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ABSTRACT: 
 
The study highlights a new method for the delineation of tree crowns and the detection of stem positions of single trees from dense 
airborne LIDAR data. At first, we combine a method for surface reconstruction, which robustly interpolates the canopy height model 
(CHM) from the LIDAR data, with a watershed algorithm. Stem positions of the tallest trees in the tree segments are subsequently 
derived from the local maxima of the CHM. Additional stem positions in the segments are detected in a 3-step algorithm. First, all 
the points between the ground and the crown base height are separated. Second, possible stem points are found by hierarchically 
clustering these points. Third, the stem is reconstructed with a robust RANSAC-based adjustment of the stem points. The method 
was applied to small-footprint full waveform data, which have a point density of 25 points per m2. The detection rate for coniferous 
trees is 61 % and for deciduous trees 44 %, respectively. 7 % of the detected trees are false positives. The mean positioning error is 
0.92 cm, whereas the additional stem detection improves the tree position on average by 22 cm. The analysis of waveform data in 
the tree structure shows that the intensity and pulse width discriminate stem points, crown points and ground points significantly. 
Moreover, the mean intensity of stem points turned out to be the most salient feature for the discrimination of coniferous and 
deciduous trees. 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

Laser scanning has been widely used in mapping the Earth’s 
surface and especially in forest application. Conventional 
LIDAR, which records the first and last pulse, was successfully 
applied to retrieve forest parameters like tree height, crown 
diameter, number of stems, stem diameter and basal area on the 
tree level (Hyyppä et al., 2004). Also, tree species classification 
became feasible with first/last pulse scanning systems providing 
high point density (Holmgren et al., 2004; Heurich, 2006; 
Brandtberg, 2007). Recently, studies reported about the 
successful application of novel small footprint full waveform 
systems to DTM generation (Doneus et al., 2006) or to tree 
species classification (Reitberger et al., 2006) using 
advantageously the intensity and the pulse width. 
 
Approaches to tree species classification are usually based on a 
single tree segmentation that delineates the tree crown from the 
outer geometry of the forest surface. The methods have in 
common to reconstruct – at least locally – the CHM to find the 
local maximum as the best guess for the stem position and to 
delineate a segment polygon as the tree crown. For example, the 
CHM is locally interpolated from the highest laser reflections 
(Hyyppä et al., 2001), derived with the active contour algorithm 
(Persson et al., 2002), or is interpolated with special gridding 
methods (Solberg et al., 2006). Stem positions are determined 
from the interpolated CHM at the highest positions (Solberg et 
al., 2006) or from a special local tree shape reconstruction 
(Brandtberg, 2007). Tree crowns are typically derived with the 
watershed algorithm (Pyysalo et al., 2002), by a slope-based 
segmentation (Persson et al., 2002; Hyyppä et al., 2001) or by a 
region growing method that starts from local surface maximums 
and finds crown polygons optimised in shape (Solberg et al., 
2006).  

The drawback of the segmentation methods is that they solely 
base on the CHM, which is reconstructed from the raw data in 
an interpolation process that smoothes the data to some extent. 
The degree of smoothing directly affects the success rate in 
terms of false positives and negatives. Moreover, in some cases 
neighbouring trees do not appear as two clear local maximums. 
Thus, approaches that solely use the CHM will be restricted in 
the success rate anyway, especially in heterogeneous forest 
types where groups of trees grow close together. So far, little 
focus has been given to reconstruct trees using information like 
laser hits on the stems or the reflectance, mainly because of the 
low spatial point density and the lack of information about the 
reflecting characteristics of the tree structure. Detected tree 
stems could be used to improve the CHM-based segmentation 
in terms of the detection rate and the position of the trees. 
Moreover, the analysis of the internal tree reflecting 
characteristics will gain more insight about salient tree features 
which are significant for instance for tree species classification 
or DTM generation. New full waveform systems have the 
potential to overcome these drawbacks since they detect 
significantly more reflections in the tree crown and provide the 
intensity and the pulse width as reflecting parameters. 
 
The objective of this paper is (i) to present a method that 
segments single trees with a robust surface reconstruction 
method in combination with the watershed algorithm, (ii) to 
introduce a novel approach to stem detection that clusters 
hierarchically potential stem reflections and reconstructs the 
stem with a RANSAC-based adjustment, (iii) to show how the 
detection rate and position of single trees is improved, and (iv) 
to analyse the distribution of the parameters intensity and pulse 
width of the reflections in the tree structure. 
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The paper is divided into five sections. Section 2 focuses on the 
segmentation of the single trees and the reconstruction of the 
tree stems. Section 3 shows the results which have been 
obtained from full waveform data acquired in May 2006 by the 
Riegl LMS-Q560 scanner in the Bavarian Forest National Park. 
Finally, the results are discussed with conclusions in sections 4 
and 5. 

2. METHODOLOGY 

2.1 Decomposition of full waveform data 

Let us assume that full waveform LIDAR data have been 
captured in a region of interest (ROI). A single waveform is 
decomposed by fitting a series of Gaussian pulses to the 
waveform which contains NR reflections (Figure 1).  
 

 
Figure 1. 3D points and attributes derived from a waveform 
 
The vector ),...,1)(,,,,( Riiiii

T
i NiIWzyx ==X  is provided for 

each reflection i with ),,( iii zyx  as the 3D coordinates of the 

reflection. Additionally, the points iX  are given the width 

ii σW ⋅= 2  and the intensity iii AσI ⋅⋅⋅= π2  of the return 
pulse with iσ  as the standard deviation (= half pulse width at 

eAi / ) and Ai as the amplitude of the reflection i (Reitberger 
et al., 2006; Jutzi and Stilla, 2005). Note that basically each 
reflection can be detected by the waveform decomposition. This 
is remarkable since conventional LIDAR systems – recording at 
most five reflections – have a dead zone of about 3 m which 
makes these systems effectively blind after a reflection.  
 

Class Single First Middle Last 
Definition NR=1 

i=1 
NR ≥ 2 
i=1 

NR ≥ 3 
i=2,…, NR-1 

NR ≥ 2 
i=NR 

Table 1. Subdivision of points into classes in dependence on the 
number of reflections NR and the position i of the reflection in 
the waveform 
 
The sensor data are calibrated by referencing Wi and Ii to the 
pulse width eW  and the intensity eI  of the emitted Gaussian 
pulse and correcting the intensity with respect to the run length 
si of the laser beam and a nominal distance s0.  
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Note that the correction assumes a target size larger or equal to 
the footprint (Wagner et al., 2006). The points from a waveform 

are subdivided into 4 point classes depending on the number of 
reflections within a waveform (Table 1). 
 
2.2 Segmentation 

The segmentation of the tree crowns is achieved by deriving the 
CHM from 3D points which are best representing the outer tree 
crown geometry. The ROI is subdivided into a grid having a 
cell spacing of cp and NC cells. Within each cell of size cp2, the 
highest 3D point is extracted and corrected with respect to the 
ground level ground

jz , i.e.  ),...,1( C
ground
jj

CHM
j Njzzz =−= . The 

ground level ground
jz  is estimated from a given DTM by bilinear 

interpolation. In the next step, all the highest 3D points 
),...,1)(,,( C

CHM
jjj

T
j Njzyx ==X  of all NC cells are robustly 

interpolated in a grid that has NX and NY  grid lines and a grid 
width gw. The special adjustment approach (Krzystek et al., 
1992) interpolates the NCHM  = NX * NY grid points 

),...,1)(,,( CHMj
CHM
Intj

CHM
Intj

CHM
Int

T
j

CHM
Int Njzyx ==X  and filters 

the 3D points Xj in a 2-phase iterative Gauß-Markoff process. 
Thanks to constraints on the curvature and torsion of the 
surface, the interpolation smoothes and regularises the surface 
in case of an ill-posed local situation. The iterative adjustment 
scheme is similar to an edge preserving filter that discards 
outliers, closes gaps in the surface if no 3D points could be 
found in the cells, and preserves surface discontinuities. The 
result is a smoothed CHM having NCHM equally spaced posts. 
Finally, the tree segments are found by applying the watershed 
algorithm (Vincent and Soille, 1991) to the CHM. The local 
maximums of the segments define the Nseg tree positions 

),...,1)(,( segi
CHM

stemi
CHM
stem NiYX = . 

 
2.3 Stem detection 

Tree stems in the individual tree segments are detected in a 3-
step procedure:  
 
Step 1: The NS points ),...,1( S

Seg
j NjX =  within a tree segment 

are cleared from ground points by discarding all points within a 
given height bound Zthreshold = 1 m to the DTM. 
 
Step 2: The goal of the second step is to derive the crown base 
height hbase of the tree in order to subdivide the tree into the 
stem area and the remaining crown area. This coarse tree 
subdivision is achieved by (i) splitting the tree into l layers with 
height of 0.5 m, (ii) calculating the number of points ni per 
layer, (iii) forming the vector ),...,1}({ liNn Si ==PN , (iv) 
smoothing PN  with a 3x1 Gaussian filter and, finally, (v) 
defining hbase as the height that corresponds to 0.15 % of the 
total number of points per segment. All the Nstem points below 
hbase are potential stem points. Note that the remaining points 
can result from one or even several stems or from the 
understorey. The following hierarchical clustering scheme is 
applied to these points after calculating the Euclidian distance 

matrix Dstem = { ( ) ( )22
jijiij yyxxd −+−= ; i=1,…,Nstem; 

j=1,…,Nstem; i#j} (Heijden et al., 2004).  
 

1. Assign each point to its own cluster, resulting in Nstem 
clusters. 

2. Find the closest pair of clusters and merge them into 
one cluster. The number of clusters reduces by one. 

333

IAPRS Volume XXXVI, Part 3 / W52, 2007



 

3. Compute the distance d between the new clusters and 
each of the old clusters.  

4. Repeat steps 2 and 3 until all items are clustered into 
a single cluster of size Nstem or a predefined number of 
clusters is reached. 

 
In this clustering process the distance between two clusters Ci 
and Cj is defined as the shortest distance from any point in one 
cluster to any point in the other cluster. The clustering yields a 
dendrogram which shows at which distance the clusters are 
grouped together. By defining a minimum distance dmin between 
the cluster centres the number of clusters Ncluster is selected. The 
value of dmin must be larger than the maximum distance of stem 
points and smaller than the distance of points belonging to 
different stems. A value of 1.2 m was found to be most useful. 
 
Step 3: The final finding of the stems is achieved by applying a 
RANSAC-based 3D line adjustment to all the Ncluster clusters 
and labelling all 3D lines with an incident angle smaller than α 
= 70 and a minimum number of 3 points as stems gstem. This 
robust procedure eliminates clusters that result from the 
understorey and do not show a vertical main direction. Also, it 
cleans the cluster points from non-stem points. The detected 
stem positions }{),( detdet

stemstemstem gDTMyx ∩=  are calculated as 
the intersection of the stem gstem with the DTM. Note that 
several stems can be found within a tree segment. 
 

3. EXPERIMENTS 

3.1 Material  

Experiments were conducted in the Bavarian Forest National 
Park which is located in south-eastern Germany along the 
border to the Czech Republic (49o 3’ 19” N, 13o 12’ 9” E). 11 
sample plots with an area size between 1000 m2 and 3600 m2 
and a mean tree density of 390 trees per ha were selected in the 
mixed mountain forests. The plots comprise forest in the 
regeneration phase, the late pole phase and the optimal phase. 
Reference data for all trees with diameter at breast height 
(DBH) larger than 10 cm have been collected in May 2006 for 
438 Norway spruces (Picea abies), 477 European beeches 
(Fagus sylvatica), 74 fir trees (Abies alba), 20 Sycamore 
maples (Acer pseudoplatanus) and 3 Norway maples (Acer 
platanoides). Several tree parameters like the DBH, total tree 
height, stem position and tree species were measured and 
determined with the help of GPS, tacheometry and the ’Vertex’ 
III system. A DTM with a grid size of 1 m and an absolute 
accuracy of 25 cm was available (Heurich, 2006). Full 
waveform data have been collected by Milan Flug GmbH with 
the Riegl LMS-Q560 scanner in May 2006 after snowmelt but 
prior to foliation with an average point density of 25 points/m2. 
The vertical sampling distance was 15 cm, the pulse width at 
half maximum reached 4 ns and the laser wavelength was 1550 
nm. The flying altitude of 400 m resulted in a footprint size of 
20 cm. 
 
3.2 Single tree detection 

The procedures for segmentation and subsequent stem detection 
were applied to all the plots in a batch procedure without any 
manual interaction. Figure 2 shows a typical sample area 
containing several coniferous trees. The tree tops derived from 
the local maximums of the CHM correspond in some cases with 
the reference trees reasonably. However, some tree tops are 
deviating considerably from the true position. Moreover, some 

segments contain more than one reference tree. The main 
reasons are that (i) a group of trees form locally a well-defined 
maximum and (ii) the surface reconstruction smoothes too 
much so that neighbouring trees cannot be isolated. In both 
cases the single trees are not detected and hence the segment 
represents a group of trees rather than a single tree. 
 
The stem detection takes advantage of additional high-density 
point information the waveform decomposition provides 
underneath the CHM. In case that only sparse understorey is 
below the base height stem points are successfully detected by 
the hierarchical clustering and the RANSAC-based stem 
reconstruction. Figures 3a and 3b show the stem points for the 
segment in the centre of Figure 2 found by the clustering 
scheme given in section 2.3. The two stems are clearly isolated 
by applying the angle constraint of 70 to the stems 
approximated with RANSAC. Moreover, the single stem 
position derived from the CHM maximum is significantly 
improved by the new stem position. Thus, the stem detection 
provides additional single trees that constitute no local 
maximum in the CHM and improves the position of trees 
derived from the CHM maximum in the majority of cases. 

 
Figure 2. Orthophoto of sample area with segments (green 
lines), reference coniferous trees (white dots), detected stems 
(yellow crosses) and the local CHM maximums (red crosses) 

Figure 3a. Stem point clusters 
and stems reconstructed with 
RANSAC

Figure 3b. The neighbouring 
trees and the reconstructed 
stems 

 
Let us now evaluate the accuracy and reliability of the 
presented method. Table 2 contains the percentage of detected 
trees for all the plots. The trees are subdivided into 3 layers 
with respect to the mean height htop of the 100 highest trees per 
ha. The lower layer contains all trees below 50 % of htop, the 
intermediate layer refers to all trees between 50 % and 80 % of 
htop, and, finally, the upper layer contains the rest of the trees. 
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Number of reference trees in lower layer 229 
Number of reference trees in intermediate layer 161 
Number of reference trees in upper layer 622 
Percentage of deciduous [%] 49 

Detected trees lower layer [%] 3 
Detected trees intermediate layer [%] 13 
Detected trees upper layer [%] 74 
Total number of detected trees [%] 49 

Without 
“stem 
detection”  

False detected trees [%] 5 
Detected trees lower layer [%] 3 
Detected trees intermediate layer [%] 21 
Detected trees upper layer [%] 78 
Total number of detected trees [%] 53 

With 
“stem 
detection” 

False detected trees [%] 7 
Table 2. Detection of trees in the reference plots 
 

Mean positioning 
error 

Without “stem 
detection” 

With “stem 
detection” 

Coniferous 0.80 m 0.70 m 
Deciduous 1.65 m 1.22 m 
Total 1.16 m 0.92 m 

Table 3. Accuracy of the tree position 
 
At first, we focus on the detection rate of trees that are derived 
from the CHM without stem detection and hence refer to a local 
maximum in the CHM. The overall detection rate of 74 % 
evidences that most of the trees are detected in the upper layer. 
In comparison, in the intermediate and lower layer the detection 
rate is considerably smaller. Especially, in the lower layer only 
a few trees can be found since most of these trees are covered 
by taller trees. The mean number of false detected trees 
amounts to 5 % and indicates a remarkable reliability. When 
applying the stem detection we get an overall improvement of 
the detection rate in the intermediate layer of 8 % and in the 
upper layer of 4 %. However, no improvement is achieved in 
the lower layer since (i) laser hits at the stem of small trees 
happen rarely, (ii) the base height hbase is inaccurate for trees 
beneath taller trees, and (iii) some trees have no clear hbase since 
their green branches start close to the ground. Additionally, we 
found that the detection rate is on average for coniferous trees 
61 % and for deciduous trees 44 %, respectively. Finally, Table 
3 shows the absolute positional improvement of the trees 
derived from the stem positions ),( detdet

stemstem yx  and the position 
of the reference trees. As expected, the mean positioning error 
of deciduous trees gets better by 26 %, which corresponds to 43 
cm. The overall improvement of the tree position amounts to 24 
cm, which is equivalent to 21%. 
 
3.3 Analysis of full waveform data 

Based on the segmentation, the stem detection, and the known 
DTM all the points within a tree segment were subdivided into 
the three categories “stem points” below the base height, 
“ground points” and ”crown points” representing the tree 
crown. Possible stems points in the tree crown were excluded 
by discarding all the points within the stem cylinder Vstem, 
where Vstem is defined by the 3D stem line gstem as the centre 
line of the cylinder and the radius R = 1 m. Ground points were 
found within a height bound of 1 m to the DTM. Furthermore, 

c
iI  and c

iW  of the points were analysed with respect to the 

incident angle of the laser beam. Because of the scanning angle 
of 450 the maximum incident angle amounted to 22.50. Thus, 
mean values and standard deviations were calculated in an 
angle interval of 50 for the point classes given in Table 1 and 
are used in the following for visual analysis in Figures 4 to 10. 
 

 
Figure 4.  Mean pulse width and standard deviation (single and 
last points) for the three point categories 
 

 
Figure 5. Mean intensity and standard deviation (single and last 
points) for the three point categories 
 

 
Figure 6. Mean intensity and standard deviation (single points) 
for the three point categories 
 
In general, we found that roughly 75 % of the stem points are 
single and last points. Since ground points are also only 
composed by single and last points we focussed primarily on 
these point classes. The Figures 4 and 5 show for these point 
classes the mean values for pulse width and intensity and their 
standard deviations in dependence on the incident angle. 
Apparently, the ground points differ from stem points and 
crown points considerably. Both crown and ground points show 
no angle dependence. The undulating ground, the undergrowth, 
and the varying reflecting targets in the crown average the 
individual values for pulse width and intensity. As expected, the 
pulse width for the stem points decreases with increasing 
incident angle since with increasing incident angle the angle 
between laser beam and the normal to the stem surface gets 
smaller. This leads to a smaller broadening of the pulse. 
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Accordingly, the slight increase of the intensity with increasing 
incident angle can be interpreted the same way. Figure 6 
focuses especially on the intensity of single points. Apparently, 
the three point categories differ fairly well for an angle range of 
100 and 22.50. This was the only point class that indicated the 
best discrimination between the stem points and crown points. 
Most notably, ground points and crown points can be clearly 
separated. These results correspond with experiences of the 
study (Doneus et al., 2006), which recommends the use of 
intensity and pulse width along with point coordinates to 
generate a DTM from full waveform data. 
 
We focus now on the important question in how far intensity 
and pulse width discriminate tree species. We restrict ourselves 
to coniferous and deciduous trees, which are the dominating 
trees in the study area. Crown points and stem points are 
assigned to the two tree species using the reference data. Again, 
the mean values and the standard deviation for c

iI  and c
iW are 

analysed with respect to the incident angle. From Figure 7 we 
can conclude that the mean pulse width c

iW  of single crown 
points is different for coniferous and deciduous trees and is 
independent on the incident angle. Interestingly, we found that 
the difference in the pulse width was significant especially for 
single points. However, the difference of the mean intensity c

iI  
was distinctive for all the four point classes, again without any 
dependence on the incident angle (Figure 8).  
 

 
Figure 7. Mean pulse width and standard deviation (single 
points) for coniferous and deciduous crown points 
  

 
Figure 8. Mean intensity and standard deviation (all point 
classes) for coniferous and deciduous crown points 
 
Finally, we concentrate on the stem points. The mean pulse 
width c

mW  is practically the same for the two tree species using 
all four point classes and decreases slightly with increasing 
incident angle (Figure 9). Apparently, the shape of coniferous 
and deciduous tree stems influences the pulse width the same 
way. Of course, the incident angle still plays a role likewise in 
Figure 4. Surprisingly, the mean intensity for single points is 

clearly different for coniferous and deciduous tree stems 
(Figure 10). Probably, the absorption and reflecting 
characteristics of stems have a clear impact on the mean 
intensity. 
 
We have corrected the intensity of all point classes according to 
equation (2) assuming that the target size is equal or larger the 
laser footprint. This assumption is true for ground points and – 
probably – for most of the stem points. Since the target size of 
the crown points is not known we corrected them like stem or 
ground points. 
 

 
Figure 9. Mean pulse width and standard deviation (all point 
classes) for coniferous and deciduous stem points 
 

 
Figure 10. Mean intensity and standard deviation (single points) 
for coniferous and deciduous stem points 
  

4. DISCUSSION 

Conceptually, the presented approach to single tree detection 
from airborne LIDAR data goes one step further by using the 
CHM and additional information inside the tree. It leads to an 
improvement of the detection rate of single trees in the 
intermediate and upper forest layer by detecting tree stems. This 
refinement of the detection rate could be expected since (i) in 
many cases neighbouring trees do not appear as two clear 
maximums in the raw data and (ii) the smoothing of the CHM 
blurs the maximums. Apparently, as already pointed out by 
some other authors (e.g. Solberg et al., 2006), the smoothing of 
the reconstructed CHM influences the quality of the single tree 
detection considerably. The second advantage of the presented 
method is that the position of detected trees is improved. This is 
also not very surprising since the intersection of the detected 
tree stem with the DTM must be more precise than the tree 
position derived from the CHM maximum. Thirdly, the stem 
detection checks the hypothesis of a stem position which has 
been derived from the CHM. The restrictions of the approach 
are that only trees in the upper and intermediate forest layer can 
be additionally detected. It fails in the under layer where stem 
hits are rare and stems points can not be clearly clustered. 
Moreover, so far we have not implemented to go back to the 
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raw data and to find a new segmentation of the tree crowns 
using the stem information. 
The analysis of the waveform data shows that the intensity and 
pulse width can be advantageously used for the discrimination 
of crown, stem and ground points, if the reflections are 
distinguished with respect to their position in the waveform. 
This information can be helpful for a true 3D segmentation. 
Moreover, we found that the mean pulse width and the mean 
intensity are characteristic for coniferous and deciduous trees. 
Thus, these experiences are very useful for (i) a DTM 
generation in forest areas, (ii) an improvement of the stem 
detection, (iii) and a tree species classification. For instance, 
ground or stem points can be more reliably detected using the 
intensity and pulse width as explained in the Figures 4, 5 and 6. 
Furthermore, the classification of coniferous and deciduous 
trees in leaf-off situation can advantageously use features that 
are composed from the mean intensity and pulse width of the 
tree crowns. If stem points can be detected the mean intensity of 
single points is the most meaningful feature. The pulse width of 
stem points is useless for classification purposes.  
 

5. CONCLUSIONS 

The study presents a novel single tree detection based on a 
combined surface reconstruction and stem detection. The results 
attained in heterogeneous forest types show that the detection 
rate and position of single trees can be improved in the upper 
and intermediate layer. Based on the stem detection the analysis 
of the waveform data shows a clear dependency of the intensity 
and the pulse width with respect to crown points, stem points, 
ground points, and tree species, resp. Future research should be 
focussed on the improvement of the segmentation of the tree 
crowns using the stem information. 
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