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ABSTRACT:

Landscapes can be modelled as sets of homogeneous objects (landscape elements) forming areas of characteristic patterns (landscape
units).
The common way to represent landscapes is by vector GIS data structures which do not provide a mechanism for storing the spatial
relationships between the objects in explicit form. Also, they do not account for a multi-scale representation. Graphscan be used for
describing the topology of a set of objects and the dual graphapproach allows for a representation of its embedding into the Euclidean
plane. The combinatorial map concept is eligible for the simultaneous representation of dual graphs in one single data structure by
orientation and splitting of edges into so-called half-edges or darts. Combinatorial maps also allow for a dual graph representation of a
landscape at different scales by creating a map for each hierarchy level and linking them together.
The task of obtaining a landscape representation from remote sensing images can be accomplished by deriving an adequatecombina-
torial map representation from the image data. This is done by segmentation of the image. Adverse effects by mixed pixelson the
segmentation result can be reduced by spatial subpixel analysis. This method is based on the geometric description of object boundaries
that intersect pixels and thus lead to mixed pixels. Its applicability depends on the relationship between the size of the remotely sensed
objects and the pixel size of the sensor. Since the distribution of grey values in the neighbourhood of any mixed pixel notonly depends
on the parameters of the geometric model of land cover boundaries but also on the spatial response of the sensor, knowledge about the
sensors point spread function can be used to enhance performance of spatial subpixel analysis.
The result of applying spatial subpixel analysis to the remote sensing image is a vector representation of edges in the image which
can be transformed into the combinatorial map structure. Then segmentation can be performed by manipulation of the permutations
defining the combinatorial map. This leads to a new combinatorial map which can be regarded as a representation of the landscape at a
certain scale. This step can be applied repeatedly for obtaining a hierarchy of combinatorial maps each of which definingthe landscape
at a different abstraction level. In this work we show how spatial subpixel models and the representation of remote sensing images by
combinatorial maps can be combined to retrieve a multi-scale description of landscapes with subpixel accuracy from satellite images.

1. INTRODUCTION

1.1 Representation of landscapes

The automatic extraction of landscape structure from remote sens-
ing data is an important prerequisite for analysing and under-
standing landscapes and their processes (Forman, R., Godron, M.
1986, Schneider, W. 2002). Based on the idea of a hierarchical
structure of landscapes there is a strong need for a multiscale rep-
resentation.

Landscapes can be represented in a computer system by different
data structures. First, a regular grid can be used, each cellof
which usually representing a homogeneous region of quadratic
extent. Then a set of adjacent and similar cells can be combined
to represent a real-world object. Similarity in this case means
that the adjacent cells are likely to be part of the same object
and has to be defined more precisely by the application, taking
into account the scale of interest. The set of adjacent cellsthen
represents a real-world landscape element which is considered as
being homogeneous at that particular scale.

Second, a vector representation can be used, which delineates the
landscape elements by polygons. This format has the advantage
of allowing a more realistic representation of object boundaries
since they do not correspond to regular grid cells in general.

Both, the grid and the vector format, are eligible for represent-
ing the geometry (location, spatial extent, . . . ) of the real-world
objects composing a landscape, but they do not store their spa-
tial relationships (i.e. their topology) in explicit form.For that

reasongraphs have been introduced into landscape ecological
problem solving. Urban and Keitt (Urban, D., Keitt, T., 2000)
give examples of how graphs can be used for the representation
and analysis of landscapes. Following this approach thenodes
of the graph are equivalent to patches located in the landscape
matrix and theedgesstand for the fact that there is some rela-
tionship between pairs of patches. This graph is known asregion
adjacency graph(RAG, Figure 1c). In the simplest case an edge
just means that the two nodes (it is incident to) are adjacentto
each other, but it may also carry information about interaction
(mass fluxes, dispersal of individuals or species, . . . ) between
the patches. RAGs can be used to represent the partitioning of a
2-D plane, but they cannot correctly encode multiple boundaries
and inclusions (Haxhimusa, Y., Ion A., Kropatsch, W., Brun,L.,
2005). For the definition of both properties of the objects com-
posing a landscape, their topology and their embedding intothe
Euclidean plane, the dual graph approach can be used (Saib, M.,
Haxhimusa, Y., Glantz, R., 2002). Dual graphs encode a parti-
tioning of a plane by a RAG and its dual structure, the boundary
graph (Figure 8), but dual graph representations lack an explicit
encoding of the orientation of planes, existing in combinatorial
maps (Haxhimusa, Y., Ion A., Kropatsch, W., Brun, L., 2005).
A combinatorial map can be obtained from the segmentation of
a plane by orientation and splitting of edges (of the boundary
graph) into so-called half-edges or darts. This is outlinedin more
detail in chapter 1.3. Figure 1 shows the different data struc-
tures for the representation of landscapes in a computer system. It
should be noted that Figure 1c shows the region adjacency graph
only, and not its dual, the boundary graph.
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Figure 1. Representation of landscapes

Obtaining a landscape representation from a remote sensingim-
age can be accomplished by segmentation of the image.Spatial
subpixel analysis, as described in chapter 1.2, can be used to re-
duce adverse effects by mixed pixels and to retrieve the object
boundaries with subpixel accuracy.

This paper is structured as follows. In chapters 1.2 and 1.3 we
give a brief overview of spatial subpixel analysis and combina-
torial maps, respectively. In chapter 2 we present a method that
combines both spatial subpixel analysis and the representation of
landscapes based on combinatorial maps, to derive a multi-level
structural representation of a landscape from a remote sensing
image by repeated segmentation, leading to an irregular image
pyramid encoded by a combinatorial pyramid. In chapter 2.4 we
discuss some limitations of the method and chapter 3 contains the
conclusion.

1.2 Spatial subpixel analysis

Spatial subpixel analysis (Schneider, 1993) of remotely sensed
images aims at detecting the spatial structure of land coverat sub-
pixel level and of spectral signatures undisturbed by mixedpixel
effects. For this purpose, the remotely sensed real-world objects
are described locally (for a certain pixel and its neighbourhood)
with a geometrical-physical model. This model consists of aset
of parameters describing the object’s geometry and pure spectral
signatures. Especially in agricultural areas, the bordersbetween
adjacent fields of different land cover often resemble simple ge-
ometric shapes, like straight lines, T-shaped figures or corners.
This geometric shape determines - together with the object’s re-
flectance - the distribution of grey values in the image. For ex-
ample, the model for two adjacent homogeneous fields separated
by a straight borderline (Figures 2 and 3) is uniquely described
by two geometric parameters, namely the origin and orientation
of the boundary, and two spectral parameters (per band) defining
the pure spectral signatures of the fields. More models (e.g.for
corners and roads) have been implemented (Kaiser, G., Schnei-
der, W., 2006).

In spatial subpixel analysis,the parameters of the model valid
for a certain pixel and its neighbourhood are estimated fromthe
pixel values in this neighbourhood(e.g. in a 3x3 cell of pixels,
Figure 4). If the object and its model parameters have been found
(Figure 3), the corresponding part of the image can be resampled
to a higher spatial resolution, containing again mixed pixels but
at a finer scale. The resampling of the image to a finer scale can
be regarded as simulating the imaging process with a higher spa-
tial resolution (Figure 5 left). This is, for example, valuable for
image co-registration or visual interpretation. Alternatively, the
pure spectral signatures of the dominating land cover can beas-
signed to the pixels in the resampled image. This can be done
prior to segmentation and/or classification to reduce the percent-
age of mixed pixels (Figure 5 right).

In the method presented here we do not resample the original im-
age, but use the parameters obtained from spatial subpixel analy-
sis for creating a vector representation of the edges in the image
(Figure 2 right). In the case of pixels for which no spatial subpixel
model could be found, these edges correspond to the inter-pixel
boundaries (Braquelaire, J.P., Brun, L., 1998) according to the
regular grid of the image (Figure 6).
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A prerequisite for successful functioning of spatial subpixel anal-
ysis is the mathematical formulation of the process of pixelvalue
generation in the case of a given object (terrain) radiance distribu-
tion. The simplest assumption is that every pixel value is obtained
by integrating the object radiance over a square corresponding to
the area of the detector at the position of the pixel.

This assumption, however, is an oversimplification. The optical
system of the sensor produces a blurred version of the radiance



Figure 5. 2 different resampling methods

Figure 6. Inter-pixel boundaries

distribution on the terrain surface, which is then integrated over
the area of the detector. In addition, the pixel value is further
affected by sensor motion and electronic amplification influences.
These effects are described by the point spread function (PSF) of
the sensor (Schowengerdt, 1997). The influence of the point
spread function on spatial subpixel analysis and how it can be
considered in this method is described in detail in (Kaiser,G.,
Schneider, W., 2006).

Spatial subpixel analysis can be seen as an optimisation problem.
Let C be a cell containing n pixels in the source image (Figure4)
with pixel valuesp1, p2, . . . , pn, spatial (geometric) parameters
r1, r2, . . . , rk and spectral parametersv1, v2, . . . , vl. Similar to
the spectral subpixel analysis it is assumed that each pixelwithin
cell C is the result of a lineare mixture of the pure signatures
v1, v2, . . . , vl. For given model parameters, the estimated pixel
valuesq1, q2, . . . , qn can be described as

qi = ρi (f1i) vi + ρi (f2i) v2 + . . . + ρi (fli) vl (1)

with i = 1, . . . , n. Thefji are the polygons of homogeneous
regions with pure signatures. Functionρi (f1i) is the integral of
PSF over the polygonf1i (Steinwendner, 2003). In an ideal opti-
cal system it would represent the area of the polygonfji. Finally
the optimisation problem can be written as a minimization ofthe
sum of the quadratic difference between the observed pixel val-
uespi and the estimated pixel valuesqi with respect to the model
parametersr1, r2, . . . , rk andv1, v2, . . . , vl:

e(r1, . . . , rk, v1, · · · , vl) =

n∑

i=1

[pi − qi]
2
→ min (2)

This non-linear least squares problem can be solved by usingthe
Levenberg-Marquardt algorithm for example.

1.3 Combinatorial maps

A combinatorial map may be regarded as a particular encodingof
a planar graph.

Definition (Brun, L., Kropatsch, W., 1999): Acombinatorial
map Gis thetriplet G = (D, σ, α), whereD is a set called the set
of darts(or half-edges) andσ andα are twopermutationsdefined
on D. α is aninvolution(see below).
The combinatorial map can be retrieved from the planar graph
by splitting the edges where their duals cross (Figures 7, from
(Brun, L., Kropatsch, W., 1999), 8 and 10). With respect to the
representation of a landscape as shown in Figure 1, the graph
containing the circular nodes in Figure 7 represents the boundary
graph, the one containing the square nodes corresponds to the
region adjacency graph.
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Figure 7. Combinatorial map deduced from planar graph

In this context, a permutation is a mapping that associates to each
element of D a unique predecessor and a unique successor in D.
This mapping is one to one and onto (injective and surjective,
hence bijective). Involution means that the successor (predeces-
sor) of the successor (predecessor) of any element of D is the
element itself.
Since it is a composition of two permutations, the mapping de-
fined by the combination ofα andσ to φ is also a permutation:

φ = σ ◦ α (3)

φ encodes the faces(Figures 1 and 7) of the planar map which
are defined by the edges surrounding it. The ordered sequenceof
darts around a vertex induces anordered sequence of dartsthat
is obtained when turning around a face. Each edge bounds two
neighboured faces, but the splitting into two oriented half-edges
allows for an unique assignment of one dart to one face. The
opposite dart is uniquely assigned to the neighbouring faceon
the other side of the edge. Thus, the faces can be encoded by one
dart.

By following successor chains the orbits (cycles) of the permuta-
tions can be retrieved: The orbits ofσ define the nodes (vertices)
of the map. Cycles ofα combine two darts (half-edges) that stem
from the same edge. The faces of the map are encoded byφ and
represent the regions. Another benefit of combinatorial maps is
that they implicitely encode the dual structure of the planar graph.

2. METHOD

Since the combinatorial map formalism is used to represent the
dual graphs encoding the topology and the geometry of the image
segments, the described method can be regarded as a graph-based
segmentation method. Steinwendner (Steinwendner, 2003) intro-
duced graph-based subpixel segmentation, showing the analogy
of image segmentation and graph partitioning, but used the data
typegraphof the LEDA library (Mehlhorn, K., Näher, S., 2000)
instead of combinatorial maps. The advantages of combinatorial
maps (correct encoding of multiple boundaries and inclusions,



explicit encoding of the orientation of planes and encodingof
both dual structures in one single data structure) have beenmen-
tioned above.

2.1 Subpixel analysis prior to segmentation

The first step of the method is spatial subpixel analysis as de-
scribed in 1.2. This results in a vector representation of bound-
aries at subpixel scale for pixels for which a valid geometrical
model could be determined, and of inter-pixel boundaries for pix-
els which could not be decomposed into subpixel areas. Addi-
tionally, the orientation of the detected boundary may support the
decision which object the subpixel areas belong to (Steinwend-
ner, 2003). Figure 8 contains the boundary graph and its dual,
the region adjacency graph, of a 3 by 3 cell after spatial subpixel
analysis and shows how spatial subpixel analysis eliminates the
mixed pixels (see also Figure 2) and retrieves the object bound-
aries at subpixel accuracy.

Figure 8. RAG (yellow) and its dual (boundary graph, red)

2.2 Segmentation based on combinatorial maps

Segmentation is a method to subdivide an image into disjointseg-
ments as large as possible, with the constraint that a segment’s
elements satisfy some similarity (homogeneity) criterion. In or-
der to perform segmentation of an image represented by a com-
binatorial map, the adequate operation has to be defined for the
combinatorial map and is described for aregion mergealgorithm
here (Kaiser, 2003). The regions of the image are represented
by the faces (permutationφ) of the combinatorial map. Merging
of two adjacent regions can be achieved by removing the bound-
ary between the two regions, i.e. by removing the edgee that
delineates the two regions. The resulting combinatorial map can
be defined by a sub combinatorial map deduced from the original
one by removing the dartsd andα(d) (representinge) from its
set of darts. The segmentation of the whole image is defined by
theremoval kernel:
Every edge that delineates two adjacent regions which are eval-
uated to be similar enough to merge is a member of theremoval
kernelapplied to the combinatorial map. The removal kernel con-
sists of all edges of a certain level that will be removed to build
the regions in the next level. Thus, the main goal of any seg-
mentation algorithm to be applied to a combinatorial map is the
generation of a removal kernel that leads to a good segmenta-
tion result. Successively reducing the combinatorial map creates

a stack of sub combinatorial maps of the original combinatorial
map. The faces (segments) of the sub combinatorial maps are
linked together from one level to the next, forming a stack of
successively reduced combinatorial maps called acombinatorial
pyramid.

2.3 Algorithm

The main steps of the overall algorithm are as follows (Figure 9):

1. Perform spatial subpixel analysis for the input image tak-
ing into account the spatial response of the particular sensor
(Figures 2 and 3).

2. Based on the results of spatial subpixel analysis, createa
vector representation of the edges and its dual (Figure 8).

3. Derive an adequate combinatorial map from the vector rep-
resentation (Figure 10).

4. Based on the application-dependent rules, perform a seg-
mentation on the current combinatorial map by defining an
adequate removal kernel, and remove the corresponding darts
from the combinatorial map. (Figure 11).

5. Repeat step 4 for eachscaleand create an appropriate com-
binatorial map representation for the current level (Figure
12), leading to a combinatorial pyramid.
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Figure 9. The steps of the algorithm

Figure 10. Combinatorial map deduced from vector/graph repre-
sentation



Figure 11. Removal kernel (grey)

Figure 12. New map (2 regions) as a result of segmentation based
on removal kernel

2.4 Limitations

• Spatial subpixel analysis (step 1 of the described algorithm)
is based on the geometric description of the boundaries of
real-world objects. Aside from being dependent on the rela-
tionship between the size of the remotely sensed objects and
the pixel size of the sensor it is therefore most suitable for
scenes containing anthropogenic features. Natural objects,
in contrast, most often exhibit much more complex shapes
(Lang, S., Blaschke, T., 2003). For that reason the benefit
of performing spatial subpixel analysis prior to segmenta-
tion depends on the type of sensor and on the content of the
scene.

• Repeated segmentation of the image builds a combinatorial
pyramid, containing combinatorial maps representing the
scene at that level and scale. However, a particular level may
or may not represent a ’functional level’ of the landscape.
Is therefore necessary to identify ’ecologically meaningful’
levels.

• Spatial subpixel analysis operates on a cellC, which may be
the image of only a part of an object’s boundary. Because
of noise in the image the computed geometric parameters
of adjacent cells may result in vector boundaries not being
’smooth’. This could be ovecome by developing appropriate
smoothing algorithms.

3. CONCLUSION

In this work we present a method of creating a multi-level struc-
tural representation of landscapes based on combinatorialmaps
and combinatorial pyramids. We show how spatial subpixel anal-
ysis can be used for reducing adverse effects of mixed pixelson
segmentation and for detecting the boundaries of objects with
subpixel accuracy. Combinatorial maps permit unambiguousen-
coding of the partition of a plane in one single data structure,
containing all topological and geometrical information. Combi-
natorial pyramids, created by successive segmentation, are suit-
able for a multi-level representation of landscapes.
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