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ABSTRACT: 
 
Land use often changes considerably due to shifts in political and societal systems. The border zone between Austria and Hungary 
(the former Iron Curtain zone) is an outstanding example for these socio-politically driven changes of land use patterns. This paper 
discusses a methodology to assess temporal changes, which occurred in three 2500 ha test sites near Lake Fertő between 1985 (t0) 
and 2000 (t1), regarding altered arrangements of agricultural fields. By using Landsat TM and ETM+ imagery, changes were 
evaluated and quantified field-specific, i.e. comparing the spatial characteristics of t0 and t1 fields and categorizing their ‘fate’ 
through time. Object fate analysis has been used to examine spatial changes of the t0 fields by investigating the topological 
relationships between t0 and t1 fields. Two indices, object loyalty (OL) and interference (I), were introduced as field-specific 
measures to characterise field stability.   
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1. INTRODUCTION 

1.1 Changing landscape patterns  

In many areas of the world, socioeconomic and political factors 
have a high influence on existing land use and land cover 
structures, and thus may cause changes in the predominant 
spatial pattern in the landscape (Croissant, 2004). This study 
focuses on a part of the former Iron Curtain zone that represents 
one of the most inconsistent regions of Europe as far as 
ecological balance and land use, social and economic structure 
as well as agricultural and industrial development is concerned. 
In some remote areas along the border line changes occur in a 
wide dimension; thus long-term monitoring and change 
detection is particularly required (Howarth and Wickware, 
1981). The progress during the last 15 years towards a common 
Europe can be measured by an increase of bilateral cross-border 
co-operations; moreover it can be analyzed by the landscape 
patterns being observed. Acute changes in land cover are 
commonly associated with human land-use activities (Lunetta, 
2002; Lunetta et al., 2004) and in most parts resulting in 
shifting cultivations. The main influencing factor of human 
activity causes changes in landscape patterns, which in turn can 
be analysed by looking at where these changes occur, as well as 
the kind of changes, and the degree and rates of these 
(Southworth et al., 2004). Change detection maps are an 
important prerequisite, but the understanding of temporal and 
spatial dynamics of the landscape is likewise crucial (Turner, 
1990). 
 
Landscape are complex mosaics showing spatial heterogeneity 
caused by a specific arrangement of patches of a certain class 
(Riitters et al., 1995; Croissant, 2004). This mosaic can be 
characterized in terms of landscape composition (i.e. percentage 
of classes) and configuration (i.e. spatial arrangement of 
patches) (Turner et al., 2001). Landscape metrics (i.e. 

quantitative structural measures) can be used to analyse 
landscape patterns and study the behaviour of the metrics 
through time (Wickham et al., 1997; Petit and Lambin, 2002; 
Hudak et al., 2004; Narumalani et al., 2004; Corry and 
Nassauer, 2005). In the context of landscape monitoring, 
landscape metrics have been used as structural indicators to 
highlight pattern-related changes in the landscape, which are 
considered to cause a significant shift of underlying processes 
(Langanke and Lang, 2004). Other approaches characterize 
changes by investigating the topological relationships among 
corresponding patches. 
 
1.2 Spatial change detection  

Automated change analyses usually rely on the use of spatial 
implicit measures like percentage of changes. Several 
techniques for digital change detection have been presented and 
used for different applications, but unfortunately, few spatial 
change detection techniques to highlight pattern-related changes 
in the landscape are available. Since nature is various, a method 
should be capable of detecting both quantitative changes of 
landscape elements and changes in the patterns (object 
transition). Most studies clearly focus on quantification of 
changes, but neglect to a certain degree the specific spatial 
implications of changes of single units or the entire pattern. 
Tools for spatial explicit object-based change analysis which 
may represent the specific ‘fate’ of an object are rare. Common 
ways to solve this problem are map-to-map comparisons using 
raster overlay techniques, which are site-, but not object-
specific (i.e. they refer to pixels). Vector overlay and 
intersections on the other hand produce complex geometry with 
sliver polygons. Finally, visual comparisons are powerful but 
highly subjective and time-consuming.  
 



 

 

Spatial representations and relations are discussed in the light of 
geographical information science since several decades; 
important recent studies were done by Mark (1999) and 
Hornsby and Egenhofer (2000). In the remote sensing 
community first approaches to characterize changes by 
investigating the topological relationships among corresponding 
patches are discussed by e.g. Raza and Kainz (2001) and 
Blaschke (2005). A typology of object geometry changes may 
include four basic categories, namely existence-related, size and 
shape-related and location-related changes. However, in reality 
a combination of all of these basic types of geometric changes 
must be tackled with.  
 
1.3 Limitations of point-based accuracy assessment 

Point-based accuracy assessment (site-specific accuracy 
assessment according to Congalton and Green, 1999) evaluates 
the thematic assignment on specific sites (i.e. point or pixels, 
respectively). Under the premises of site-specific assessment 
this is a adequate and sound method. On the other hand the 
appropriateness of object generation is much more difficult to 
assess. Object-based accuracy assessment requires both 
thematic and geometrical accuracy. But the latter is also 
depending on scale and data material being used. Any reference 
data set is quite likely to be captured under different conditions 
than the result to assess. For example, classification can be 
compared with a visual interpretation (Koch et al., 2003; 
Hölbling et al., 2005) or delineations on the ground via GPS. 
Either of them are conducted in specific scales and under 
specific conditions, which have to be considered when being 
used for geometrical assessment of the objects generated.   
 

2. STUDY AREA AND DATA 

The study site (see figure 1) is situated along the border 
between Austria and Hungary. The area is dominated by the 
lake Fertő, a unique steppe lake in Central Europe. The lake 
spreads to 315 km², of which 240 km² are located on Austrian 
and 75 km² on Hungarian territory. The attractiveness of the 
study area lies in the unique pattern along the border, where 
neighbouring countries can be recognized and separated 
visually. After the fall of the former Iron Curtain in the year 
1989 the border became increasingly fuzzy. To perform the 
studies on changes in the land use pattern, three distinct sub-
sites have been selected, all of them 2500 ha in size and bearing 
typical cross-border characteristics.  
 

 
Figure 1.  Location of the study site; boxes show specific study 

sub-sites. 
 

Multi-temporal satellite imagery, a Landsat TM from 1985 and 
a Landsat ETM+ from 2000, were selected for the time series 
analysis. The Landsat ETM+ scene was used as the master 
image to co-register the Landsat TM satellite image to a ground 
sample distance (GSD) of 30 meter in UTM zone 33N (WGS-
84) by using a second degree polynomial transformation and 
nearest neighbour resampling. Co-registration was done in 
Erdas Imagine 8.7 with an RMS error of 0.47. Afterwards the 
geo-referenced images were cropped to the three sub-sites of 
5000 m by 5000 m along the border.  
 
For the analysis of the dynamics of the landscape patterns, the 
field boundaries were needed. Instead of manually delineating 
these, we used image segmentation (Haralick and Shapiro, 
1985), which manages to capture the field structure in an 
automated way. The algorithm used is a region-based, local 
mutual best fitting algorithm (Baatz and Schäpe, 2000) as 
implemented in eCognition 4.0. The images from 1985 
(Landsat TM) and 2000 (Landsat ETM+) were segmented for 
each study site in independent working steps. For the two dates 
the same scale parameter has been used. This was optimized for 
field boundary delineation in both dates: coarse enough that in 
1985 the larger fields were captured, and fine enough to reflect 
the higher heterogeneity in 2000. Additionally a refinement of 
the objects by manual fusion and manual cutting of the objects 
were performed to generate borders of the agricultural fields at 
best. The resulting image objects were exported in a non-
splined vector format and re-imported into a GIS environment. 
The segmentation approach being used is optimized for very 
high spatial resolution data (e.g. one-meter satellite imagery or 
sub-meter aerial photographs) and radar imagery; thus aliasing 
and the presence of ‘stepped’ boundaries had to be tackled with. 
 

3. METHOD 

3.1 Object fate analysis 

Since nature bears high spatial variability studies should pay 
more attention on the spatial arrangements rather than merely 
focusing on the history of changes in LULC (Crews-Meyer, 
2004). We present and discuss a method for analyzing spatial 
object changes. The approach implies enhancements in the 
context of investigating spatial relationships among 
corresponding objects. This correspondence can be seen both as 
a product of object transition (change over time) or as an 
outcome of different object representations or delineations. 
Since spatial relations are various and appear in reality in 
different combinations there is a demand for ready-to-use 
solutions which are able to structure and categorize these. 
 
A tool called LIST (Landscape Interpretation Support Tool) 
was developed and programmed as an extension for ESRI’s 
ArcView 3 and ArcGIS 9 by Lang et al. (in press). The tool 
performs object quantification, complements visual 
interpretation and includes a method for object-based change 
analysis and object-based accuracy assessment. Following the 
concept of parent-and-child themes two vector layers represent 
the specific ‘fate’ of corresponding objects (the term was 
introduced by the authors). ‘Object fate’ may reflect different 
time slices of data capturing (change analysis) or different 
methods for object generation (i.e. different segmentation 
algorithms, heterogeneous data material, visual vs. machine-
based interpretation, reference data sets from other sources, 
etc.). So the comparison of two data sets can also be utilzed for 
object-based accuracy assessment, as generated objects can be 
compared with visually delineated ones. 



 

 

When comparing two segmented images, the corresponding 
boundaries of delineated land use patches do not necessarily 
coincide due to differences in data material or segmentation 
algorithms (ibid.). Even if no visible change has occurred, 
spatial boundaries may not be fully congruent. We utilize a 
method for investigating spatial relationships by performing a 
virtual overlay. For considering spatial uncertainty in image 
object generation (spatial overlay strictness, SOS), a buffer 
zone is introduced. The size of the buffer, either specified by 
the user or dynamically according to object size, controls the 
allowed spatial difference of spatially coinciding and 
corresponding fields. SOS also reflects the degree of overlap of 
invading objects, expressed by a percentage values. By virtual 
overlay we manage to characterize the specific object fate over 
time without modifying its geometry.  
 
LIST investigates spatial relationships for three generalised 
states of transition. In this particular case, it is assumed that t0 
(before) objects are larger than t1 (after). Object fate can be 
expressed by three possibilities when comparing objects from t0 
and t1, i.e. (1) ‘good’ objects falling completely into the 
buffered outline of a t0 object; (2) ‘expanding’ objects 
exceeding the original boundary to a certain degree; and (3) 
‘invading’ objects (see figure 2). A special case of (1) occurs, 
when only one ‘good’ object is recorded, i.e. the t0-object 
remains stable. This allows both to characterize the 
development of a t0-object and to categorize objects being 
produced in t1. 
 

 
 
Figure 2.  Schematic illustration of different kinds of object fate 

implemented in LIST. 
 
This concept is a straight-forward solution to characterizing the 
development of each t0-object (‘parent object’) and additionally 
enables unique categorization of every ‘child object’. To 
characterise overall object stability two object-specific 
measures were introduced. The first index, ‘offspring loyalty’ 
(OL), is calculated by: 
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where  ngood = number of good objects  
 nexp = number of expanding objects  
 

A value of 1 indicates that no expanding objects are among the 
t0 object. The second index, ‘interference’ is defined by: 
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where  ninv = number of invading objects  
 nall = number of all intersecting t1 objects  
 
The smaller the value, the smaller the number of invading 
objects that interfere with the t0 object.  
 
Both indices OL and I can be aggregated by calculating the 
respective average values for measuring object fate of an entire 
data set by a single measure on the landscape level. 
 
For the study the following SOS parameters were chosen: (1) 
dynamic buffer generation, and (2) 10% overlap for the 
definition of invading objects. That means, if a t1 object 
overlaps with less than 10% with the t0 object, it will be 
neglected. Usually, the overall number of expanding and good 
objects will be equal to the number of child objects. But it has 
to be noted that, working with stepped boundaries of relatively 
small parcels on Landsat imagery, some centroids may fall 
exactly on the field boundary between two neighbouring fields. 
In this case centroid ambiguity occurs, i.e. the sum of the 
numbers of t1-objects in each category will exceed the actual 
number of t1-objects. 
 
3.2 Classification and accuracy assessment 

Classification of the Landsat ETM+ from 2000 (study site 1) 
was done using ISODATA (iterative self-organizing data 
analysis) clustering algorithm, as implemented in Erdas 
Imagine 8.7 with maximum 20 iterations and a 0.98 
convergence threshold to generate 40 spectral classes.  The 
classification pre-results were visually evaluated and the 
individual signatures were grouped to the final classes (dense 
crop, arable bare soil, scrubland, meagre grassland, rich 
grassland and open water). Because of the relatively coarse 
grain of the data (900 m²), there was no possibility to classify 
on a finer level including more discriminations of classes.  
 
For site-specific accuracy assessment of the classification 
results in the study site we applied an automatically stratified 
random distribution of 100 points with a minimum of 10 points 
for each class using the software Erdas Imagine 8.7. The 
reference values are based on ground truth data and ancillary 
data of the reference area. Moreover visual interpretation of 
Landsat ETM+ image in different band combinations was used 
to provide highest correctness. The overall accuracy was 85.00 
% and the Kappa index was 0.8175, which can be considered as 
a moderate degree of accuracy. 
 
The following analysis is on a preliminary stage and aims at 
illustrating the potential of object-based accuracy assessment. 
To this end we used the LIST extension and performed the 
following steps:  
 
(1) A regular grid with 450 m raster cell size has been 
produced.   
(2) Out of that, five raster cells (test cells) were selected by a 
random generator. The classification result intersected with 
these cells.  



 

 

(3) The cells were visually interpreted and digitized according 
to the classification scheme. The produced polygon themes 
were further used as parent themes. 
(4) The accuracy has been assessed both spatially implicit and 
explicit, i.e. based on (a) the percentages of the classes 
occurring in both themes and (b) object stability.  
 

4. RESULTS 

Object fate analysis has been performed by using both offspring 
loyalty (OL) and interference (I) (see figure 3). Object fate 
analysis has revealed that OL ranges between 0 and 1 in all 
three study sites, which was used for classifying the stability 
(i.e. < 0.6, 0.6-0.8 and >0.8). Taking into account the t0 objects 
that have generated at least one good child object, in figure 4 
the respective number of child objects are shown in three 
specific ranges of OL (< 0.6, 0.6-0.8 and >0.8). The other 
metric, I, reflects the degree of interference between 
corresponding objects. The values of I range from 0 to 1, but 
mainly occur between 0 and 0.6. Interference, therefore, can be 
considered moderate for all three study sites with high 
occurrences in the range >0-0.6 in study sites 1 and 3 as 
opposed to study site 2.  
 

 
 
Figure 3.  Spatial distribution of two variables calculated for 

each object t0 in study area 1. Left: Offspring loyalty 
(OL). Values of -99 occur if neither good nor 
expanding objects exist, values higher than 1 
indicate centroid ambiguity.  Right: Interference (I). 

 

 
Figure 4.  Histogram of offspring loyalty in three ranges (< 0.6, 

0.6 - 0.8 and > 0.8) for the three study sites. 
 
The diagram in figure 5 shows the comparison of the 
percentages of each class between the classified and digitized 
test cells. From this (spatial implicit) point of view, the 

congruence seems to be high. However, regarding object 
stability only two polygons were identified as being stable for 
altogether 20 polygons observed in the test cells.  
 

Figure 5.  Diagram showing the percentages of each 
class (top: classified evaluated cells, bottom: 
digitized reference cell)  

 
 

5. CONCLUSIONS 

In order to fulfil the requirements for new approaches to tackle 
with temporal and spatial complexities, the application 
introduces a method called object fate analysis. Three different 
spatial relationships of object transition are considered. There is 
a demand to come up with a ready-to-use solution which 
generalises and categorizes the variety of spatial relations, 
which appear in different combinations over time. 
Consolidation and extension of the introduced concept is 
envisaged. In general, the integration of GIS concepts of 
representing relationships as discussed by Langran (1992), 
Egenhofer (1994), Mark (1999) and Hornsby and Egenhofer 
(2000) is challenging to be adapted to LULC change detection 
applications. Remote sensing methods need to integrate spatial 
concepts; the pixel-based neighbourhood concept is limited. An 
object-based approach instead makes use of spatial analysis 
methods dealing with polygons.  
 
Object fate analysis relies on a straight-forward and operable 
concept of spatial relationships among corresponding image 
objects. These objects can be obtained from any two different 
sources, such as two time slots, different ways of field 
delineation, multi-scale representations of a single scene, etc. It 
has some built-in flexibility using the scale-dependent SOS 
concept with different possibilities of parameterisation. But the 
dependency of the results on these parameters has yet to show 
and the sensitivity has to be proven. Limitations mainly are 
related to the quality of the generated objects, which very much 
depends on the specific data material and segmentation 
algorithms. Nevertheless this approach clearly demonstrated 
that the interpretation of land use changes overcomes the 
restrictions of a mere comparison of classification results based 
upon pixel classification.  
 
In general, the integration of GIS concepts representing spatial 
relationships offers a new dimension of change interpretation 
for land use/land cover related studies. The spatial explicit 



 

 

comparison of objects may overcome the limitations of a mere 
comparison of classification results based upon pixel 
classification. Differences in scale and representation we take 
into account by introducing the SOS factor; however, the 
parameterization of SOS is crucial for telling real changes from 
data-induced one.  
 
This also applies to object-based accuracy assessment. By 
explicitly focusing on the spatial accuracy we go beyond 
traditional point-based assessment methods, since the spatial 
delineation of the image object may be even more significant 
for validating the overall quality of the classification. As it has 
been shown, t1 may represent the result of automated object 
generation and t0 the result of a visual interpretation. A 
measure, which shows the total accuracy of spatial change, is to 
be developed in the future. The comparison of the visual vs. 
automated delineation in a narrow sense contradicts the premise 
of Congalton and Green (1999) that reference and evaluation 
data records geometrically exactly one fit above the other. The 
segment-based approach used in this paper follows the pixel 
boundaries. By this, even on higher hierarchical level, the 
aggregated segments are only scale-adapted. The visual 
delineation, however, is scale-specific. The results are also 
influenced by parameterization of SOS, which depends on scale 
and resolution.  
 
We believe that only by spatial explicit change and accuracy 
assessment we can link the observed pattern to landscape 
ecological processes. These changing spatial arrangements 
could further be assessed by applying other spatial measures 
from the toolbox of landscape metrics.   
 

ACKNOWLEDGEMENTS 

In a first stage the work has been financed by the EU 5th 
framework project Iron Curtain (Contract No. QLRT-CT-2001-
01401). Further investigations have been performed within 
GMOSS (Global Monitoring for Security and Stability), a 
network of excellence in the aeronautics and space priority of 
the Sixth Framework Programme funded by the European 
Commission's Directorate General Enterprise & Industry. We 
thank the company Geospace for providing the data sets. 
 

REFERENCES 

 
Baatz, M. and A. Schäpe, 2000. Multiresolution Segmentation – 
an optimization approach for high quality multi-scale image 
segmentation. In: Strobl, J. et al. (Ed.), Angewandte 
Geographische Informationsverarbeitung XI, Heidelberg: 
Wichmann, pp. 12–23. 

Blaschke, T. 2005. A framework for change detection based on 
image objects. In: Erasmi, S. et al. (Ed.), Göttinger 
Geographische Abhandlungen 113, pp. 1-9. 

Congalton, R. G. and K. Green, 1999.  Assessing the Accuracy 
of Remotely Sensed Data.  New York.  Lewis Publishers.  pp. 
137. 

Corry, R.C. and J.I Nassauer, 2005. Limitations of using 
landscape pattern indices to evaluate the ecological 
consequences of alternative plans and designs. Landscape and 
Urban Planning, 72, pp. 256-280. 

Crews-Meyer, K.A., 2004. Agricultural Landscape Change and 
Stability: Historical Patch-Level Analysis. Agriculture, 
Ecosystems and Environment, 101, pp. 155-169. 

Croissant, C., 2004. Landscape Patterns and Parcel Boundaries: 
An Analysis of Composition and Configuration of Land Use 
and Land Cover in South-Central Indiana. Agriculture, 
Ecosystems and Environment, 101, pp. 219–232. 

Egenhofer, M.J., 1994. Pre-Processing queries with spatial 
constraints. Photogrammetric Engineering & Remote Sensing, 
60 (6), pp. 783-790. 

Haralick, R.M. and L. Shapiro, 1985. Image segmentation 
techniques. Computer Graphics & Image Processing, 29, pp. 
100–132. 

Hölbling, D., E. Schöpfer and S. Lang, 2005. Punkt- vs. objekt-
basierte Genauigkeitsabschätzung - ein Methodenvergleich im 
Rahmen des Projekts "Durchgrünungsgrad". Poster, AGIT 
2005, Salzburg.  

Hornsby, K. and M. J. Egenhofer, 2000. Identity-based change: 
a foundation for spatio-temporal knowledge representation. 
International Journal of Geographical Information Science, 14 
(3), pp. 207-224. 

Howarth, P.J. and G.M Wickware, 1981. Procedures for change 
detection using Landsat digital data. International Journal of 
Remote Semsing, 66, pp. 173-181. 

Hudak, A.T., D.H.K. Fairbanks and B.H. Brockett, 2004. 
Trends in fire patterns in a southern African savanna under 
alternative land use practices. Agriculture, Ecosystems and 
Environment, 101, pp. 307-325. 

Koch, B., M. Jochum, E. Ivits and M. Dees, 2003. Pixelbasierte 
Klassifizierung im Vergleich und zur Ergänzung von 
pixelbasierten Verfahren. Photogrammetrie Fernerkundung 
Geoinformatik, vol. 3, pp. 195-204. 

Lang, S., E. Schöpfer and T. Langanke, in press. Combined 
object-based classification and manual interpretation – 
Synergies for a quantitative assessment of parcels and biotopes. 
Geocarto International. 

Langanke, T. and S. Lang, 2004. Strukturelle Indikatoren zur 
Beurteilung von Habitatqualität im europäischen Naturschutz. 
In: C. Dormann et al. (Ed.), Habitatmodelle – Methodik, 
Anwendung, Nutzen. Leipzig: UFZ-Berichte 9/2004, pp. 141-
145. 

Langran, G., 1992. Time in geographic information system. 
London: Taylor and Francis. 

Lunetta, R.S., 2002. Multi-Temporal Remote Sensing 
Analytical Approaches for Characterizing Landscape Change. 
In: L. Bruzzone & P.Smits (Ed.), Analysis of multi-temporal 
remote sensing images, Vol.2. Singapore: World Scientific 
Publishing Co., pp. 339-346. 

Lunetta, R.S., D. M Johnson, J. G Lyon and J. Crotwell, 2004. 
Impacts of Imagery Temporal Frequency on Land-Cover 
Change Detection Monitoring. Remote Sensing of Environment, 
89, pp. 444-454. 

Mark, D. M., 1999. Spatial Representation: A Cognitive View. 
In: Maguire, D. J. et al. (Ed.), Geographical Information 



 

 

Systems: Principles and Applications. New York: Wiley, pp. 
81-89 

Narumalani, S., D.R. Mishra, and R.G. Rothwell, 2004. Change 
detection and landscape metrics for inferring anthropogenic 
processes in the greater EFMO area. Remote Sensing of 
Environment, 91, pp. 478-489. 

Petit, C.C. and E.F. Lambin, 2002. Impact of data integration 
technique on historical land-use/land-cover change: Comparing 
historical maps with remote sensing data in the Belgian 
Ardennes. Landscape Ecology, 17, pp. 117-132. 

Raza, A. and W. Kainz, 2001. An Object-Oriented Approach 
for Modeling Urban Land-Use Changes. URISA Journal, 14 (1), 
pp. 37-55. 

Riitters, K., R. O’Neill, C. Hunsaker, J. Wickham, D. Yankee, 
S. Timmons, K. Jones and B. Jackson, 1995. A factor analysis 
of landscape pattern and structure metrics. Landscape Ecology, 
10, pp. 23-39. 

Southworth, J., D. Munroe and H. Nagendra, 2004. Land cover 
change and landscape fragmentation – comparing the utility of 
continuous and discrete analyses for a western Honduras region. 
Agriculture, Ecosystems and Environment, 101, pp. 185-205. 

Turner, M.G., 1990. Spatial and temporal analysis of landscape 
patterns. Landscape Ecology, 4, pp. 21-30. 

Turner, M.G., R.H. Gardner and R.V. O’Neill, 2001. Landscape 
Ecology in Theory and Practice: Pattern and Process. New 
York: Springer-Verlag. 

Wickam, J.D., R.V. O’Neill, K.H. Riitters, T.G. Wade, T.G. 
and K.B. Jones, 1997. Sensitivity of selected landscape pattern 
metrics to land-cover misclassification and differences in land-
cover composition. Photogrammetric Engineering & Remote 
Sensing, 63 (4), pp. 397-402. 

 


