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ABSTRACT:

Landscapes can be modelled as sets of homogeneous obgectsogpe elements) forming areas of characteristic pat(emdscape
units).

The common way to represent landscapes is by vector GIS ttatduses which do not provide a mechanism for storing thetiap
relationships between the objects in explicit form. Aldwyt do not account for a multi-scale representation. Graphse used for
describing the topology of a set of objects and the dual gampinoach allows for a representation of its embedding md3uclidean
plane. The combinatorial map concept is eligible for theutiameous representation of dual graphs in one single datetsre by
orientation and splitting of edges into so-called half-esigr darts. Combinatorial maps also allow for a dual grapresentation of a
landscape at different scales by creating a map for eachrhler level and linking them together.

The task of obtaining a landscape representation from es®ising images can be accomplished by deriving an adezpratina-
torial map representation from the image data. This is dgnselgmentation of the image. Adverse effects by mixed pizalshe
segmentation result can be reduced by spatial subpixelgieall his method is based on the geometric descriptionjetbboundaries
that intersect pixels and thus lead to mixed pixels. Itsiappllity depends on the relationship between the size@fé¢motely sensed
objects and the pixel size of the sensor. Since the distoibaff grey values in the neighbourhood of any mixed pixelody depends
on the parameters of the geometric model of land cover baiewlaut also on the spatial response of the sensor, knoe/lgdgut the
sensors point spread function can be used to enhance parfoenof spatial subpixel analysis.

The result of applying spatial subpixel analysis to the rensensing image is a vector representation of edges in thgeirwhich
can be transformed into the combinatorial map structureenTdegmentation can be performed by manipulation of the ygations
defining the combinatorial map. This leads to a new combir@tmap which can be regarded as a representation of thedapd at a
certain scale. This step can be applied repeatedly formhtaa hierarchy of combinatorial maps each of which defitirgglandscape
at a different abstraction level. In this work we show howtspaubpixel models and the representation of remote sgrisiages by
combinatorial maps can be combined to retrieve a multiesdascription of landscapes with subpixel accuracy fromll#atimages.

1. INTRODUCTION reasongraphs have been introduced into landscape ecological
problem solving. Urban and Keitt (Urban, D., Keitt, T., 2000
1.1 Representation of landscapes give examples of how graphs can be used for the represemtatio

and analysis of landscapes. Following this approachntioes
The automatic extraction of landscape structure from rersens-  Of the graph are equivalent to patches located in the lapésca
ing data is an important prerequisite for analysing and snde matrix and theedgesstand for the fact that there is some rela-
standing landscapes and their processes (Forman, R.,Gddro  tionship between pairs of patches. This graph is knowregisn
1986, Schneider, W. 2002). Based on the idea of a hieraichicadjacency grapifRAG, Figure 1c). In the simplest case an edge
structure of landscapes there is a strong need for a mu#tisga= ~ just means that the two nodes (it is incident to) are adjatent
resentation. each other, but it may also carry information about intéoact

(mass fluxes, dispersal of individuals or species, ...) betw
Landscapes can be represented in a computer system bdiffer the patches. RAGs can be used to represent the partitiohig o
data structures. First, a regular grid can be used, eactotell 2-D plane, but they cannot correctly encode multiple botieda
which usually representing a homogeneous region of quadratand inclusions (Haxhimusa, Y., lon A., Kropatsch, W., Brun,
extent. Then a set of adjacent and similar cells can be cadbin 2005). For the definition of both properties of the objectsco
to represent a real-world object. Slmllarlty in this caseanse posing a |andscape’ their t0p0|ogy and their embeddingth’ﬂo
that the adjacent cells are likely to be part of the same bbjecEuclidean plane, the dual graph approach can be used (Saib, M
and has to be defined more precisely by the application, gakinHaxhimusa, Y., Glantz, R., 2002). Dual graphs encode a-parti
into account the scale of interest. The set of adjacent ttedis  tjoning of a plane by a RAG and its dual structure, the boundar
represents a real-world landscape element which is caeslds  graph (Figure 8), but dual graph representations lack alicéxp
being homogeneous at that particular scale. encoding of the orientation of planes, existing in cominiat
maps (Haxhimusa, Y., lon A., Kropatsch, W., Brun, L., 2005).
A combinatorial map can be obtained from the segmentation of
a plane by orientation and splitting of edges (of the boundar
graph) into so-called half-edges or darts. This is outlimetiore
detail in chapter 1.3. Figure 1 shows the different datacstru
tures for the representation of landscapes in a computtarayst
should be noted that Figure 1c shows the region adjacenphgra
only, and not its dual, the boundary graph.

Second, a vector representation can be used, which dedgte
landscape elements by polygons. This format has the ady@nta
of allowing a more realistic representation of object baanes
since they do not correspond to regular grid cells in general

Both, the grid and the vector format, are eligible for repris
ing the geometry (location, spatial extent, ...) of the «eatld
objects composing a landscape, but they do not store thair sp
tial relationships (i.e. their topology) in explicit fornfzor that



picture/raster element (pixel) node

N In spatial subpixel analysigthe parameters of the model valid
for a certain pixel and its neighbourhood are estimated ftben
pixel values in this neighbourhoag.g. in a 3x3 cell of pixels,
Figure 4). If the object and its model parameters have baamdfo
(Figure 3), the corresponding part of the image can be releaimp
to a higher spatial resolution, containing again mixed Igix®it
at a finer scale. The resampling of the image to a finer scale can
be regarded as simulating the imaging process with a higlzer s
tial resolution (Figure 5 left). This is, for example, vatle for
image co-registration or visual interpretation. Alteinaly, the
pure spectral signatures of the dominating land cover caasbe
signed to the pixels in the resampled image. This can be done
prior to segmentation and/or classification to reduce tmegue-
age of mixed pixels (Figure 5 right).

a) raster b) vector

node

In the method presented here we do not resample the origmal i
age, but use the parameters obtained from spatial subpiagl-a
sis for creating a vector representation of the edges inniagé
(Figure 2 right). In the case of pixels for which no spatidgiel
model could be found, these edges correspond to the intel-pi
boundaries (Braquelaire, J.P., Brun, L., 1998) accordinthé
regular grid of the image (Figure 6).

edge

c) graph d) combinatorial map

Figure 1. Representation of landscapes

Obtaining a landscape representation from a remote seimsing
age can be accomplished by segmentation of the im&patial Figure 2. Real image and model image
subpixel analysisas described in chapter 1.2, can be used to re-
duce adverse effects by mixed pixels and to retrieve thecbbje
boundaries with subpixel accuracy.

This paper is structured as follows. In chapters 1.2 and 23 w
give a brief overview of spatial subpixel analysis and cambi
torial maps, respectively. In chapter 2 we present a methad t
combines both spatial subpixel analysis and the repretsemiat
landscapes based on combinatorial maps, to derive a reuéi-I
structural representation of a landscape from a remotarggens
image by repeated segmentation, leading to an irregulagéma
pyramid encoded by a combinatorial pyramid. In chapter 24 w
discuss some limitations of the method and chapter 3 canta
conclusion.

Figure 3. Spatial subpixel model 'Linear Border’ (4 paraens}
1.2 Spatial subpixel analysis

Spatial subpixel analysis (Schneider, 1993) of remotehsed
images aims at detecting the spatial structure of land atvarb-
pixel level and of spectral signatures undisturbed by mpiedl
effects. For this purpose, the remotely sensed real-wdnjelcts
are described locally (for a certain pixel and its neighbood)
with a geometrical-physical model. This model consists sét
of parameters describing the object’'s geometry and puretisppe
signatures. Especially in agricultural areas, the borbetareen Figure 4. Cell of pixels, C

adjacent fields of different land cover often resemble sényd-

ometric shapes, like straight lines, T-shaped figures anezsr

This geometric shape determines - together with the ojeet’ A prerequisite for successful functioning of spatial sxiepanal-
flectance - the distribution of grey values in the image. Ber e ysis is the mathematical formulation of the process of pisdlie
ample, the model for two adjacent homogeneous fields seghrat generation in the case of a given object (terrain) radiarstelol-

by a straight borderline (Figures 2 and 3) is uniquely déscti tion. The simplest assumption is that every pixel value taioled

by two geometric parameters, namely the origin and origmtat by integrating the object radiance over a square correspgrd

of the boundary, and two spectral parameters (per band)imgfin the area of the detector at the position of the pixel.

the pure spectral signatures of the fields. More models (erg.

corners and roads) have been implemented (Kaiser, G., Bchnélhis assumption, however, is an oversimplification. Theocapt
der, W., 2006). system of the sensor produces a blurred version of the reglian




Definition (Brun, L., Kropatsch, W., 1999): Aombinatorial
map Gis thetriplet G = (D, o, «), whereD is a set called the set

of darts(or half-edges) and anda are twopermutationslefined

on D. « is aninvolution (see below).

The combinatorial map can be retrieved from the planar graph
i by splitting the edges where their duals cross (Figuresom fr
(Brun, L., Kropatsch, W., 1999), 8 and 10). With respect ® th
Figure 5. 2 different resampling methods representation of a landscape as shown in Figure 1, the graph
containing the circular nodes in Figure 7 represents thedeary
graph, the one containing the square nodes corresponde to th
region adjacency graph.

half edges* (darts)

e
R e

1 |~ |

e
plane graph split at dual edges combinatorial map
Figure 6. Inter-pixel boundaries Figure 7. Combinatorial map deduced from planar graph

In this context, a permutation is a mapping that associateath
element of D a unique predecessor and a unique successor in D.
This mapping is one to one and ontiajéctive and surjective,
hence bijective Involution means that the successor (predeces-
pgor) of the successor (predecessor) of any element of D is the

distribution on the terrain surface, which is then integdatver
the area of the detector. In addition, the pixel value ishiert
affected by sensor motion and electronic amplification erites.
These effects are described by the point spread functioR)(&S
the sensor (Schowengerdt, 1997). The influence of the poi

spread function on spatial subpixel analysis and how it Gan bel'emept_itself. - . .
considered in this method is described in detail in (Kaiger, SINCe it iS a composition of two permutations, the mapping de
Schneider, W., 2006). fined by the combination at ando to ¢ is also a permutation:

Spatial subpixel analysis can be seen as an optimisatidrgono p=ooa ®3)

Let C pe a cell containing n pixels in_ the source i_mage (Fidre # encodes the facg§igures 1 and 7) of the planar map which
with pixel valuespi, p2, ..., pn, Spatial (geometric) parameters are defined by the edges surrounding it. The ordered seqoénce
71,72,..., 7} and spectral parameters, vz, ..., v;. Similar o garts around a vertex induces arlered sequence of dartsat

the spectral subpixel analysis it is assumed that eachwikeih s optained when turning around a face. Each edge bounds two
cell C is the result _of a lineare mixture of the pure signatu_re neighboured faces, but the splitting into two oriented Jeal§es
v1,v2,...,v;. For given model parameters, the estimated pixelg|jows for an unique assignment of one dart to one face. The
valuesgi, gz, . . ., gn can be described as opposite dart is uniquely assigned to the neighbouring tace

the other side of the edge. Thus, the faces can be encodedby on
¢ = pi (fri)vi+pi (f2i)v2+ ...+ pi(fi)ve (1) dart.

with i = 1,...,n. The f;; are the polygons of homogeneous By following successor chains the orbits (cycles) of thewpeta-
regions with pure signatures. Functipn(f1;) is the integral of  tions can be retrieved: The orbits efdefine the nodes (vertices)
PSF over the polygolfi; (Steinwendner, 2003). In an ideal opti- of the map. Cycles of combine two darts (half-edges) that stem
Cal System |t W0u|d represent the area Of the polyﬂpn Flna"y from the same edge_ The faces of the map are encodemm
the optimisation problem can be written as a minimizatiothef  represent the regions. Another benefit of combinatorialsmisp

sum of the quadratic difference between the observed padel v that they implicitely encode the dual structure of the ptagraph.
uesp; and the estimated pixel valugswith respect to the model

parametersq, o, ..., andvy, v, ..., v
. 2. METHOD
6(7‘17...7Tk71}17--',1}l):Z[pi—qZ']Q—)m’L.n (2)
im1 Since the combinatorial map formalism is used to repredent t

dual graphs encoding the topology and the geometry of thgéma
This non-linear least squares problem can be solved by tiseng segments, the described method can be regarded as a gissgh-ba

Levenberg-Marquardt algorithm for example. segmentation method. Steinwendner (Steinwendner, 2608} i
duced graph-based subpixel segmentation, showing thegnal
1.3 Combinatorial maps of image segmentation and graph partitioning, but used #te d

typegraphof the LEDA library (Mehlhorn, K., Naher, S., 2000)
A combinatorial map may be regarded as a particular encaxfing instead of combinatorial maps. The advantages of combinhto
a planar graph. maps (correct encoding of multiple boundaries and inchsio



explicit encoding of the orientation of planes and encodifg
both dual structures in one single data structure) have fresn
tioned above.

a stack of sub combinatorial maps of the original combinator
map. The faces (segments) of the sub combinatorial maps are
linked together from one level to the next, forming a stack of

successively reduced combinatorial maps calledrabinatorial

2.1 Subpixel analysisprior to segmentation

The first step of the method is spatial subpixel analysis as dez_3
scribed in 1.2. This results in a vector representation ainde
aries at subpixel scale for pixels for which a valid geoncetri
model could be determined, and of inter-pixel boundariepifo
els which could not be decomposed into subpixel areas. Addi-
tionally, the orientation of the detected boundary may suphe
decision which object the subpixel areas belong to (Steiclwe
ner, 2003). Figure 8 contains the boundary graph and its dual
the region adjacency graph, of a 3 by 3 cell after spatial ixebp
analysis and shows how spatial subpixel analysis elimintite

mixed pixels (see also Figure 2) and retrieves the objechdbou 2.
aries at subpixel accuracy.
3
4
5

Figure 8. RAG (yellow) and its dual (boundary graph, red)

2.2 Segmentation based on combinatorial maps

Segmentation is a method to subdivide an image into disjeigt
ments as large as possible, with the constraint that a segmen
elements satisfy some similarity (homogeneity) criteritmor-

der to perform segmentation of an image represented by a com-
binatorial map, the adequate operation has to be definedhéor t
combinatorial map and is described foregion mergealgorithm

here (Kaiser, 2003). The regions of the image are repradente
by the faces (permutatiof) of the combinatorial map. Merging

of two adjacent regions can be achieved by removing the bound
ary between the two regions, i.e. by removing the eddbkat
delineates the two regions. The resulting combinatorigd oen

be defined by a sub combinatorial map deduced from the otigina
one by removing the dari$ and «(d) (representing) from its

set of darts. The segmentation of the whole image is defined by
theremoval kernel

Every edge that delineates two adjacent regions which ale ev
uated to be similar enough to merge is a member ofehwoval
kernelapplied to the combinatorial map. The removal kernel con-
sists of all edges of a certain level that will be removed tibcbu
the regions in the next level. Thus, the main goal of any seg-

The

1.

pyramid

Algorithm

main steps of the overall algorithm are as follows (Fecjr

Perform spatial subpixel analysis for the input image tak
ing into account the spatial response of the particular@ens
(Figures 2 and 3).

Based on the results of spatial subpixel analysis, cr@ate
vector representation of the edges and its dual (Figure 8).

. Derive an adequate combinatorial map from the vector rep-
resentation (Figure 10).

. Based on the application-dependent rules, perform a seg-
mentation on the current combinatorial map by defining an
adequate removal kernel, and remove the correspondirg dart
from the combinatorial map. (Figure 11).

. Repeat step 4 for easlgaleand create an appropriate com-
binatorial map representation for the current level (Fégur
12), leading to a combinatorial pyramid.

vector
representation
of edges

geometric
description of
objects

Input image
(raster)

A4

combinatorial
pyramid

combinatorial
map

A

Figure 9. The steps of the algorithm

mentatic_)n algorithm to be applied to a combinatorial mahés t Figure 10. Combinatorial map deduced from vector/grapherep
generation of a removal kernel that leads to a good segmentagzntation

tion result. Successively reducing the combinatorial mraptes



3. CONCLUSION

In this work we present a method of creating a multi-levaletr
tural representation of landscapes based on combinatoepk
and combinatorial pyramids. We show how spatial subpixal-an
ysis can be used for reducing adverse effects of mixed potels
segmentation and for detecting the boundaries of objedis wi
subpixel accuracy. Combinatorial maps permit unambig@ous
coding of the partition of a plane in one single data struetur
containing all topological and geometrical informationonabi-
natorial pyramids, created by successive segmentatiersat-
able for a multi-level representation of landscapes.
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