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ABSTRACT: 
 

This paper describes the methodology adopted for developing a simulator for airborne altimetric LiDAR.  The goal is to 
model LiDAR sensor functioning so LiDAR data can be generated for a user specified terrain with given parameters of the 
sensor and aerial platform.  The simulator is conceived having three components: 1) Terrain component, 2) Sensor 
component and 3) Platform component.  Terrain component is formed using multiple mathematical surfaces for bare terrain 
and for objects on top of the surface.  Further, the terrain can be represented using a raster.  The sensor component permits a 
user to opt for the commercially available sensors or a generic sensor and accordingly generates data. The third component 
attempts to model the platform parameters, viz., velocity, roll, pitch, yaw and accelerations.  LiDAR data are generated by 
first finding the equation of laser vector that changes with each pulse and then determining the point of intersection of this 
vector with the mathematical surface or the raster representing terrain. This GUI based simulator, developed in JAVA, is an 
ideal tool for research and education. 

 
 
 

1. INTRODUCTION 

The last decade has seen manifold growth in the use of airborne 
altimetric LiDAR (Light Detection and Ranging) technology.    
Due to the main advantage of measuring topography through 
highly dense and accurate data points which are captured at 
high speed, the LiDAR technology has found several interesting 
applications (Lohani, 2001; Queija, et al., 2005).   
 
1.1 What is a simulator? 

A LiDAR simulator is aimed at faithfully emulating the LiDAR 
data capture process with the use of mathematical models under 
a computational environment.    Basically, data generated by 
simulator should exhibit all characteristics of data acquired by 
an actual LiDAR sensor.     
 
Literature reveals that only a few attempts have been made by 
researchers to develop simulator for LiDAR instrument.  These 
efforts are limited in their scope as either these consider effect 
of only single parameter on one kind of object (Holmgren et al., 
2003) or inaccurate scanning pattern (Beinat and Crosilla, 2002).   
More focused and comprehensive efforts have been made to 
simulate the return waveform from a footprint (Sun and Ranson, 
2000; Tulldahl and Steinvall, 1999).   
 
 
1.2 Why a simulator? 

LiDAR data with varying specifications are fundamental for 
success of a research.  To judge the optimality of algorithms or 
suitability of data for an application one needs to work with 
data with varying characteristics.  Collecting these data in field 
is not feasible in view of extensive time and resource 
involvement.  Further, for success of a research (e.g., building 
extraction from LiDAR data), availability of accurate and 
complete ground truth is crucial, which is difficult and 

expensive to collect in field.  LiDAR simulator can generate 
data with all user specified specifications at no cost.  Data can 
be generated even with those specifications that are not 
available in commercially available sensors.  Also, in the case 
of simulator complete and 100 per cent accurate ground truth is 
available.    Simulated data can help in evaluation of the effect 
of noise and/or systematic error in final outcome.  
 
A simulator is also a useful tool for education, as data 
generation process and the effect of error and various flight 
parameters can be understood in laboratory.  In view of the cost 
and sometime the security/proprietary concerns associated with 
LiDAR data, the same are not cheaply and readily available for 
classroom activities.  Simulator can help by producing data for 
various laboratory exercises aimed at understanding LiDAR 
data, their errors and information extraction algorithms.   
 
 

2. DESIGN BENCHMARKS FOR THE SIMULATOR 

The following benchmarks are set for an ideal simulator:  
 

1. Simulator should employ a user-friendly GUI 
(Graphical User Interface.) 
2. Simulator should be designed for wider distribution 
over various computational platforms.   
3. The simulator should come along with a help/tutorial 
system which can explain concepts of LiDAR using user-
friendly multimedia techniques.  
4. It should simulate a generic LiDAR sensor and some 
other sensors available in market. 
5. The simulator should facilitate selection of trajectory 
and sensor parameters as in actual case along with the 
facility of introducing errors in various component systems 
of LiDAR.     
6. Simulator should facilitate data generation for actual 
earth-like surfaces.  
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7. The output data should be available in commonly 
used LiDAR formats.  
 

3. METHODOLOGY 

 
3.1 Coordinate systems used 

As shown in Figure 1 two coordinate systems are considered.  
The first coordinate system is (X, Y, Z), which is absolute.  All 
trajectory and terrain coordinates are determined in this system.   
A system which translates with platform and remains parallel to 
absolute coordinate system is considered at the laser head and is 
henceforth referred to as gyro coordinate system.  The second 
coordinate system is the body coordinate system(x,y,z), which 
has its origin at laser head and is affected by roll, pitch and yaw 
rotations.  Scanning takes place in this coordinate system, i.e., 
in y-z plane.  The laser vector at any instance is defined using 
direction cosines and coordinates of laser head in gyro 
coordinate system. 
 

 
 

Figure 1.  Schematic of laser vector intersection with a surface 
and coordinate systems 

 
3.2 Simulator components and programming environment 

Simulator components are shown in Figure 2.  These 
components take form as per user input, while their integration 
generates LiDAR data.  Following paragraphs describe 
development of these components as implemented in the latest 
version of simulator.   The simulator has been improved 
substantially from its previous version (Lohani et al., 2006).  
This paper will focus more on description of these 
improvements.  However, to make it complete a few parts are 
reproduced from Lohani et al. (2006) with modifications.   
 

 
Figure 2. Basic components and their integration 

 
 
Programming language JAVA has been chosen, as it offers 
good numerical and graphical programming besides, and most 

importantly, being platform independent. The parameters 
required to define three individual components and output data 
format are input through user-friendly GUIs.       
   
3.3 Terrain component 

Vector and raster approaches are chosen for simulating bare 
earth surface and above ground objects as described below.  
Through a GUI, as shown in Figure 3, a user is prompted to 
select an area of interest, by marking it using the mouse on 
screen. The area selected from the underlined mathematical 
surface or raster becomes available for LiDAR data generation.   
 

 
 

Figure 3. GUI showing selection of underlying mathematical 
surface, its extent and area of interest on it for 
LiDAR flight along with flight lines 

 
3.3.1 Vector approach 
In this, a terrain is represented using mathematical equations, 
which yield earth like surfaces.  The GUI permits selection of 
these surfaces and their parameters.  A few of these are:  
 

                            
 
                            (1) 
 

3.3.2 Raster approach 
In this the surfaces resulting from the above equations are 
rasterized.  Most importantly, this approach permits populating 
the raster with above ground objects. Those cells, where an over 
ground object is desired to be placed, take new values as per the 
height and shape of object.   In addition, it is possible to import 
an existing raster file (say DEM) for which LiDAR data can be 
simulated.   
 
3.4 Sensor component 

The GUI prompts user to select any one of the two 
commercially available sensors (ALTM3100 or ALS50) or a 
generic sensor.  While the range of parameters is constrained in 
commercial sensors, as per their specifications, the generic 
sensor permits selection of any range of parameters.  Having 
selected the sensor, the user is prompted to enter the sensor 
parameters which are desired for LiDAR data generation, viz., 
scan angle, scan frequency, firing frequency,  type of scanning 
etc. (Figure 4.)   
 
Depending the type of scanning (which may be zig-zag or 
sinusoidal) the instantaneous scanning angle is determined by 
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the following model.   Let time taken to complete 1/4th of a scan 
is T and there are P numbers of points in this.  The maximum 
scan angle is θmax .  For the ith point, which is fired at time ti 
from the beginning of scan, the scan angle will be: 
 

 
 

Figure 4. Parameter input for different sensors 
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The resulting trajectories are shown in Figure 5.   By changing 
the parameters listed above the spread of points within scan can 
be altered.  
 

 
Figure 5. Sinusoidal and zig-zag scan generation 

 
3.5 Trajectory component 

Complete trajectory of aircraft is made of several flight lines as 
shown in Figure 6.  Depending the area chosen for LiDAR data 
generation (gray area in Figure 6) and sensor parameters (i.e., 
swath width and per cent overlap) the direction of flight lines is 
either chosen by the user or an optimum direction is determined 
by the software.  In latter case, the flight direction is determined 
by making use of the principal direction of area.  For this, first 
using Douglas-Peucker algorithm (Douglas and Peucker, 1973) 
the number of vertices defining the area of interest marked by 
the user are reduced, which ensures that the area marked has no 
small kinks which are the artefacts of drawing on screen by 
hand.  Covariance matrix is generated for the coordinates of all 
points forming the area of interest polygon.  The first eigen 
vector of this is used to determine the principal direction of the 
polygon.   The flight direction is oriented in the principal 

direction, which makes the total flight line length required to 
cover the area a minimum (in most of the cases.)   
 
The software also determines the location of flight lines (thick 
lines in Figure 6) so as to cover entire area considering the 
overlap specified.  The algorithm places the first flight line (top 
flight line in Figure 6) in such a way that the swath covers up to 
the edge of area.  The last flight line is placed considering the 
spacing between flight lines for given overlap.  It is shown in 
Figure 6 that in order to cover full area of interest some extra 
area (union of all swath rectangles – area of interest) is also 
scanned.   Using the points of intersection of periphery of area 
and the flight line the starting and ending points of flights are 
determined.   The following section describes computations for 
an individual flight line.  The same procedure is followed for 
other flight lines also.    
 
3.5.1 Location 
A trajectory (referred as flight line henceforth to indicate a 
single flight) is defined by the location of laser mirror centre 
(point of origin of laser vector) in the absolute coordinate 
system at each instance of firing of laser pulse.  To simulate the 
flight line and to incorporate a possibility of introducing errors 
in parameters the following procedure is employed.   
 
 

   
 
Figure 6.  Area of interest (gray) , flight lines in optimum 

direction (thick arrows) and swaths with overlap 
(thin rectangles)  

 
 
Let, time interval between firing of successive pulses is dt , 
which is equal to 1/F, where F is firing frequency.   Total 
number of points on flight line wherefrom pulses are fired is n, 
which will depend upon the length of flight line.  Velocity of 
platform in flight direction at ith point on flight line is u 

i.  Let 
the laser head coordinates at ith point on trajectory are (Xi, Yi, Zi).   
 
At each successive dt interval one needs to compute the location 
of laser head.  The aerial platform is subject to internal and 
external force fields with the net effect that the platform is 
subject to random accelerations in three axes directions.   The 
following system is employed to simulate accelerations.  This 
system ensures a pseudo-random generation of acceleration 
values.   
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Where ax
i
 is the acceleration at ith point in X direction.  T is the 

total duration of a flight line.  The parameters of this equation J, 
K, A, B, C and D control the direction and quantum of 
acceleration.  Developed software permits selection of these 
parameter values within ranges that generate accelerations as 
may be observed in a normal flight.  Similarly, ay

i
 and   az

i
 are 

also generated with different values of parameters in above 
equation.  Using the acceleration values at ith point the new 
location of laser head (i.e., Xi+1, Yi+1, Zi+1

  ) after dt interval is 
computed using equations similar to:  
 

1 21
2

i i i i
x t x tX X u d a d+ = + +    (4) 

Where, u x
i   is the velocity in X direction.   

 
3.5.2 Attitude  
As in case of acceleration, due to internal and external force 
fields, the attitude will change within certain limits and may 
exhibit a random behaviour.  To realise this, the attitude values 
(i.e., ωi, φi, κi) at any ith   point are determined using the 
equation (3).  Similar to the case of acceleration, the developed 
simulator permits selection of these parameters in the ranges 
which generate attitude values as in case of a normal flight.   
 
The outcome of aforesaid is that at each point wherefrom a laser 
pulse is fired the attitude values and coordinates of point are 
known in the absolute coordinate system.   
 
3.6 Integration of components 

The components discussed above are integrated by generation 
of the laser vector and its intersection with simulated terrain.  
The point of intersection yields the coordinate of terrain point.  
As shown in Figure 1, for any ith point on trajectory there exists 
a laser vector.  Equation of laser vector is given as: 
 

i i i

i i i

X X Y Y Z Z
a b c
− − −

= =                          (5) 

 
Where ai, bi, and ci are direction cosines (cosαi,  cosβi, and 
cosγi, respectively) of laser vector with respect to gyro 
coordinate system at ith point.   The values of αi, βi, and γi are 
determined from known values of attitude (ωi, φi, κi ) and 
instantaneous scan angle (θ).   
 
The point where laser hits the terrain, following the above laser 
vector, is computed by solving for intersection of equation (5) 
and equation (1) or the rasterized terrain.  Solution is realised 
using specially formulated numerical methods.   These methods 
differ for vector and raster terrain and also depend upon the 
basic equations employed to create terrain.  The raster data size 
becomes very large (raster cell is taken 10 cm).  Therefore, to 
solve the intersection it is not feasible to store entire data in 
memory.  Special data structuring is adopted by tiling the raster 
and reading the data only from those tiles which fall under the 
swath of flight line.  This is ensured by using the “point in 
polygon” algorithm which determines whether a tile 
intersection is within the area covered by flight line (i.e. Swath 
x Flight length).   Full description of these methods is beyond 
the scope of this paper.  At this stage coordinates of all points of 
intersection (Xt

i, Yt
i, Zt

i) are known.   
      

3.7 Error introduction in data  

LiDAR data suffer from systematic and random errors of 
different kinds (Huising and Pereira, 1998).  Errors in position 
and orientation of platform and in angle and range measurement 
by sensor propagate in final coordinates.  It is proposed to 
provide facility for introduction of these errors in the future 
version of simulator.  In present version a normal error is 
introduced in the terrain coordinates computed in the above step 
in X, Y and Z directions separately.  The system for introducing 
error in X direction is shown below:  
 

2( , )i i
T t X XX X N μ σ= +     (6) 

 
Where XT

i is the X coordinate value with error.  Similar systems 
with different values of parameters are used for Y and Z 
coordinates.  It is assumed that errors in X, Y and Z directions 
follow normal distribution.  Further, when introducing these 
errors it is ensured in algorithm that there is no spatial auto-
correlation of error.  The parameters of this distribution are 
known from field experience and are reported by the vendors of 
sensors.  The simulator facilitates variation of these parameters. 
 
3.8 Output generation  

The software facilitates output of LiDAR coordinates in simple 
ASCII format or standard LAS format.  Further, a variety of 
other reports are generated, e.g., sensor parameters, flight 
parameters and parameters used to generate terrain (Figure 7).  
These reports are output in textual format which can be 
employed by user for further study.   
 

 
 

Figure 7. LiDAR data output menu and options 
 

4. RESULT AND DISCUSSION 

Simulated trajectory and attitude parameters are shown for a 
duration of 5 seconds (Figure 8).  Though, it is statistically 
difficult to compare simulated data with any set of actual flight 
data, as these two represent two different populations, the 
former amply exhibit the random nature of parameters as in any 
normal flight.   
 
A hypothetical terrain (2km by 2km) is created over a flat 
surface and is populated with building like shapes (length and 
breadth ranging from 150 m to 300 m) along with 6 cylindrical 
objects (50 m diameter and 90m height).  Large objects are 
chosen here to fill the 2km by 2km area.  The flat surface and 
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objects on top of it are rasterized.  The raster takes values as per 
the underlying surface or the object.    A view of this is shown 
in Figure 9, which is generated using surface feature of Surfer.   
This view also shows the location and direction of the four 
flight lines.  This view will help understanding the results 
presented later.  LiDAR data were generated for this terrain 
with the parameters: Flight velocity: 60 m/s; Altitude: 600m; 
Firing frequency: 20000 Hz; Scan frequency: 48 Hz.; Scan 
angle: 50°; No  of flight lines: 4; Overlap  1.5 % 
 

 

 
Figure 8. Acceleration (top) and attitude (bottom) values   
 
 

 
Figure 9. Surfer surface view of the chosen terrain (heights are 

exaggerated) 
 

Resulting LiDAR data are imported in Terrascan software and 
displayed.  Only few views are being presented for the sake of 
space as shown in Figure 10 and Figure 11.    Data generation 
for objects of different shapes and sizes and as well as for 
objects situated at different locations w.r.t. the flight line can be 
understood from these figures.  In Figure 10(a) a perspective 
view is shown, which shows various buildings where data are 
captured, while the interplay of object and shadow is also 
evident.  Not all black areas (i.e. where data are not captured) 
are shadows.  This can be understood from the profile drawn 
about A-A and shown in Figure 10 (b).    For example, the  roof 
of building marked by white oval is not fully captured.  The 
reason for this can be understood in profile (also marked by 
white oval.)  The black area is not being covered by either flight 
lines.  This also serves as an example of poor choice of scan 
angle and flying height, which can be understood by simulator.   
 
 

(a) 
 
 

 
(b) 

 
Figure 10. (a) LiDAR data display in Terrascan-perspective 

view; (b) Profile along A-A band shown by white 
colour in top image.  The profile is shown along 
with the flight lines and swaths. The building within 
oval is not fully measured.   

 
The zoomed out views (shown in Figure 11 (a) and (b)) of the 
same data show the point cloud as obtained for different objects.    
Location of flight lines is also shown.  The spread of point 
cloud depends on the location of the object with respect to 
flight line and the parameters chosen for sensor.   LiDAR data 
points are available on the vertical walls facing flight line, 
while no data points are captured on the other wall.  Data in 
these examples are produced with error.  This is evident as the 
points do not fall in smooth scan lines.     

A

A
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(a) 

 

 
(b) 

Figure 11.  Zoomed out display of point cloud 
 
 
 

5. CONCLUSION 

The presented simulator emulates existing commercial sensors 
and models a generic LiDAR sensor to generate data over a user 
specified terrain.  A user can alter the sensor and trajectory 
parameters with ease and generate the resulting LiDAR data.  
Error can also be incorporated in output.   The simulator has a 
user friendly GUI designed in architecture independent JAVA 
language.     
 
The simulator can be useful to generate LiDAR data for 
research to test algorithms.  It is also useful in a classroom for 
demonstrating LiDAR data capture process and understanding 
the effect of flight and sensor parameters and their errors.   
 
Terrain representation using raster has solved to a large extent 
the problem of representation of bare earth and objects.  
However, this results in large data size which is managed 
through data structuring so the data are brought into the 
simulator in chunks as needed.   
 
A MATLAB based system has been developed in parallel for 
simulating full waveform digitization for a Gaussian pulse.  
Efforts will be made in future to integrate this with the present 
simulator, thus to generate multiple return data and waveform 
digitization.    
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