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ABSTRACT:

Cleaning laser scanner point clouds from erroneous measurements (outliers) is one of the most time consuming tasks that has to be
done before modeling. There are algorithms for outlier detection in different applications that provide automation to some extent but
most of the algorithms either are not suited to be used in arbitrary 3 dimensional data sets or they deal only with single outliers or
small scale clusters. Nevertheless dense point clouds measured by laser scanners may contain surface discontinuities, noise and diffrent
local densities due to the object geometry and the distance of the object to the scanner; Consequently the scale of outliers may vary
and they may appear as single or clusters. In this paper we have proposed a clustering algorithm that approaches in two steps with the
minimum user interaction and input parameters while it can cop with different scale outliers. In the first step the algorithm deals with
large outliers (those which are very far away from main clusters) and the second step cops with small scale outliers. Since the algorithm
is based on clustering and uses both geometry and topology of the points it can detect outlier clusters in addition to single ones. We
have evaluated the algorithm on a simulated data and have shown the result on some real terrestrial point clouds. The results explain
the potential of the approach to cop with arbitrary point clouds and different scale erroneous measurements.

1 INTRODUCTION real close-range data is reported in this article. Also some imple-
mentation issues are discussed.

Simple, efficient and direct capturing of 3D information are the
main reasons for the fast growing popularity of laser scanners.
Although the generated point clouds are direct and dense mea-
surement of objects, the appearance of single or cluster outliers
cause serious problems for the next modelling steps. Therefore,
a pre-process is required to detect and remove outliers. However,
the number of points in the generated point cloud is in the order
of million points, so (semi) automatic approaches are necessary.

This article contains a brief review of several outlier detection ap-
proaches in section 2. Section 3 presents the algorithm and some
implementation issues. Results of applying the algorithm on dif-
ferent data sets is presented and discussed in Section 4 and the
last Section concludes the article by discussing the achievements.

2 RELATED WORK

While an extensive amount of research has been presented in lit-
erature for outlier detection it is still a critical problem in laser
scanner point clouds. The proposed approaches have weak po-
tential to perform well with surface discontinuities, they need
some priory knowledge of the statistical distribution of the sam-
ples (Hawkins, 1980, Vanicek and Krakiwsky, 1982) or they are
sensitive to noise and different local densities (Breunig et al.,
2000). Nevertheless, the mentioned criteria are typical cases in
laser scanner point clouds.

Outlier detection in point clouds is not a trivial task since there
are: geometrical discontinuities caused by occlusions in silhou-
ette boundaries, no prior knowledge of the statistical distribu-
tion of points, the existence of noise, and different local point
densities. The typical outlier detection approaches are classified
as distribution-based, depth-based, distance-based, density-based
and clustering approaches (Papadimitriou et al., 2002).

In the previous work (Sotoodeh, 2006), we have introduced an
outlier detection algorithm for laser scanner point clouds, which According to (Papadimitriou et al., 2002) outlier detection ap-
is categorized in density-based approaches, and have investigated proaches are classified into the distribution-based (Hawkins, 1980),
the advantages and the deficiencies of the algorithm in different depth-based (Johnson et al., 1998), clustering approaches (Jain
data sets. The algorithm needs a predefined minimum density for et al., 1999), distance-based (Knorr et al., 2000) and density-
inlier clusters and a threshold to distinguish outliers from inlier. based (Breunig et al., 2000). Distribution-based approaches de-
There it is shown that even though the algorithm is capable to  ploy some standard stochastic distribution model (Normal, Pois-
detect single and small clustered outliers but it simply does not son, etc.) and flag as outliers those objects that deviate from the
detect clustered outliers that are denser than the predefined cluster model according to a significant level (Vanicek and Krakiwsky,
density (large (-error). Also we have tried the algorithm in an 1982, Rousseeuw and Leroy, 1987, Barnett and Lewis, 1994).
iterative manner however it removes a large amount of the inlier However, for arbitrary data sets without any prior knowledge of
and consequently results in a bigger value of a-error. the distribution of points, determination of the suitable distribu-
tion model which fits to the data set (if any) needs to perform
In this paper we have presented a new algorithm that applies more expensive tests (in laser point clouds the distribution of points
sophisticated information of the point cloud to detect single and varies according to the distance of objects to laser scanner and the
clustered outliers with a minimum user interaction. It uses two object geometry). Local surface fitting approaches, for instance
proximity graphs and performs in two steps. In addition to the moving least squares, is also used for outlier detection. The al-
algorithm description, the results of applying the algorithm to a gorithms perform well if the point cloud is dense and obtained
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from a smooth surface. However, discontinuities or high curva-
ture areas would get severe smoothing effect. The description of
these algorithms and their application is beyond the scope of this
article.

The depth-based approach is based on computational geometry
and computes different layers of k-dimensional convex hulls (John-
son et al., 1998). Objects in the outer layer are detected as out-
liers. However, it is a well-known fact that the algorithms em-
ployed cannot cope with large, arbitrary data sets in 3 dimensions.
The above two approaches for outlier detection are not appro-
priate for large, arbitrary data sets (Papadimitriou et al., 2002).
Nevertheless, this is often the case with laser point clouds.

The distance-based approach was originally proposed by (Knorr
et al., 2000). An object in a data set P is a distance-based outlier
if at least a fraction b of the objects in the object set is further
than r from it. This outlier definition is based on a single, global
criterion determined by the parameters 7 and b. This can lead
to problems when the data set has both dense and sparse regions
(Breunig et al., 2000).

The density-based approach was proposed by (Breunig et al.,
2000) for KDD (Knowledge Discovery in Database) applications
and (Sotoodeh, 2006) adopted the algorithm for application in
laser scanner point clouds. It relies on a local outlier factor (LOF)
of each object, which depends on the local density of its neighbor-
hood. The neighborhood is defined by the distance to the Mints-
th nearest neighbor. The MinPts is a predefined value, which
corresponds to the minimum number of points in the calculation
of density. The algorithm is not only independent of the prior
knowledge of the scanned objects, the distribution or density of
sampled points but also does not suffer from the different local
point densities. It is capable to detect single and small clustered
outliers. Nevertheless it does not detect clustered outliers that are
denser than the predefined cluster density (large (3-error).

Many clustering algorithms detect outliers as by-products (Jain
et al., 1999). From the viewpoint of a clustering algorithm, out-
liers are objects not located in the clusters of dataset. These al-
gorithms, in general, consider outliers from a more global per-
spective, which also has some major drawbacks (Breunig et al.,
2000). Clustering algorithms, also called as classification meth-
ods, are performing by two main approaches: supervised and un-
supervised. In the supervised approach the algorithm needs some
representatives of different classes the supervisor expects. Pro-
viding such samples differs in various laser data set and so makes
the approach very dependent on the scanned objects.

In the unsupervised case, the goal is to cluster the input data in
such a way as to provide clusters Cx, k = 1, ..., K which cor-
respond to some underlying (interesting or useful) unobserved
class labels. A fundamental difficulty in clustering is determin-
ing K, the number of clusters. Once K is determined, one pro-
ceeds to group the observations. One may approach clustering
from a density estimation viewpoint. For instance, a common
approach is to model the density as a mixture of K components
(again, choosing K can be difficult) and then use these compo-
nents to determine clusters. A related method is k-means clus-
tering. The idea is to cluster the data into clusters centered on
k centers. The centers are initialized arbitrarily, and points are
assigned to the cluster associated with their closest center. The
centers are then recomputed using the assigned points, and this
continues until convergence. Besides the problem of selecting
the value of K, the k-means algorithm suffers from sensitivity
to the initial cluster centers. For this reason, some practitioners
advise trying several initializations, with various methods for se-
lecting or combining the result clusters. Others suggest various
methods for selection of initial centers (Marchette, 2004).
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The minimum spanning tree can be used for clustering, using a
local criterion for defining clusters. This idea is described in some
detail in (Zahn, 1971). The idea is to break (remove edges from)
the minimum spanning tree at edges that are “inconsistent”. This
results in a collection of connected graphs, one for each cluster.
Many definitions of inconsistent are possible. One could compute
the standard deviation of the edge lengths incident on a vertex and
eliminate edges which are large relative to this scale. However
since this cutting is based on a global criterion, the clustering re-
sult would be rough and outliers close to the object surface cannot
be detected. This is described in more detail in Section 3.

(Sithole, 2005), has also applied minimum spanning tree to seg-
ment airborne laser scanner (ALS) data. The algorithm is scan
line based and performs in different directions. The author has
reported well performance of the algorithm in different ALS data
set to separate terrain, trees, house roofs and bridges (segmen-
tation). The outliers are detected as points that are not in the
predefined classes. It has a fast run time performance and runs
in case there are overlapping point clouds. However the exten-
sion of the algorithm to close-range data, in case either there is
no information about scan lines or if the point cloud is a com-
bination of different scan positions (topologically 3D data from
object surfaces), does not seem trivial and limits the application
to ALS datasets.

3 HIERARCHICAL OUTLIER DETECTION (HOD)
ALGORITHM

According to the general definition of outliers form (Hawkins,
1980), “Observations that deviate so much from other observa-
tions as to arouse suspicion that it was generated by a different
mechanism”, an outlier in a dense point cloud can be identified
using its sampling interval deviation from the others. In laser
scanner point clouds the sampling interval is not a fixed value
since the sampling is performed based on two fixed angular res-
olution and objects might have different distance to the measure-
ment instrument and so outliers might appear in various scales in
a scan; Therefore applying a global and then a local outlier de-
tection should provide useful results. Based on this observation
we have developed an algorithm that runs in two phases. The
first phase tries to capture some statistical information of a global
sampling interval, while the second phase provides a local criteria
to cluster the point cloud. Flowchart of the algorithm is depicted
in Figure 1.

First, a rough global approximation of the sampling intervals is
estimated over the Euclidean Minimum Spanning Tree (EMST)
edges. Then the tree edges that are not in a predefined confiden-
tial interval are pruned. The result is a rough clustering of the
point cloud. In the next step, each cluster is treated separately.
For points in each cluster a graph, so called Gabriel Graph (GG),
is generated. Edges of GG are used for estimating the sampling
interval statistics in each cluster. Then graph edges that are not in
a predefined confidential interval are pruned. This gives the final
clustering in which single outliers are removed as a by product.
The clustered outliers are also removed if they have less point
density than a predefined value.

Initially the algorithm computes the Delaunay triangulation of the
point cloud. The underlying topology of the Delaunay graph is
the base for the generation of the next graphs. In the first phase
of the clustering, EMST of the point cloud is generated and the
edges of the tree are pruned based on the statistical analysis of the
edge lengths. This gives a rough clustering of the point cloud and
might disconnect some big clustered outliers that their distance to
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Figure 1: Flowchart of the hierarchical outlier detection algo-
rithm
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the other clusters are large. Clusters that are denser than a prede-
fined threshold are kept and the rest are removed. Second phase
starts with the generation of GG for the point clouds of each clus-
ter from the last phase. Having pruned the long edges of each
GG according to the statistics computed over edges of that GG, a
finer clustering of the point cloud is obtained. Removing clusters
less denser than a predefined value removes the final outliers and
cleans the data. In another viewpoint, the algorithm in the first
stage removes relatively large scale erroneous measurements and
in the second phase it detects and removes the outliers that might
not be as large as the first ones but according to the scanned ob-
ject surfaces they are considered as wrong measurements. In the
following sections, the above process is described in more details.

3.1 Global phase (rough clustering)

In the first step we use edges of EMST to obtain a global sam-
pling interval measure. The Euclidean minimum spanning tree
or EMST is a minimum spanning tree of a set of points in R",
where the weight of the edge between each pair of points is the
Euclidean distance between those two points. In simpler terms,
an EMST connects a set of points using edges such that the total
length of all the edges is minimized and any point can be reached
from any other by following the edges.

This definition gives a clue that edges of EMST contain some
global information about the sampling interval, since they span
the points by a global minimum edge weight (distance). Addi-
tionally in case of some clusters apart from each other, EMST
connects them by single edges that are logically longer than the
other edges of the tree (Figure 2b).

Having assumed that sampling intervals obey a normal distribu-
tion, an edge of the tree is statistically long if its distance to the
median of the all edge lengths is longer than the distance corre-
sponding to a predefined confidential interval. Median is used
since it is statistically less sensitive to outliers. Removing the
long edges of the tree according to such a threshold results in
some sub trees that each corresponds to a cluster of points (Fig-
ure 2¢).

Since today laser scanners provide dense point clouds of objects,
splitted clusters that are less dense than a threshold are most prob-
ably outliers. In our implementation the minimum inlier cluster
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Figure 2: Proposed algorithm steps in a simulated data. Steps
(a) to (c) and (d) to (f) illustrate the first and the second phases
of the algorithm respectively. (a)input data set (b)EMST of the
point set (c) pruned EMST by 99% confidential interval (d) GG of
the clusters of the first phase (e) pruned GG by 95% confidential
interval (f) ultimate result which is cleaned out of the outliers.

density (the threshold) is a user defined single value that might be
different for various scanning resolutions and object size.

In this stage the algorithm has cleaned outliers according to a
global criteria that is performing well in the scale of the whole
scan but might not be suitable to remove local outliers. So we
need a local and more rich measure of sampling intervals. The
next stage describes an approach to reach this goal.

3.2 Local phase (fine clustering)

Since EMST provides a rough skeleton of the scanned object,
the estimated sampling interval is also not so precise. Applying
a denser structure (graph) that has more edges on the underlying
scanned surface provides a denser sample of the edges and conse-
quently the estimation of the parameters of the related population
is more reliable. Gabriel Graph is such a structure.

Gabriel graphs, also known as Least Squares Adjacency Graphs,
were introduced by (Gabriel and Sokal, 1969) and named af-
ter their originator. GG has originally been defined for 2D and
has been used for geographic variation of data, but the defini-
tion is generalized to higher dimensions in a straightforward way
(Veltkamp, 1994). It also has widely been applied in the analysis
of labeled data (Aupetit, 2003) and widely in boundary/surface
reconstruction algorithms; (Veltkamp, 1994, Attene and Spagn-
uolo, 2000, Adamy et al., 2000) to name a few. A Gabriel Graph
on a point set P in R™ is defined to be the graph on P in which
two points are connected if the largest open ball passing through
the two points is empty. In a three dimensional Euclidean space
two points make an edge if the largest sphere passing through
these two points contains no other point. On the other hand since
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Figure 3: Gabriel graph edges and sampling intervals of a sam-
pled curve in a plane. Two points are connected by GG edges if
the largest circle passing through the points is empty (Only some
circles are shown in the figure).

GG is a sub graph of each Delaunay triangulation of the point set,
the edges of the GG are also edges of each Delaunay triangulation
and inherit their properties (Marchette, 2004).

According to the definition, the graph contains edges that resem-
ble the sampling intervals in three dimensions and the structure
is quit like a wireframe of the scanned object surface (Figure 2d).
Figure 3 illustrates the Gabriel Graph for a sampled curve in a
plane. It shows how the edges of GG are similar to the sampling
intervals.

Based on the above property the proposed algorithm performs
the second phase. For each cluster obtained in the previous stage,
GG is computed and its edges considered as the samples of the
sampling distance in that particular cluster. Like the first step, the
median value of the edge lengths is assumed as the estimation of
the sampling distance with a standard deviation equal to the stan-
dard deviation of the edge lengths. Considering the predefined
confidential interval, long edges of the graph are cut. It results
in sub graphs each indicating a cluster. Clusters that have a den-
sity less than the predefined cluster size are considered as outliers
(Figure 2e).

3.3 Implementation

Although the algorithm seems straight forward, computation of
EMST and GG needs some considerations. The simplest algo-
rithm to find an EMST, given n points, by constructing the com-
plete graph on n vertices requires O(n?) time. The same ap-
proach constructs GG in O(n?) in 3 dimensions. Having noticed
that EMST and GG are the subgraphs of every Delaunay trian-
gulation of a point set even in 3 dimensions, applying Delaunay
triangulation structure reduces the complexity to O(nlogn) for
each. Thus, we first compute the 3D Delaunay triangulation of
the point set and use that structure for computing the EMST and
then GG for each cluster resulting from the first phase. CGAL' is
used as a geometric core library and for the Delaunay triangula-
tion computations. Boost Graph library” is also employed for the
EMST computations.

4 RESULTS AND DISCUSSION

To assess the explained algorithm, it was examined on a simu-
lated data and some terrestrial laser scanner point clouds, with
dense clusters and most of typical outliers. Below the result of all
tests are reported.

Lhttp://www.cgal.org
2http://www.boost.org
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4.1 Simulated data

Figures 2a-f show the algorithm sequence on a simulated data
containing 656 points. Reference outlier and inlier are separated
manually and the result of the algorithm is compared with the
reference data. Table 1 shows some statistics, the number of out-
lier/inlier points and the first and second error types, of the result
in the two phases. At the first phase points and clusters that are
too far from the main clusters are detected while the second phase
deals with local outliers. High 3-error value at the first phase ex-
planes that there are still some outliers among the intermediate
cleaned data that are not detected. Having run the second phase
remained outliers are detected and removed (the lower value of
[B-error). Of course the second phase increases the a-error too
(some correct points are detected as outlier) however this is a
trade off one has to consider between decreasing 3-error and in-
creasing q-error.

The HOD algorithm (phase-1)

) Inlier | Outlier a-error
§ Inlier 569 3 572 correct outlier
& Outlier 75 84 correct inlier
P 578 78 656

[ a-error | 045% | B-error | 1.37% |

The HOD algorithm (phase-2)

3 Inlier | Outlier
§  Inlier |1565 6 571
< Outlier 4 7
P 568 10 578

| a-error [ 1.04% [ B-error | 0.52% |

Table 1: Result of the proposed algorithm on the simulated data,
phase one (upper table) and phase two (lower table).

4.2 Terrestrial case

Point clouds from Sternwarte® building, which was measured by
Faro! L.S880 laser scanner, used as the terrestrial test data set.
Figure 4 left column, illustrates the original laser scanner data in
different scan positions with different object facets. The right col-
umn of the figure shows each data set after has been cleaned by
the algorithm. 99% and 95% confidential intervals are used for
the global and local clustering phases respectively. The minimum
inlier cluster density is considered as 100 points, according to the
object size, distance of the scanner to the object and sampling
resolution. Comparing the data set before and after outlier de-
tection clearly shows the importance of the process and how the
proposed algorithm performed. Close look at the results shows
that not only the algorithm detected single outliers, but also clus-
tered outliers with different densities have been detected.

The figure shows direct result of the algorithm on the data set.
However in some cases it might happen that some cluster of out-
liers denser than the minimum inlier size exist in the data set

3ETH Sternwarte in Zurich, an astronomical observatory planned and
constructed by the two ETH-Professors Gottfried Semper (Architecture)
and Rudolf Wolf (Astronomy and Mathematics) from 1859 to 1864
4http://www.faro.com
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Figure 4: Results of applying the proposed outlier detection al-
gorithm on some scans of the Sternwarte building which are cap-
tured by Faro laser scanner. Left column shows 3 different raw
point clouds and the right column shows the cleaned point clouds
after applying the algorithm.

which the algorithm consider them as inlier. This happens spe-
cially in case there are some real objects on the scene further than
the main object that has to be measured. In that case detecting
those objects as outliers is beyond the potential of the algorithm
and needs some further information other than the point cloud it-
self. User interaction to determine if the cluster is an outlier or an
object is required. The result of the algorithm seems quite handy
again; User just needs to select a cluster to remove the whole out-
lier cluster and comparing to the case that the user has to remove
the points of the outlier cluster separately, the user saves time for
editing.

5 CONCLUSIONS AND FUTURE WORK

Detecting outliers in laser scanner point cloud using a hierarchi-
cal algorithm is proposed and investigated in this paper. The al-
gorithm approaches in two stages. In the first stage it removes
relatively large scale erroneous measurements and in the second
phase it detects and removes the outliers that might not be as
large as the first ones but according to the scanned object sur-
faces they are considered as wrong measurements. The algorithm
has unconstrained behavior to the preliminary knowledge of the
scanned scene and it dose not suffer from the varying density of
the points. The algorithm efficiency is assessed by a test on a
simulated point cloud, which contained single and clustered out-
liers. The assessment is done with respect to a manual separation
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of outlier/inlier points. The a-error and [-error (type I and II er-
rors) are estimated and the results show that most of the detected
outliers are really outliers according to the definition of the out-
liers (Hawkins, 1980). In addition some examples in terrestrial
laser scanner point clouds are presented and the behavior of the
algorithm on the data sets are shown and discussed. Results show
that the algorithm detects single and even clustered outliers al-
most without user interaction. Also, in case that the user editing
is required, the result of the algorithm provides easier editing pro-
cedure due to the selection of point clusters rather than individual
points. Test of the algorithm on airborn laser scanner data set is
another challenge that the author is currently working on.
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