
 GENERATING LIDAR DATA IN LABORATORY: LIDAR SIMULATOR

Bharat Lohani* and R K Mishra

Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, INDIA – blohani@iitk.ac.in

Commission VI, WG VI/4

KEY WORDS: Altimetric LiDAR, Simulator, Modelling of sensor, Software, Research and Education tool

ABSTRACT:

This paper describes the methodology adopted for developing a simulator for airborne altimetric LiDAR. The goal is to
model LiDAR sensor functioning so LiDAR data can be generated for a user specified terrain with given parameters of the
sensor and aerial platform. The simulator is conceived having three components: 1) Terrain component, 2) Sensor
component and 3) Platform component. Terrain component is formed using multiple mathematical surfaces for bare terrain
and for objects on top of the surface. Further, the terrain can be represented using a raster. The sensor component permits a
user to opt for the commercially available sensors or a generic sensor and accordingly generates data. The third component
attempts to model the platform parameters, viz., velocity, roll, pitch, yaw and accelerations. LiDAR data are generated by
first finding the equation of laser vector that changes with each pulse and then determining the point of intersection of this
vector with the mathematical surface or the raster representing terrain. This GUI based simulator, developed in JAVA, is an
ideal tool for research and education.

1. INTRODUCTION

The last decade has seen manifold growth in the use of airborne
altimetric LiDAR (Light Detection and Ranging) technology.
Due to the main advantage of measuring topography through
highly dense and accurate data points which are captured at
high speed, the LiDAR technology has found several interesting
applications (Lohani, 2001; Queija, et al., 2005).

1.1 What is a simulator?

A LiDAR simulator is aimed at faithfully emulating the LiDAR
data capture process with the use of mathematical models under
a computational environment. Basically, data generated by
simulator should exhibit all characteristics of data acquired by
an actual LiDAR sensor.

Literature reveals that only a few attempts have been made by
researchers to develop simulator for LiDAR instrument. These
efforts are limited in their scope as either these consider effect
of only single parameter on one kind of object (Holmgren et al.,
2003) or inaccurate scanning pattern (Beinat and Crosilla, 2002).
More focused and comprehensive efforts have been made to
simulate the return waveform from a footprint (Sun and Ranson,
2000; Tulldahl and Steinvall, 1999).

1.2 Why a simulator?

LiDAR data with varying specifications are fundamental for
success of a research. To judge the optimality of algorithms or
suitability of data for an application one needs to work with
data with varying characteristics. Collecting these data in field
is not feasible in view of extensive time and resource
involvement. Further, for success of a research (e.g., building
extraction from LiDAR data), availability of accurate and
complete ground truth is crucial, which is difficult and

expensive to collect in field. LiDAR simulator can generate
data with all user specified specifications at no cost. Data can
be generated even with those specifications that are not
available in commercially available sensors. Also, in the case
of simulator complete and 100 per cent accurate ground truth is
available. Simulated data can help in evaluation of the effect
of noise and/or systematic error in final outcome.

A simulator is also a useful tool for education, as data
generation process and the effect of error and various flight
parameters can be understood in laboratory. In view of the cost
and sometime the security/proprietary concerns associated with
LiDAR data, the same are not cheaply and readily available for
classroom activities. Simulator can help by producing data for
various laboratory exercises aimed at understanding LiDAR
data, their errors and information extraction algorithms.

2. DESIGN BENCHMARKS FOR THE SIMULATOR

The following benchmarks are set for an ideal simulator:

1. Simulator should employ a user-friendly GUI
(Graphical User Interface.)
2. Simulator should be designed for wider distribution
over various computational platforms.
3. The simulator should come along with a help/tutorial
system which can explain concepts of LiDAR using user-
friendly multimedia techniques.
4. It should simulate a generic LiDAR sensor and some
other sensors available in market.
5. The simulator should facilitate selection of trajectory
and sensor parameters as in actual case along with the
facility of introducing errors in various component systems
of LiDAR.
6. Simulator should facilitate data generation for actual
earth-like surfaces.

264

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

7. The output data should be available in commonly
used LiDAR formats.

3. METHODOLOGY

3.1 Coordinate systems used

As shown in Figure 1 two coordinate systems are considered.
The first coordinate system is (X, Y, Z), which is absolute. All
trajectory and terrain coordinates are determined in this system.
A system which translates with platform and remains parallel to
absolute coordinate system is considered at the laser head and is
henceforth referred to as gyro coordinate system. The second
coordinate system is the body coordinate system(x,y,z), which
has its origin at laser head and is affected by roll, pitch and yaw
rotations. Scanning takes place in this coordinate system, i.e.,
in y-z plane. The laser vector at any instance is defined using
direction cosines and coordinates of laser head in gyro
coordinate system.

Figure 1. Schematic of laser vector intersection with a surface
and coordinate systems

3.2 Simulator components and programming environment

Simulator components are shown in Figure 2. These
components take form as per user input, while their integration
generates LiDAR data. Following paragraphs describe
development of these components as implemented in the latest
version of simulator. The simulator has been improved
substantially from its previous version (Lohani et al., 2006).
This paper will focus more on description of these
improvements. However, to make it complete a few parts are
reproduced from Lohani et al. (2006) with modifications.

Figure 2. Basic components and their integration

Programming language JAVA has been chosen, as it offers
good numerical and graphical programming besides, and most

importantly, being platform independent. The parameters
required to define three individual components and output data
format are input through user-friendly GUIs.

3.3 Terrain component

Vector and raster approaches are chosen for simulating bare
earth surface and above ground objects as described below.
Through a GUI, as shown in Figure 3, a user is prompted to
select an area of interest, by marking it using the mouse on
screen. The area selected from the underlined mathematical
surface or raster becomes available for LiDAR data generation.

Figure 3. GUI showing selection of underlying mathematical
surface, its extent and area of interest on it for
LiDAR flight along with flight lines

3.3.1 Vector approach
In this, a terrain is represented using mathematical equations,
which yield earth like surfaces. The GUI permits selection of
these surfaces and their parameters. A few of these are:

 (1)

3.3.2 Raster approach
In this the surfaces resulting from the above equations are
rasterized. Most importantly, this approach permits populating
the raster with above ground objects. Those cells, where an over
ground object is desired to be placed, take new values as per the
height and shape of object. In addition, it is possible to import
an existing raster file (say DEM) for which LiDAR data can be
simulated.

3.4 Sensor component

The GUI prompts user to select any one of the two
commercially available sensors (ALTM3100 or ALS50) or a
generic sensor. While the range of parameters is constrained in
commercial sensors, as per their specifications, the generic
sensor permits selection of any range of parameters. Having
selected the sensor, the user is prompted to enter the sensor
parameters which are desired for LiDAR data generation, viz.,
scan angle, scan frequency, firing frequency, type of scanning
etc. (Figure 4.)

Depending the type of scanning (which may be zig-zag or
sinusoidal) the instantaneous scanning angle is determined by

 Integration

Input Output

Sensor
component

Trajectory
component

Terrain
component

[sin(/) sin(/)]
[sin(/) sin(/)]

Z AX BY C
Z A X B XY C D
Z A X Y XY B C

= + +
= − +
= − +

265

IAPRS Volume XXXVI, Part 3 / W52, 2007

the following model. Let time taken to complete 1/4th of a scan
is T and there are P numbers of points in this. The maximum
scan angle is θmax . For the ith point, which is fired at time ti
from the beginning of scan, the scan angle will be:

Figure 4. Parameter input for different sensors

m a x

m a x

F o r z ig -z a g

s in F o r s in u s o id a l
2

w h e r e ,

i

i i

i

i
P

t
T

Tt i
P

θθ

πθ θ

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 (2)

The resulting trajectories are shown in Figure 5. By changing
the parameters listed above the spread of points within scan can
be altered.

Figure 5. Sinusoidal and zig-zag scan generation

3.5 Trajectory component

Complete trajectory of aircraft is made of several flight lines as
shown in Figure 6. Depending the area chosen for LiDAR data
generation (gray area in Figure 6) and sensor parameters (i.e.,
swath width and per cent overlap) the direction of flight lines is
either chosen by the user or an optimum direction is determined
by the software. In latter case, the flight direction is determined
by making use of the principal direction of area. For this, first
using Douglas-Peucker algorithm (Douglas and Peucker, 1973)
the number of vertices defining the area of interest marked by
the user are reduced, which ensures that the area marked has no
small kinks which are the artefacts of drawing on screen by
hand. Covariance matrix is generated for the coordinates of all
points forming the area of interest polygon. The first eigen
vector of this is used to determine the principal direction of the
polygon. The flight direction is oriented in the principal

direction, which makes the total flight line length required to
cover the area a minimum (in most of the cases.)

The software also determines the location of flight lines (thick
lines in Figure 6) so as to cover entire area considering the
overlap specified. The algorithm places the first flight line (top
flight line in Figure 6) in such a way that the swath covers up to
the edge of area. The last flight line is placed considering the
spacing between flight lines for given overlap. It is shown in
Figure 6 that in order to cover full area of interest some extra
area (union of all swath rectangles – area of interest) is also
scanned. Using the points of intersection of periphery of area
and the flight line the starting and ending points of flights are
determined. The following section describes computations for
an individual flight line. The same procedure is followed for
other flight lines also.

3.5.1 Location
A trajectory (referred as flight line henceforth to indicate a
single flight) is defined by the location of laser mirror centre
(point of origin of laser vector) in the absolute coordinate
system at each instance of firing of laser pulse. To simulate the
flight line and to incorporate a possibility of introducing errors
in parameters the following procedure is employed.

Figure 6. Area of interest (gray) , flight lines in optimum

direction (thick arrows) and swaths with overlap
(thin rectangles)

Let, time interval between firing of successive pulses is dt ,
which is equal to 1/F, where F is firing frequency. Total
number of points on flight line wherefrom pulses are fired is n,
which will depend upon the length of flight line. Velocity of
platform in flight direction at ith point on flight line is u

i. Let
the laser head coordinates at ith point on trajectory are (Xi, Yi, Zi).

At each successive dt interval one needs to compute the location
of laser head. The aerial platform is subject to internal and
external force fields with the net effect that the platform is
subject to random accelerations in three axes directions. The
following system is employed to simulate accelerations. This
system ensures a pseudo-random generation of acceleration
values.

1 1

2 2sin((())) cos((()))
J K

i
x j j t k k t

j k
a A B id C D id

T T
π π

= =

= +∑ ∑ (3)

Y

X

60
80

100
120

140
160

80
100

120
140

160
-1

-0.5

0

0.5

Z
(m

)

X (m)Y (m)

60
80

100
120

140

80
100

120
140

160
-1

-0.5

0

0.5

Z
(m

)

X (m)Y (m)

266

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

Where ax
i
 is the acceleration at ith point in X direction. T is the

total duration of a flight line. The parameters of this equation J,
K, A, B, C and D control the direction and quantum of
acceleration. Developed software permits selection of these
parameter values within ranges that generate accelerations as
may be observed in a normal flight. Similarly, ay

i
 and az

i
 are

also generated with different values of parameters in above
equation. Using the acceleration values at ith point the new
location of laser head (i.e., Xi+1, Yi+1, Zi+1

) after dt interval is
computed using equations similar to:

1 21
2

i i i i
x t x tX X u d a d+ = + + (4)

Where, u x
i is the velocity in X direction.

3.5.2 Attitude
As in case of acceleration, due to internal and external force
fields, the attitude will change within certain limits and may
exhibit a random behaviour. To realise this, the attitude values
(i.e., ωi, φi, κi) at any ith point are determined using the
equation (3). Similar to the case of acceleration, the developed
simulator permits selection of these parameters in the ranges
which generate attitude values as in case of a normal flight.

The outcome of aforesaid is that at each point wherefrom a laser
pulse is fired the attitude values and coordinates of point are
known in the absolute coordinate system.

3.6 Integration of components

The components discussed above are integrated by generation
of the laser vector and its intersection with simulated terrain.
The point of intersection yields the coordinate of terrain point.
As shown in Figure 1, for any ith point on trajectory there exists
a laser vector. Equation of laser vector is given as:

i i i

i i i

X X Y Y Z Z
a b c
− − −

= = (5)

Where ai, bi, and ci are direction cosines (cosαi, cosβi, and
cosγi, respectively) of laser vector with respect to gyro
coordinate system at ith point. The values of αi, βi, and γi are
determined from known values of attitude (ωi, φi, κi) and
instantaneous scan angle (θ).

The point where laser hits the terrain, following the above laser
vector, is computed by solving for intersection of equation (5)
and equation (1) or the rasterized terrain. Solution is realised
using specially formulated numerical methods. These methods
differ for vector and raster terrain and also depend upon the
basic equations employed to create terrain. The raster data size
becomes very large (raster cell is taken 10 cm). Therefore, to
solve the intersection it is not feasible to store entire data in
memory. Special data structuring is adopted by tiling the raster
and reading the data only from those tiles which fall under the
swath of flight line. This is ensured by using the “point in
polygon” algorithm which determines whether a tile
intersection is within the area covered by flight line (i.e. Swath
x Flight length). Full description of these methods is beyond
the scope of this paper. At this stage coordinates of all points of
intersection (Xt

i, Yt
i, Zt

i) are known.

3.7 Error introduction in data

LiDAR data suffer from systematic and random errors of
different kinds (Huising and Pereira, 1998). Errors in position
and orientation of platform and in angle and range measurement
by sensor propagate in final coordinates. It is proposed to
provide facility for introduction of these errors in the future
version of simulator. In present version a normal error is
introduced in the terrain coordinates computed in the above step
in X, Y and Z directions separately. The system for introducing
error in X direction is shown below:

2(,)i i
T t X XX X N μ σ= + (6)

Where XT

i is the X coordinate value with error. Similar systems
with different values of parameters are used for Y and Z
coordinates. It is assumed that errors in X, Y and Z directions
follow normal distribution. Further, when introducing these
errors it is ensured in algorithm that there is no spatial auto-
correlation of error. The parameters of this distribution are
known from field experience and are reported by the vendors of
sensors. The simulator facilitates variation of these parameters.

3.8 Output generation

The software facilitates output of LiDAR coordinates in simple
ASCII format or standard LAS format. Further, a variety of
other reports are generated, e.g., sensor parameters, flight
parameters and parameters used to generate terrain (Figure 7).
These reports are output in textual format which can be
employed by user for further study.

Figure 7. LiDAR data output menu and options

4. RESULT AND DISCUSSION

Simulated trajectory and attitude parameters are shown for a
duration of 5 seconds (Figure 8). Though, it is statistically
difficult to compare simulated data with any set of actual flight
data, as these two represent two different populations, the
former amply exhibit the random nature of parameters as in any
normal flight.

A hypothetical terrain (2km by 2km) is created over a flat
surface and is populated with building like shapes (length and
breadth ranging from 150 m to 300 m) along with 6 cylindrical
objects (50 m diameter and 90m height). Large objects are
chosen here to fill the 2km by 2km area. The flat surface and

267

IAPRS Volume XXXVI, Part 3 / W52, 2007

objects on top of it are rasterized. The raster takes values as per
the underlying surface or the object. A view of this is shown
in Figure 9, which is generated using surface feature of Surfer.
This view also shows the location and direction of the four
flight lines. This view will help understanding the results
presented later. LiDAR data were generated for this terrain
with the parameters: Flight velocity: 60 m/s; Altitude: 600m;
Firing frequency: 20000 Hz; Scan frequency: 48 Hz.; Scan
angle: 50°; No of flight lines: 4; Overlap 1.5 %

Figure 8. Acceleration (top) and attitude (bottom) values

Figure 9. Surfer surface view of the chosen terrain (heights are

exaggerated)

Resulting LiDAR data are imported in Terrascan software and
displayed. Only few views are being presented for the sake of
space as shown in Figure 10 and Figure 11. Data generation
for objects of different shapes and sizes and as well as for
objects situated at different locations w.r.t. the flight line can be
understood from these figures. In Figure 10(a) a perspective
view is shown, which shows various buildings where data are
captured, while the interplay of object and shadow is also
evident. Not all black areas (i.e. where data are not captured)
are shadows. This can be understood from the profile drawn
about A-A and shown in Figure 10 (b). For example, the roof
of building marked by white oval is not fully captured. The
reason for this can be understood in profile (also marked by
white oval.) The black area is not being covered by either flight
lines. This also serves as an example of poor choice of scan
angle and flying height, which can be understood by simulator.

(a)

(b)

Figure 10. (a) LiDAR data display in Terrascan-perspective

view; (b) Profile along A-A band shown by white
colour in top image. The profile is shown along
with the flight lines and swaths. The building within
oval is not fully measured.

The zoomed out views (shown in Figure 11 (a) and (b)) of the
same data show the point cloud as obtained for different objects.
Location of flight lines is also shown. The spread of point
cloud depends on the location of the object with respect to
flight line and the parameters chosen for sensor. LiDAR data
points are available on the vertical walls facing flight line,
while no data points are captured on the other wall. Data in
these examples are produced with error. This is evident as the
points do not fall in smooth scan lines.

A

A

268

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

(a)

(b)

Figure 11. Zoomed out display of point cloud

5. CONCLUSION

The presented simulator emulates existing commercial sensors
and models a generic LiDAR sensor to generate data over a user
specified terrain. A user can alter the sensor and trajectory
parameters with ease and generate the resulting LiDAR data.
Error can also be incorporated in output. The simulator has a
user friendly GUI designed in architecture independent JAVA
language.

The simulator can be useful to generate LiDAR data for
research to test algorithms. It is also useful in a classroom for
demonstrating LiDAR data capture process and understanding
the effect of flight and sensor parameters and their errors.

Terrain representation using raster has solved to a large extent
the problem of representation of bare earth and objects.
However, this results in large data size which is managed
through data structuring so the data are brought into the
simulator in chunks as needed.

A MATLAB based system has been developed in parallel for
simulating full waveform digitization for a Gaussian pulse.
Efforts will be made in future to integrate this with the present
simulator, thus to generate multiple return data and waveform
digitization.

References
Beinat, A., and Crosilla, F., 2002. A generalized factored
stochastic model for optimal registration of LIDAR range
images, International Archives of photogrammetry an remote
sensing and spatial information sciences, 34(3/B), pp. 36-39.

Douglas, D., and Peucker, T., 1973, Algorithms for the
reduction of the number of points required for represent a
digitzed line or its caricature, Canadian Cartographer, 10(2),
pp. 112–122.

Holmgren, J., Nilsson, M., and Olsson, H., 2003. Simulating the
effect of lidar scanning angle for estimation of mean tree height
and canopy closure. Canadian Journal of Remote Sensing,
29(5), pp. 623-632.

Husing, E. J. and Pereira, L. M., 1998, Errors and accuracy
estimates of laser data acquired by various laser scanning
systems for topographic applications, ISPRS Journal of
Photogrammetry & Remote Sensing, 53(5), pp. 245-261.

Lohani, B., Reddy, P., and Mishra, R., 2006, Airborne
Altimetric LiDAR Simulator: An education tool, International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Science, XXXVI(6), Tokyo, Japan.

Lohani, B., 2001, Airborne altimetric LiDAR for topographic
data collection: Issues and application., Proc. of International
conference MAPINDIA-2001, 7-9 February 2001, New Delhi.

Queija, V. R., Stoker, J. M., and Kosovich, J. J., 2005, Recent
U.S. geological survey applications of LiDAR, PE&RS, 71(1),
pp. 5-9.

Sun, G. and Ranson, K. J., 2000. Modeling Lidar returns from
forest canopies, IEEE trans. On geosciences and remote
sensing, 38(6), pp. 2617-2626.

Tulldahl, H. M. and Steinvall, K. O., 1999, Analytical
waveform generation from small objects in lidar bathymetry,
Applied optics, 38(6), pp. 1021-1039.

5.1 Acknowledgements

This work is supported under RESPOND programme of ISRO.
Authors are grateful to two anonymous reviewers and editor.

269

IAPRS Volume XXXVI, Part 3 / W52, 2007

