Laser Vegetation Imaging Sensor" 
(LVIS) (Ni-Meister et al. 2001, Harding et al. 2001). 
 
Tree species is an essential index in forest studies, inventories, 
managements and other forest applications. Pyysalo and 
Hyyppä (2002) investigated a method for describing the tree 
shape by its 3D point cloud density distribution in both height 
and width dimension (Reitberger, 2006a). Holmgren and 
Persson (2004) showed that pine and spruce can be separated 
with 95% accuracy using laser scanner data. Knowledge of the 
echo type (first, last, only) together with elevation information 
was used to extract features from tree crowns. In Brantberg 
(2007), a digraph process was used for tree species 
classification, and the shape characteristics of a marginal height 
distribution were used to improve the tree height estimate. The 
potential use of waveform data for tree species classification 
has been presented, e.g., in Reitberger et al. (2006b). 
 
If a size-independent representation of the point cloud structure 
can be formed, the corresponding features can be represented 
using primary components or other data compression methods. 
Waveform-induced point cloud densification could enable the 
generation of structural features that are detailed enough to 
allow for species classification. 
 
In this article, we present various experiments on tree 
identification using waveform laser data. Two types of methods 
are used: methods based on single descriptive or distinct 
waveform characteristics and those that use considerably denser 
point clouds extracted from the full-waveforms. In addition, we 
also present the integration of ALS waveform echoes with 
terrestrial close-range images. 
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2. DATA 

Waveform Data from Espoonlahti 2.1 

2.2 

The study data are from the Espoonlahti area and were recorded 
August 31st 2006 with a TopEye MKII Palmer scanner. A flying 
altitude of 300m was used, with the scan angle varying between 
9 and 25 degrees, as measured from the scanner position to the 
recorded point position. The waveform sample interval was 1 
ns, corresponding to approximately a 15-cm resolution in the 
beam direction. The pulse length was 5 ns. The footprint of a 
single laser beam on the ground was approximately 30 cm 
caused by a beam divergence of 1 mrad. The mean point 
density was 16.6 points/m2.  
 

Reference Lidar Data 

As a reference, we use the automatically extracted points from 
the TopEye MKII system, which produces first and last pulse 
data. For comparison of structural features, we also used the 
data from Optech ALTM3100 flight on July 12th 2005 with 
combined point cloud from 1000 and 400 m flying heights. Fig. 
1 presents the point distributions of the systems used in the case 
of a birch. 
 

 
Figure 1. Birch tree example of point distribution for the data 

types used.  
 
2.3 

3.1 

3.1.1 

Photographs 

Close-range images were captured using a Nikon D100 camera 
with a Nikkor 24-85 mm lens. The size of the CCD array was 
3,008 x 2,000 pixels. A zoom setting of 24 mm was used during 
the image capture. The camera was calibrated in the test field at 
the Helsinki University of Technology (TKK). The original 
images were resampled in order to eliminate the effect of lens 
distortions. 
 
 

3. EXPERIENCES WITH WAVEFORM METHODS 
FOR TREE SPECIES IDENTIFICATION AND FINDING 

TRUNK LOCATIONS 

Methods Based on Points Extracted from Waveform  

 Tree Top Shape Identification 
 
It is more convenient to detect and locate treetops rather than 
crowns, especially when occurring in clusters. Certain species 
have distinctive top shape; for example, the spruce usually 

shows a cone-shape crown with a small open angle. Ideally, the 
shape of the crown can be modeled in 3D space by surface 
fitting (e.g., Holmgren and Persson, 2004). In our study, the 
crown top was explored in vertical projection and described 
with 2D curve parameters. At first, the crown points were 
projected onto four vertical planes through the assumed trunk 
position, in cardinal and half-cardinal directions. The final 
projection was constructed as a superposition of these four 
planes, which roughly expressed the convex hull of the crown. 
In the description phase, top shape was described by 
discharging all inner points and fitting a parabola based on the 
points lying in the topmost two meters.  
 
Fig. 2(a) and Fig. 2(b) plot fitted curves in North-South 
projection for typical pine and spruce; Fig. 2(c) and Fig. 2(d) 
show the curves for 8 pine and 8 spruce trees, respectively. In 
general, the open angle for spruce is smaller than that for pine, 
thus providing a likely indicator for species identification. 
 

 
Figure 2. Tree top shape identification. (a) Pine with fitted 

curve, (b) spruce with fitted curve, (c) curves of 
eight pines and (d) curves of eight spruces. For 
comparison, curves were plotted at the same vertex 
in (c) and (d). 

 
Mean increase 
WF/system % 

Crown top points Points used in tree top 
algorithm 

Spruce 139% 115% 
Pine 132% 106% 

 
Table 1. The second column describes the mean points increase 

in the tree crown top, comparing the available points 
extracted from the waveform with points from 
first/last pulses. The third column presents the points 
increase in the treetop shape identification 
algorithm. 

 
Table 1 shows that the points extracted from the waveform 
located inside the canopy are of little practical use, when 
employing shape predicting methods developed for first and last 
pulse data. The result is only indicative due to the small sample 
size. Verifying this result would require more data from 
different species and other environments. 
 
3.1.2 Vertical and Horizontal Density Features 
 
First and last pulse and waveform densified data are studied to 
determine those features that both represent the characteristic 
tree shape of different species and are independent of tree size. 
In our examples, the height of each tree is divided into ten 
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equal-sized bins. As a height feature, we use the percentage of 
points falling into each height bin. 
 
Fig. 3 plots the height features of eight trees for each of the four 
tree species. It can be seen that the feature describing the height 
of a pine has the greatest point density near ground level. In 
contrast, the deciduous trees, birch and willow, have a 
maximum density in the upper canopy. The spruce tree has the 
most uniform point distribution along height bins. These height 
features only consider the point cloud distribution in the vertical 
direction. As structural features, we use both height and 
distance from the assumed trunk position. For simplicity, the 
location of the highest laser point is assumed to be trunk 
position. If the treetop is clearly asymmetrical, the centre of the 
point cloud is used. The point cloud is divided into ten height 
bins and five distance bins. The distance bins are cylindrical 
volumes around the trunk. Thus, distance bins located far from 
the trunk have larger sample percentages than would the inner 
distance bins. Different grey levels of the structural feature 
matrix elements in Fig. 4 describe the percentage of all the 
points falling into single height-width bin. 

 
Figure 3. Eight representatives from each of four species are 

plotted to visualize the stability of the height feature 
in dense point clouds. 

  

 
Figure 4. Structural density representations of the birch tree 

created from the point cloud in Fig. 1. The darker 
the structural element, the more points are located in 
the corresponding volume. 

 
The advantage of using structural or height features to represent 
trees is that trees of different physical dimensions and point 
cloud size can be compared and dimension reduction methods 
can be used to enhance the computation. 
 

The usability of height and structural features for species 
classification was tested using a sample of 32 trees, 8 samples 
from each of four species: pine, spruce, birch and willow (Salix 
Siberica). In the tests, the Euclidean distance between feature 
vectors was used as the distance metric. The leave-one-out 
method was employed for classifying each tree to one of the 
four species; for each tree in turn, the species information of 
other trees is used for determining the species of the current 
tree. In a nearest neighbour test, the distance to the feature 
vectors of 31 other tree samples was calculated, and each tree 
was classified to the same species as the closest neighbour. In 
the centre distance test, we computed the mean feature vectors 
for each species. Each tree was classified to the species whose 
feature centre was closest to the tree feature. 
  

Height: pine spruce birch willow Total 
Dense 1-nn 75% 13% 75% 0% 41% 
Thin 1-nn 88% 25% 75% 0% 47% 
Dense cd 88% 75% 88% 25% 69% 
Thin cd 100% 13% 63% 13% 47% 
Structural: pine spruce birch willow Total 
Dense 1-nn 50% 63% 88% 63% 66% 
Thin 1-nn 88% 75% 88% 75% 81% 
Dense cd 50% 50% 88% 75% 66% 
Thin cd 100% 13% 63% 75% 63% 

  
Table 2. For each species, the percentage of correctly classified 

trees for waveform densified (Dense) and first and 
last pulse (Thin) TopEye data in nearest neighbour 
(1-nn) and centre distance (cd) methods. 

 
In Table 2, two different distance metrics have been used to 
study whether the densified point cloud improves the separation 
between feature vectors of different tree species using height 
and structural features. The nearest neighbour method is likely 
to suffer from outlier samples. In larger samples, the nearest 
neighbour method should be k-nn, with a k variable of at least 
three. This result is only suggestive due to the small sample 
size. In a more realistic scheme, the sample centres would be 
calculated using a small training sample from each of the 
species.  
 
Recently, Reitberger (2006a) compared the number of TopEye 
System points and waveform-extracted points. The increase in 
points for leaves on deciduous areas was 123%, but 230% for 
coniferous trees. For our sample, the respective values are 
376% (Birch, Willow, leaf on) and 254% (Pine, Spruce). The 
difference in the percentages above is probably due to different 
area determination around the tree. We have not yet found an 
explanation for the fact that Reitberger et al. (2006) found a 
larger increase in the points for coniferous trees, whereas our 
study found a higher increase for deciduous ones. 
 
3.2 Methods Using Single Waveform Features 

In this section, we consider the possibility of examining the 
individual waveforms hitting a single tree. Such waveforms 
could be used to find information on tree trunk location or tree 
species. The use of the features extracted from the waveform is 
considered in Wagner et al. (2006), in which the authors studied 
the range, amplitude, pulse width and backscatter cross section 
information for target discrimination. 
 
Fig. 5 describes the number of details in the waveform data. 
The left graph plots the points extracted from waveforms, 
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hitting the manually delineated tree canopy. Because of the 
relatively large scan angle, the extracted points occupy a much 
larger area than the original point cloud. This is of particular 
concern when analysing a dense forest. In the middle plot, only 
those waveforms are selected that travel across the point cloud 
centre. The right plot shows a densely sampled plane that slices 
the canopy when consecutively sent pulse waveforms are used 
together. In order to use features to measure characteristics such 
as trunk hits, it is essential that these features can be found 
computationally efficiently from large waveform data sets. 
 

 
Figure 5. The left image shows all of the extracted points. In 

the middle image, the points with waveform directed 
into the tree canopy are plotted in green. The right 
image visualises a single slice from the consecutive 
waveforms.  

 
3.2.1  Distinctive waveform profiles 
 

 
Figure 6. A multi-peaked waveform profile (right) is 

characteristic for signals that hit the spruce at a 
certain angle (left). 

 
A laser beam that passes through spruce at a certain angle 
produces a multi-peaked waveform profile, as shown in Fig. 6. 
The return signal, composed of reflections from branch peaks 
and waveform amplitude, varies strongly as the signal passes 
through the foliage. To automatically determine multi-peaked 
waveforms, we developed an algorithm based on the divergence 
of signal amplitudes. The divergence was calculated from the 
part of the signal that originated from the tree crown, taking 
into account the fact that divergence was found throughout that 
part of the signal. Using this algorithm, we found several multi-
peaked waveforms among each studied spruce. These 
waveforms were also found among pine data, though not as 
often as was the case with the spruce samples. Spruce can be 
identified based on the assumption that they cause more multi-

peaked waveforms than do pines. In this study, 0-50 % more 
multi-peaked waveforms were found from the spruce data 
compared to the pine data, though the results depend on 
algorithm parameters and several other factors. At the moment, 
only a few trees have been analyzed and more waveform data is 
needed to gain statistically reliable results. 
 
3.2.2  Trunk echoes 
 
Typically, two strong echoes were found in the case when the 
signal first hit the tree foliage and then the trunk, as seen in Fig. 
7. Based on this information, an algorithm was developed to 
find tree trunk waveforms. The algorithm uses waveform data 
originating from the upper part of trees and restricts the 
distances between strong echoes. This was important to avoid 
confusion with signals of similar appearance originating from 
foliage and the ground. Several trunk waveforms were found 
from each spruce and pine, most of which seem to suggest 
roughly the same trunk location, thus allowing divergent points 
to be filtered out and the trunk position to be determined. In the 
future, field survey data are required to detect absolute errors 
arising from the determined trunk points. 

 
Figure 7. The spruce point cloud and waveform signals that 

hit the tree trunk (left). The waveform profile on the 
right is typical for signals that hit both the foliage 
and the trunk. 

 
3.3 Integration of the ALS Waveforms with Terrestrial 
Close-Range Images 

Registered close-range images are the most illustrative 
references when trying to understand the behaviour of the ALS. 
Unlike images derived with ALS, the internal geometry of the 
images is well known. In addition, the further perspective 
gained from terrestrial close-range images adds supplementary 
information to the laser scanning data. Such a comparison can 
reveal, for example, the effect of weather conditions.  
 
During the test flight in Espoonlahti, the wind was relatively 
strong. The effect of the wind is clearly visible when the ALS 
data was superimposed onto the example images (Fig. 8). The 
registration of the images and ALS was completed using the 
interactive orientation method (Rönnholm et al., 2003). For 
registration, the most stabile features were observed, such as 
house roof, antennas, chimneys, pipes, and lamps. 
Unfortunately, movement of the treetop prevented sensible 
stereo viewing of the canopy, as the location and the shape of 
the treetop differed slightly in all images as well as in the ALS 
data. Fig. 8 shows how the tree canopy of the pine in the laser 
data does not fit perfectly with either of the two registered 
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images. Nevertheless, the laser point cloud fits very well with 
the roof of the building. 
 

  
 
Figure 8. The first pulses are superimposed onto two registered 

terrestrial images. The colour coding is chosen to 
visualise the heights of the point cloud. The effect of 
the wind is clearly visible – the canopy of the tree 
has moved between the capture of the first and 
second images. 

 
The full-waveform ALS data can be visualised by 
superimposing the echo rays onto the images. In Fig. 9, the 
ALS data is superimposed in two convergent images that are 
captured at an almost 90-degree angle to each other. The chosen 
camera locations and viewing directions make it easier to 
perceive the 3D shape and the behaviour of ALS data. If the 
canopy had been more stabile, the stereo views from these two 
viewing directions would have been even more informative. For 
visualisation of the waveform data in Fig 9, we calculated the 
3D location of each intensity value along the waveform echoes. 
The smallest intensity values were considered noise and thus 
rejected. The brightness of the colour describes the measured 
intensity values. 
 

  
 
Figure 9. The full-waveform superimposed onto images. The 

difference in the viewing angles of the images is 
close to 90 degrees. 

 
The superimposed ALS data is very informative. For example, 
the echoes that have hit the trunk can be selected using images 
(Fig. 10). Perpendicular image capturing can aid in this 
purpose. First, the area around the trunk is selected from the 
first image. The result is a cross-section of the echoes that can 
then be superimposed onto the next image. The different 
perspective of the second image visualises the cross-section 
from the side. Second, the area around the trunk is now selected 
from this second image. The intersection between these two 
cross-sections includes potential echoes that have hit the trunk.  
 

   
 
Figure 10. Using images for finding the trunk of the tree from 

the waveform data. The intersection of two 
perpendicular cross-sections finds potential echoes 
that have hit the trunk.  

 
Although the total number of echoes that have hit the trunk is 
small, the waveform data includes significantly more 
information about the trunk than that provided by the first 
pulses alone. The first pulses have succeeded in detecting the 
trunk only in the lowest part of the tree and the number of hits 
is less than half of the number of trunk hits in the waveform 
data. Figs. 11 and 12 present some examples in which the 
information concerning the trunk is not located in the first 
pulse.  
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Figure 11. Waveform echo passes through the thick upper 

foliage before reaching the trunk. The echo is 
denoted in the image by uniform colour in order to 
enhance visibility of small intensity values. 
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Figure 12. Two similar waveform echoes pass through thin 

branches of the upper foliage, detecting the trunk 
and continuing to the ground. The echoes are 
denoted in the image by uniform colour in order to 
enhance visibility of small intensity values. 
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4. CONCLUSIONS 

Full-waveform data have great potential for improving the 
classification of tree species. The waveform can be used for 
densifying tree point clouds for more detailed information on 
tree structure. The benefit of densification is likely to be 
moderate for algorithms that use the special characteristics of 
the first and last pulse data, as described in section 3.1.1. 
However, those features based on density are likely to benefit 
more, since the large amount of data suppresses the effect of 
outlier points, different scan patterns and differences in the 
sampling resolutions. Table 2 presents preliminary 
classification results for height and structural features. The 
results show reasonable separation between the tree features of 
different species, despite the small size of the test sample. With 
larger data sets, we expect to gain more reliable estimates of the 
feature distribution for each species. 
 
Single descriptive waveforms, studied in section 3.2, present a 
different approach for tree classification: instead of solving 
compute-intensive statistical densities, our method searches for 
simple descriptors of each species. Such waveforms could be 
used, for example, in decision-tree-based classification systems. 
In addition, this method enables detection of tree properties 
such as precise trunk position to be determined. To find the 
most informative single waveform types, a detailed knowledge 
is needed of the different types of waveforms and the typical 
locations in which they may occur. 
 
Full-waveform data can be superimposed onto registered close-
range images in order to obtain detailed information on the 
behaviour of the data. Visually, it is easy to find interesting 
waveforms if their nature can be verified from images. These 
waveforms can be chosen and examined separately. Stereo 
images would provide an easy interface for visualising 
waveform data. Unfortunately, windy conditions may cause 
instability of the tree canopies, thereby preventing sensible 
stereo examination, especially when images are not captured 
simultaneously. Alternatively, images can be taken 
convergently from different sides of a target. However, such 
convergent image acquisition would not allow stereo viewing, 
though it also provides a good impression of how light rays are 
located in the 3D space. 
 
The usefulness of the superimposed ALS data is based on the 
human ability to find correspondences and similarities between 
images. It is very difficult to understand the true behaviour of 
ALS data if it cannot be compared with real images. Terrestrial 
close-range images give detailed reference data, and the 
viewing perspective which differs from that offered by ALS 
data gives additional information concerning the targets. A 
fuller understanding of these waveforms should make it is 
possible in the future to develop improved tools for interpreting 
and classifying full waveform data. 
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