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ABSTRACT: 
 
Deforestation still nowadays occurs at an alarming rate in tropical regions. Forest monitoring is required to delineate the extents of 
deforested areas based on high resolution satellite images (SPOT). But classical change detection techniques have failed to detect 
small clearing spread over the landscape as occurring in African forests. Developed initially for temperate forests, the automated 
object-based change detection method using segmentation and statistical algorithm was extended to tropical regions. This approach 
consists in three phases: (1) multidate segmentation and object signature computation, (2) forest/non-forest classification and (3) 
forest change detection. First, the multidate image was partitioned into objects using segmentation and several summary statistics 
were derived from the within-object reflectance differences. Second, a automated forest/non-forest classification was applied on the 
first image to define the initial forest mask. Finally, focused on these regions, the forest change detection algorithm detected 
deforestation thanks to a statistical test using a multivariate iterative trimming procedure. Tested over a protected area located at the 
eastern border of the Democratic Republic of Congo, this method produced a deforestation map with an overall accuracy of 84 % as 
assessed by an independent aerial survey. Given its efficiency to detect complex forest changes and its automated character, this 
method is seen as adequate operational tool for tropical forest monitoring. 
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1. INTRODUCTION 

Despite the efforts of government and conservation 
organizations, tropical deforestation - mainly conversion of 
forest to agricultural land - continues to proceed at an 
alarmingly high rate, estimated at 9.2 million hectares per year 
from remote sensing survey. However, forest planting, 
landscape restoration and natural forest expansion have 
significantly reduced the net loss of forest area over the years 
2000–2005 (FAO, 2006). Conservation of these tropical forests 
is very crucial for species diversity, climate stability and carbon 
cycle. Forest monitoring is thus required to provide timely and 
reliable information on forests condition, composition, and 
extent for making good decision in forest management and 
planning at a large scale. 
 
Remote sensing is probably the most adequate tool for 
monitoring tropical forests. Satellite imageries cover large 
forested regions that are often difficult to access. Thanks to the 
increasing availability of remote sensing data and the fast 
evolution in change detection techniques (Lu et al., 2004), 
forest extent and its dynamic can be assessed. Precise 
measurement of deforestation requires high spatial resolution 
images from satellite sensors such as Landsat TM, ASTER or 
SPOT. Among the variety of change detection methods, the 
post-classification comparison is widely used to detect detailed 
change trajectories. The classifications are either based on 
visual delineation and interpretation (Roy and Tomar, 2001; 
Achard et al., 2002) or on digital techniques (Tucker and 
Townshend, 2000; Sanchez et al., 2001; Zhang et al., 2005). 
Other change detection techniques also based on classification 
have been developed and evaluated over tropical forests. 
Multidate classifications using NDVI (Hayes and Sader, 2001) 
or tasseled cap (Guild et al., 2004) are more straightforward to 
detect changes. However, they still require time-consuming 

procedures and image interpretation such as definition of a 
preliminary forest mask and visual interpretation for labelling 
classes. Other methods such as image differencing, principal 
component analysis have been assessed by Mas (1999) and Lu 
et al. (2005) but they require precise radiometric normalizations 
and histogram thresholding to distinguish change/no-change 
classes, which are scene-dependent procedures. Moreover, 
when applied over tropical forests, these techniques - also 
referred to as pixel-based change detection - suffer from 
important “pepper and salt” effects. Indeed, hazy atmospheres, 
very frequent in tropical regions, introduce temporal variability 
not related to surface changes. The spatial variability of high 
resolution images is also dependent on canopy roughness and 
geometry of observation (de Wasseige and Defourny, 2002). 
Object-based methods based on segmentation could thus help 
reducing these local spectral variations when combined to a 
statistical object-based change detection method developed by 
Desclée et al. (2006), that has proved its efficiency to detect 
forest changes in temperate regions. To the best of our 
knowledge, such kind of change detection methods has not been 
applied on tropical forest yet. 
 
Forest change detection require a preliminary forest delineation 
to mask irrelevant features and focus the analysis only on forest 
changes (Coppin and Bauer, 1996). This forest mask can be 
derived from a preliminary classification (Hayes and Sader, 
2001; Guild et al., 2004). Based on the first satellite image of 
the image pair, a land cover classification is performed and 
classes are merged to produce forest/non-forest mask. In order 
to reduce the time-consuming interpretation required for these 
classifications, forest limits are sometimes derived from other 
data sources such as existing forest maps (Häme, 1998). 
However, this forest delineation is often not accurate enough or 
outdated compared to the satellite images used for change 
detection.  



 

 
This study aims at delineating tropical deforestation from high 
resolution satellite images (SPOT). Due to its efficiency to 
detect forest changes in temperate forests, the statistical object-
based change detection method developed by Desclée et al. 
(2006) was extended to tropical forests. An automated 
forest/non-forest classification was developed based on the first 
satellite image of the images pair to focus the change detection 
only over deforested areas. This methodology was applied to 
monitor forests degradation in the Virunga National Park, a 
protected area, at the eastern border of the Democratic Republic 
of Congo (DRC). 
 
 

2. STUDY AREA AND DATA 

The Virunga National Park is a site of exceptional biological 
and ecological value due to its considerable altitudinal range 
(from 800 m to up to 5100 m in the Ruwenzori Mountains) over 
a restricted region (790,000 ha). It is located on the border 
between Democratic Republic of Congo, Uganda and Rwanda. 
This area is crucial for the conservation of a large range of 
ecosystems (afro-alpine vegetation, savannah, swamps, lowland 
forest, lacustrine and volcanic successional gradients and even 
snow field) and the protection of numerous endemic species 
(birds, flora, mammals, invertebrates, etc). Although it is the 
first national park created in Africa (1925) and one of the 
biologically richest parks in central Africa (it was declared as a 
World Heritage Site by UNESCO in 1979), it is at the same 
time one of the most threatened ones. The study area is the 
Semliki sector located at the north of the Virunga National 
Park. It is nearly exclusively composed of low land tropical 
forest on both side of the Semliki river including very different 
forest degradations. The extension of the agricultural activities 
of the people living near the park leads to progressive 
degradation distributed in small patches inside the forest 
domain. In contrast with shifting cultivation practices where 
forests recover after several years by natural regeneration, the 
cut parcels are not abandoned and forest does not regenerate. 
 
Two SPOT images were acquired respectively on April 1, 2000 
and May 6, 2004 over the Semliki sector. The first image at 
20 m spatial resolution was resampled at 10 m resolution using 
bilinear interpolation in order to match the 10 m resolution of 
the second image. The preprocessing includes three steps, 
namely geometric correction, cloud masking and image 
differencing. Orthorectification was first applied on each image 
based on the SRTM DEM (90 m resampled at the image 
resolution) and a set of 6 to 14 GCP’s. For both images, the 
Root Mean Square Errors (RMSE) were below pixel size. 
Clouds and their shadows were systematically removed 
afterwards by visual interpretation. Finally, pairs of successive 
images were subtracted for each spectral band, including Green, 
Red, NIR and SWIR bands. One image difference was 
produced (May 2004 minus April 2000). From an airborne 
video recorder linked to a GPS, aerial photographs were 
acquired by the WWF team on April 6 and 7, 2004. Sixty aerial 
photographs were randomly selected for the change detection 
accuracy assessment. These images were coregistred using 4-5 
GCP’s as derived from the GPS location and the interpretation 
of the SPOT image acquired in May 2004. 

  
 

3. METHODOLOGY 

The method proposed here for tropical deforestation mapping  
includes 3 steps, namely (1) the multidate segmentation and 
object signature computation, (2) the forest/non-forest 
classification and (3) the forest change detection. Based on the 
change detection method developed by Desclée et al. (2006) 
over temperate forests, the methodology was generalized to 
solve the remote sensing tropical difficulties such as high 
reflectance variability due to canopy roughness and strong 
atmospheric effects. Moreover, an automated forest/non-forest 
classification was developed to focus the subsequent change 
detection analysis only on deforested areas. This deforestation 
mapping technique assumes that the satellite image covers large 
forest areas with small surfaces of deforestation. This general 
assumption should be respected to ensure the efficiency of this 
method. 
 
 
3.1 Multidate segmentation and object signature 

The multidate segmentation consists in partitioning an image 
into objects which group pixels that are spatially, spectrally and 
temporally similar. Including two satellite images over the same 
location at two different dates, the multidate image is 
segmented into multidate objects (Desclée et al., 2006) using 
the eCognition software (Baatz and Schäpe, 2000). The 
segmentation is based on an optimization function which 
involves three parameters, namely the spectral, the compactness 
and the scale parameters. The spectral parameter wsp, trading 
spectral homogeneity vs. object shape, is included in order to 
obtain spectrally homogenous objects while irregular or 
branched objects are avoided. The compactness parameter wcp, 
trading compactness vs. smoothness, adjusts the object shape 
between compact objects and smooth boundaries. Finally, the 
scale parameter hsc, controlling the object size, is selected in 
order that the minimum object size matches the Minimum 
Mapping Unit (MMU). Depending on this scale parameter, 
different segmentation levels can be produced, each 
characterized by their own mean object size. 
 
Two segmentation levels of objects were produced from the 
multidate image in this study. The first level delineates “small 
objects” for the change detection analysis. Spectral wsp 
parameter was set to 0.9 to obtain very spectrally homogeneous 
objects. Compactness parameter wcp was set to 0.5 to equally 
balance between smoothness and compactness. To obtain 
objects down to the smallest forest change size (about 0.25 ha), 
scale parameter hscale was set to 20. The second segmentation 
level contains “large objects” (mean size of 2000 ha) and was 
produced for the forest/non-forest classification and the 
simplification of the change detection results at coarser scale. 
The spectral wsp and the scale hscale parameters were set 
respectively to 1.0 and 500 in order to obtain large areas by 
focusing on the spectral homogeneity. 
 
Based on this object delineation, object signatures (OS) were 
computed for each small object. These signatures include 
several objects features or summary statistics derived from the 
groups of pixels inside the object. These statistics were selected 
to characterize each object for the subsequent analyses, namely 
the forest/non-forest classification and the change detection. 
The classification between forest and non-forest requires the 
object mean (M) of each spectral band over image 1 (OS1).  
The change detection algorithm which compares images thanks 
to image differencing requires the object Mean (M) and object 



 

Standard deviation (S) of each spectral band of the difference 
image (OS21).  
 
 
3.2 Forest/Non-forest classification 

An automated object-based classification was developed to 
separate forest from non-forest areas on the first image of the 
satellite image pair, hereafter named image 1. Two classes, 
namely forest and non-forest, were discriminated. Forest 
corresponds to forested land with closed canopy. Non-forest 
includes agricultural fields, savanna, fallow land and water 
bodies. Only applied on image 1, this classification is based on 
two steps, namely (1) the automated identification of forest 
training sets and (2) the stratified forest/non-forest 
classification. 
 
The identification of forest training sets aims at defining 
automatically a representative sample of forest small objects for 
the subsequent classification. Two statistical analyses based on 
multivariate iterative trimming procedure were performed. 
Whereas trimming is defined as the removal of extreme values 
that behave like outliers, this statistical test is used in a 
multivariate way for detecting changed objects having 
abnormal multitemporal behaviour. The first statistical analysis 
is a severe change detection performed on the whole set of 
multidate objects in order to keep only “unchanged” objects, 
this including mainly forest objects but also some non-forest 
objects. Based on the object signatures from the image 
difference (OS21), the iterative trimming procedure was 
performed with a confidence level equal to 90 %. Objects 
having signatures inside the confidence interval of the last 
iteration were classified as unchanged objects. Because visible 
spectral bands were very sensitive to haze, only infrared bands 
were used. These object signatures (OS21) include object 
means and object standard deviations on NIR and SWIR 
difference bands. Afterwards, a second statistical analysis aims 
at extracting forest objects among the selected “unchanged” 
objects, considering only image 1. As “unchanged” non-forest 
objects are less numerous and spectrally very different 
compared to “unchanged” forest objects, they can be considered 
as outliers based on the object signatures of image 1 (OS1). 
Iterative trimming was applied on these signatures which 
include object means on Green, Red, NIR and SWIR spectral 
bands with a confidence level of 99.9 %. Objects with signature 
values inside the confidence interval of the last iteration are 
considered as forest training sets. 
 
The forest/non-forest classification distinguishes forest from 
non-forest objects based on the spectral signature of forest 
training sets. As non-forest objects include many different land-
cover classes such as savanna, agricultural field, fallow and 
water bodies, they have very different spectral signatures which 
is time-consuming to modelize. Instead of comparing the object 
probability of belonging to each land-cover class, as done in 
maximum likelihood classification, this classification selects 
objects having spectral signatures similar to forest training sets. 
To measure this similarity and distinguish forest from non-
forest, a confidence interval is computed based on the object 
signatures of forest training sets in the 4-dimensional space 
corresponding to the object means on Green, Red, NIR and 
SWIR spectral bands. Among all multidate objects, the objects 
with signature outside the interval defined with a confidence 
level of 99 % were considered as non-forest and were then 
masked for the subsequent analysis. Over the whole study area, 
several forest types are present and their spectral signatures are 

very heterogeneous. In order to increase the classification 
performance and reduce the forest spectral heterogeneity, this 
process was repeated at local scale over each “large object” as 
produced by the second segmentation level. This “stratified” 
classification allows us to take into account local forest types 
characterized by specific spectral signatures. 
 
 
3.3 Forest change detection 

In order to identify deforestation areas, the change detection 
method based on multivariate iterative trimming was applied on 
the multidate objects classified as forest in image 1. This 
statistical analysis was performed based on object means from 
the image difference over NIR and SWIR bands (OS21) with a 
confidence level set at 99%. The resulting changed objects are 
classified as deforestation giving that they were initially forest. 
The generalization of this result at coarser scale was done by 
measuring the rate of deforestation in terms of surface for each 
“large object” of the second segmentation level. The area of the 
small objects detected as deforested was summarized over large 
object to obtain surfaces and rates of deforestation. 
 
3.4 Accuracy assessment 

The change map based on this methodology was assessed using 
reference data set including objects selected by stratified 
random sampling. These objects were photo-interpreted based 
on satellite images as well as on aerial photographs when 
available. Four performance indices were derived from the 
confusion matrix: overall accuracy, overall kappa and, for the 
change class, the omission and commission errors. 180 objects 
were selected by stratified random sampling based on the zone 
covered by aerial photographs and the land cover change 
classes. 120 objects were photo-interpreted using the two SPOT 
images (April 2000 and May 2004) and 60 objects based on the 
georeferenced aerial photographs of April 2004. The forest/non-
forest classification (forest/non-forest) and the change detection 
(change/no-change) were separately assessed.  
 
 

4. RESULTS 

4.1 Deforestation maps 

Over the years 2000 and 2004, deforested areas were identified 
based on this methodology applied on the corresponding SPOT 
images. The simplification of these results at coarser scale 
leading to the generalized change map is presented in figure 1. 
Over the whole area, deforestation rates ranged from 0 to 10 % 
depending on the zones. From a forest extent of 160,000 ha on 
the satellite image of April 2000, about 3,100 ha were 
deforested in May 2004. Inside the Park, about 800 ha of forest 
were clear-cut, the majority of them in the south-western part 
(figure 2). Around the Park, about 2,300 ha of forest were 
degraded and converted into agricultural fields. 
 



 

 
 
Figure 1. Generalized deforestation map over the Semliki sector 

overlaid on the whole SPOT image of May 2004. 
 

 
(a) 

 
 

(b) 
Figure 2. Image subsets over the Semliki sector over the active 

deforestation front, acquired respectively (a) in 
April 2000, b) in May 2004 overlaid by the detected 
deforested regions between 2000 and 2004. 

 
 
4.2 Method assessment 

Table 1 summarizes the accuracy assessment results of the 
deforestation mapping method. This was done for the whole 
method and separately for its two steps, namely the automated 
forest/non-forest classification and the change detection. The 
method’s overall accuracy and the overall kappa were 
respectively 84 % and 0.75. The automated forest/non-forest 
classification achieved an overall accuracy of 88 % whereas the 
same index reached 93 % for the change detection. Taking into 
account only the change class, the rates of omission errors was 
23 %. However, these errors were due to the change detection 
(3 %) but mainly to the forest/non-forest classification (19 %). 
The change class commission errors due to the change detection 
are numerous (16 %) and combined with the 9 % due to the 
forest/non-forest classification, the whole method achieved 
25 % commission errors. 
 
 
 Whole 

Method 
F/NF 

Classif. 
Change 

Detection

Overall Accuracy (%) 84.2 87.6 93.3 
Overall Kappa  0.75 0.75 0.84 
Change: Omissions (%) 22.6 19.4 3.2 
Change: Commissions (%) 25.0 9.4 15.6 
 
Table 1. Accuracy assessment results (n=180) of the 

deforestation mapping method and its two steps, 
namely the forest/non-forest (F/NF) classification 
and the change detection over the Semliki sector. 

 
5. DISCUSSIONS 

This study proposes an automated method to map deforestation 
areas over complex tropical regions. The change detection 
based on image objects has the advantage of reducing the 
spectral noise due to canopy roughness and strong atmospheric 
effects, but also to overcome the tropical landscape complexity. 
Moreover, time-consuming radiometric corrections are not 
required in this method due to its robustness as it makes use of 
reflectance differences by the way of a statistical test, the 
iterative trimming. On the other hand, this method requires a 
forest mask before performing the change detection analysis.  
Often this mask is derived from time-consuming land cover 
classification or from other forest maps which are outdated and 
sometimes not accurate enough. This method automatically 
produces its own up-to-date forest/non forest mask, from the 
first image of the image pair. Because this step is based on the 
same satellite image as for change detection, the resulting 
deforestation map should be more accurate. Another difficulty 
coming from the diversity of forest types and their different 
spectral signatures was solved by stratifying the classification 
based on the large objects. It is worth noting however that a 
limitation of object-based methods is that small deforested areas 
are not taken into account. Indeed, the scale parameter required 
for the segmentation defines the minimum object size. In spite 
of this limitation, this methodology was proved flexible giving 



 

that the different case studies of deforestation were successfully 
mapped. Indeed, both small encroachments and large clear-
cuttings occurred in the study area.  
 
The change map based on this methodology reached an overall 
accuracy of 84 %. This result is quite good given the 
complexity of forest changes and the lack of up-to-date forest 
map. Moreover, this method can also be considered as efficient 
when compared with other tropical deforestation studies 
assessed by independent reference data, which are rare. 
Assessing different pixel-based change detection method over 
tropical regions, Mas (1999) achieved the highest results with 
the post-classification comparison with an overall accuracy of 
87 %. Using the RGB-NDVI technique, Hayes et Sader (2001) 
have obtained an overall accuracy of 86 % to detect forest 
change. Guild et al. (2004) have tested three change detection 
techniques using tasseled cap and have obtained as best results 
a 79 % overall accuracy. However, change map produced by 
this study have still omission and commission errors. Whereas 
omission errors are mainly due to the forest/non-forest 
classification, the commission errors are due to the change 
detection algorithm. These errors are also linked to the 
difficulties to map tropical forests. Indeed, this mapping is a 
difficult task due to technical and conceptual problems pointed 
by Foody (2003). Tropical landscapes are very complex to 
analyze. Forest edges are sometimes difficult to delineate due to 
the continuum between vegetation types. Moreover, the rapid 
forest regeneration renders the visual interpretation difficult 
between the forest succession states.  
 
This change detection method can be considered as operational 
given its efficiency to detect different forest change types and 
its automated character. Indeed, its good overall performance 
over both temperate and tropical forests proved its ability to 
identify small clearing spread over the landscape as well as 
large cut parcels. Moreover, whereas high cost, large data 
volume and low frequency of data acquisition were a problem 
in the past, the current large variety of easy-to-access satellite 
imageries renders fine spatial resolution images very promising 
to apply this automated forest monitoring technique in an 
operational framework.  
 
In addition to assessing our method over tropical regions, this 
study brought a solution to the Congolese authorities and 
conservation NGO requiring information about the evolution of 
deforestation fronts. Three crucial information were provided 
with respect to this (i) the delineation of the forest degradation 
front, (ii) the quantification of deforestation rates for big blocks 
of homogenous degradation patterns, and (iii) the quantification 
of all forest surfaces affected by human activities. The 
simplification of these results at coarser scale as done in the 
generalized change map is also needed for field actors. Indeed, 
this kind of map is required to evaluate the global situation and 
focus the most sensitive regions of these protected areas.  
 
 

6. CONCLUSIONS 

Tropical deforestation was successfully delineated from high 
resolution satellite images acquired from SPOT sensor. 
Developed initially for temperate forests, the automated object-
based change detection method using segmentation and 
statistical algorithm was extended to tropical regions. An 
automated forest/non-forest classification was developed to 
delineate the reference forest mask. This methodology was 
applied to monitor the forest degradations and assessed in the 

Virunga National Park in the east border of the Democratic 
Republic of Congo (DRC). The produced deforestation map 
reached an overall accuracy of 84 % as assessed by an 
independent aerial survey. Deforestation map of better accuracy 
could even be achieved by improving the preliminary 
forest/non-forest classification or using up-to-date forest map. 
This change detection method combining object-based 
techniques and statistical tests has also proved its efficiency to 
detect complex tropical forest changes such as small clearing 
spread over the landscape. Moreover, its automated character 
renders this method appropriate for operational tropical forest 
monitoring.  
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