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ABSTRACT: 
 
Boreal forests and wetlands play an important role in the climate system, in particular through biosphere-atmosphere flux exchanges. 
They are an important pool of carbon and their role as sink or source of greenhouse gases is not fully understood. Accurate mapping 
of the vegetation of Siberia can therefore contribute to a better understanding of these processes at regional scale and of their effects 
on the climate through regional biosphere modeling. The potential of the combination of radar data with medium-resolution optical 
data to obtain regional scale land cover mapping is investigated using multi-spectral imagery from the MERIS sensor at 300 m 
resolution and a high resolution radar mosaic (pixel spacing of 100 m) covering Western and Eastern Siberia compiled in the 
framework of the Global Boreal Forest Mapping project, an initiative of the Japan Agency for Space Exploration (JAXA). For this 
purpose, capabilities of oriented-object image analysis associated to wavelet multi-resolution techniques are investigated. Results 
show that wavelet multi-resolution textures bring relevant additional information for land cover classification. Suggestions are made 
for the implementation of an object-based wavelet multi-resolution texture estimator. 
 
 
 

1. INTRODUCTION 
 
Eurasian boreal forest and peat bogs are important 
ecosystems in relation to climatic change. By forming peat, 
bogs serve as significant long-term sinks for atmospheric 
carbon dioxide The boreal forest is an important sink of 
carbon dioxide through the photosynthesis process. At the 
same time, bogs release methane, a greenhouse gas 20 times 
more powerful than carbon dioxide, into the atmosphere and 
forest release carbon by respiration and due to biomass 
burning (fires). Anomalies in temperature and precipitation in 
northern Russia over the past few years have been viewed as 
manifestations of anthropogenic climate change (Thompson 
and Wallace, 2001). If the actual trends of climate change are 
maintained, it should have a strong impact on the Eurasian 
boreal ecosystems such as change in ecosystem boundaries 
(shifts in forest-type zones and species range), change in 
permafrost zone, changes in fire disturbances, change in 
forest growth rates and productivity, changes in bio-diversity 
and insect disturbance. Major international concerns are the 
melting of the frozen peat bogs of the sub-arctic regions in 
North Western Siberia that would release billions of tons of 
methane in the atmosphere (Kirpotin and Marquand, 2005) 
and the increase in 'wild' fires in Eurasian boreal forests 
although 87% anthropogenic in origin (Mollicone et al., 
2006) still is linked to the higher likelihood in fire ignition 
and propagation caused by the large recent climate anomalies 
in 1998, 2002 and 2003. Also, virtually nothing is known 
about how climate change could affect the existing bog 
ecosystems at longer time scales which could have important 
repercussions for global carbon cycling. In this context, the 
need for accurate and up-to-date regional land cover mapping 
of the Eurasian Boreal ecosystems and in particular of the 
boreal forest and the peat bogs is increasing for global change 
science as well as implementation of environmental treaties 
and development programs (Bartalev et al., 2003). However 
the Eurasian Boreal zone includes some of the most remote, 

inaccessible and infrequently mapped ecosystems of our 
planet and an international effort should be promoted to 
update the last forest inventory of North Eastern Russia that 
is more than 50 years old (Strakhov 2001) and the last 
regional land cover map of the Eurasian region produced 
during the GLC2000 project (Global Land Cover for the year 
2000, Bartalev et al., 2003). The first difficulty to map boreal 
Eurasia and more specifically Siberia stems from the huge 
geographic extension (10,007,400 km2, similar in size to the 
continental United States) that extends eastward from the 
Ural Mountains to the Pacific Ocean, and southward from the 
Arctic Ocean to the hills of north-central Kazakhstan and the 
borders of both Mongolia and China. The second difficulty 
resides in the different scales of interest from thousands and 
thousands of small lakes that form the bogs to the million of 
hectares of boreal forests. Since the GLC2000 project based 
on standard SPOT4-VEGETATION products at 1 km 
resolution, some newer and more accurate satellite image 
mosaics involving the overall Siberia started to show up in 
the last years giving new emphasis to land cover mapping 
project of the region, in particular the MODIS mosaics, the 
MERIS composites and the GBFM radar mosaic. In this 
study we set the stage for the development of methods 
suitable for exploiting the combined capabilities of radar and 
optical instruments for thematic mapping at regional scale of 
the Boreal ecosystems in Siberia. The main data source is 
provided by a high resolution radar mosaic (pixel spacing of 
100 m) spatially more accurate for bogs. lakes and river 
mapping while the potential of the combination of radar data 
with medium-resolution optical data is investigated using 
imagery from the MERIS sensor at 300 m resolution. 
Multispectral information is necessary to distinguish bogs 
from the other land covers and the different types of forests at 
a larger scale. To the purpose, capabilities of multi-scale 
object-oriented image analysis is investigated in a first step 
combining a multi-resolution segmentation, based on a fractal 
net evolution approach, and an object-oriented fuzzy 
classification that is fed with all available data and 
information sources. Results are validated using detailed land 



cover maps derived from high resolution imagery (30m) from 
the LANDSAT TM sensor and available ground-data. In a 
second step wavelet multi-resolution techniques are tested to 
derive complementary information from radar image texture 
for such regional land cover mapping. 
 
 

2. STUDY AREA AND DATASETS 
 
2.1 Ecosystems of study area 
The study area is located 59º40′ N - 84º30′ E and belongs to 
the vast West Siberian lowland which is characterized by flat 
terrain where the poor drainage led to development of huge 
wetland ecosystems.  The region is covered with peaty bogs 
and forests. The forest belongs to the Middle Taiga zone with 
larix, picea and abies species.  Birch forest is present in the 
areas where deforestation or forest fires occurred. The peaty 
bogs are composed of ridge-hollow complexes with islands 
of dwarf pine shrubs. The area is drained by the Ob River and 
its tributary the Kel. The flood plains of major rivers are 
covered with riparian vegetation. Figure 1 shows the study 
area location on the GBFM mosaic.  

 
Figure 1.  Location of the study area on the GBFM mosaic 

 
2.2 Satellite images and ancillary datasets 
 
Three sources of data were used together for classification: a 
subset of the GBFM JERS-1 radar mosaic, a MERIS image 
and ancillary information coming from the SRTM Water 
Bodies. 
 
2.2.1 GBFM JERS-1 radar mosaic 
A radar mosaic of Siberia was produced in the framework of 
the Global Boreal Forest Mapping Project, an initiative of the 
Aerospace Exploration Agency of Japan (JAXA). The mosaic 
is composed of some 530 strip-images (typically covering 80 
km by 2500 km each) acquired in 1997-98 by the L-band 
SAR aboard the JERS-1 spacecraft. Coverage includes the 
area between the Ural Mountains in the west, Bering Strait in 
the east, Arctic Ocean in the north and the Korean Peninsula 
in the south. The GBFM Siberia mosaic is a good source of 
thematic information due to well-known radar backscatter 
characteristics (sensitivity to moisture content and surface 
roughness, independence on weather conditions and small 
sensitivity to seasonality). The mosaic features good relative 
radiometric calibration due to a number of radiometric 
corrections, and therefore it is suitable for automatic 
classification. The systematic radiometric distortions caused 
by antenna pattern and other system induced errors have been 
removed. The strip-images were mosaiced together using a 
block adjustment procedure (least square minimization of 
discrepancies) based on homologous features in overlapping 
areas, an a  number of ground control points derived from 

auxiliary data, such as GeoCover Landsat mosaics, and 
topographic maps. Pixel spacing is 100m, tie-points rms error 
(internal geometric consistency) is 80.4 m (Northing) and 
117.4 m (Easting); absolute geocoding (with repect to 
external measurements) rms error is 273.3 m (Northing), 
277.0 m (Easting). 
 
2.2.2 MERIS multispectral image 
The Medium Resolution Imaging Spectrometer instrument 
aboard the ENVISAT satellite is a 68.5 ° field-of-view 
pushbroom imaging spectrometer that measures the solar 
radiation reflected by the earth at a ground spatial resolution 
of 300m in 15 spectral bands in the visible and in the near 
infra-red. To test our methodology, we used a single date 
MERIS image of the 07/06/2003 delivered by ESA in the 
framework of the GLOBCOVER project. This image is 
partially covered by clouds and we executed a simple cloud 
screening using a threshold in the channel 3 (blue) of MERIS 
(485 - 495 µm). 
 
2.2.3 Landsat TM 
For validation of the middle resolution land cover 
classification, we used an orthorectified Landsat TM image 
of the 07/07/1999 delivered by the NASA`s Global 
Orthorectified Landsat Data Set (Tucker et al., 2004). This 
image is cloud free and positional accuracy is <50 m RMSE. 
 
2.2.4 SRTM Water Bodies 
The version 2 of the SRTM data (Shuttle Radar Topography 
Mission, Homepage of SRTM data: 
http://www2.jpl.nasa.gov/srtm/) was produced by the 
National Geospatial-Intelligence Agency. The data set 
exhibits well defined water bodies with absence of spikes and 
wells (single pixel errors). The absolute horizontal accuracy  
is 20 m circular error with 90% of confidence. The lakes 
greater than a 600-meter minimum length and 183-meter 
minimum width are depicted and double line drain (river) 
depiction begins as the river width exceeds 183 m for a 
length of 600 m or more and ends when the width of the river 
becomes 90 m or less and does not widen back to > 90 m 
within 1 km downstream. 
 
All the data were co-registrated using the GBFM JERS-1 
radar mosaic as a reference. 
 
 

3. OBJECT-ORIENTED LAND COVER 
CLASSIFICATION 

 
A fractal net evolution approach (FNEA) underpins our 
object-oriented land cover classification. The fractal net 
evolution approach incorporates an object-oriented 
framework and image segmentation techniques. In particular, 
it utilizes fuzzy set theory to extract the objects of interest, at 
the scale of interest, by segmenting images simultaneously at 
both fine and coarse scales, then building image semantics 
between levels and their elements (Blaschke & Hay, 2001). 
 
The FNEA is embedded in the Definiens Professional Earth 
commercial software (previously called eCognition) that we 
used for segmentation and image classification. 
 
Two image object levels constitute the image object level 
hierarchy used in this work. The first image object level is 
obtained from a multi-resolution segmentation based 
exclusively on the radar backscatter from the GBFM mosaic. 
Multi-resolution segmentation is a region-merging algorithm 



that starts with a single pixel and a pairwise comparison of its 
neighbors with the aim to minimize the resulting summed 
heterogeneity. 
 
Then a second image object level is processed by merging the 
objects with a Spectral Difference algorithm using the 
channels 5 (555 – 565 µm, green), 8 (677.5 – 685 µm, red) 
and 13 (855 – 875 µm, near infra-red) from MERIS. Spectral 
Difference algorithm merges neighboring objects according 
to their difference in mean reflectance value. This second 
image object level is composed of larger objects with borders 
delimitations defined by the segmentation resulting from the 
radar 100 m image and extension size defined by the 
reflectance similarity from MERIS in the green, red and near 
infra-red channels. 
 
A multi-scale land cover classification was processed from 
the two image object levels using semantic rules between 
levels. The first level of classification was used primarily to 
extract rivers and lakes while the other land cover classes 
were distinguished from the second image object level. A 
classification rule-set was defined using fuzzy membership 
functions on both levels. 
 
Lakes are identified using both SRTM Water Bodies 
ancillary dataset and GBFM radar image. The first image 
object level classification rule-set states that if an object is 
overlapping an identified lake from SRTM Water Bodies 
with a low backscatter area on the GBFM image, then it’s 
effectively a lake. Objects that don’t overlap an identified 
lake from SRTM but have a low backscatter and an elliptic 
shape are also considered as lakes. In the study area, we 
noticed by photo-interpretation that low backscatter elliptic 
objects are mainly lakes. Rivers are also defined by low 
backscatter in the GBFM image and overlap with identified 
river from SRTM Water Bodies. 
 
On the second image object level, land cover classification 
fuzzy rules are based on the 5, 8 and 13 MERIS. The riparian 
vegetation is defined using both fuzzy membership functions 
in the 5, 8 and 13 channels of MERIS and a distance to the 
river defined in the first image object level. The resulting 
classification distinguishes 8 land cover types plus clouds: 
 

- Anthropic area and bare soil 
- Bogs 
- Broadleaf forest 
- Dark taiga 
- Lichen and moses 
- Riparian vegetation 
- Lakes 
- Rivers 
- Clouds 

 
Figure 2 shows the classification results. 
 

 
Figure 2.  Land cover classification result 

 
4. ACCURACY ASSESSMENT 

 
The resulting land cover classification is validated using as 
reference a pixel-based supervised maximum likelihood 
classification of a Landsat TM image. The training areas 
were established based on visual interpretation of the Landsat 
image and expert knowledge developed by comparing ground 
data with numerous Landsat scenes. The broadleaf and dark 
taiga are grouped for accuracy assessment in a single class 
forest since they were not identified on the Landsat 
classification. Table 1 shows the error matrix and the 
accuracy. Overall accuracy is high (0.725) as well as Kappa 
(0.67). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Confusion Matrix  

User Class \ Sample Lake River Forest Bogs Riparian Veg. Anth. Area 
 & bare soil 

Lichen  
& Moses Sum 

Lake 84 0 0 1 3 1 0 89 
River 0 24 0 0 2 0 0 26 
Forest 4 0 101 0 9 8 4 126 
Bogs 7 1 3 88 24 33 40 196 
Riparian Vegetation 1 4 0 0 55 10 0 69 
Anth. area & bare soil 1 1 0 0 0 29 0 31 
Lichen & Moses 0 0 0 2 0 2 41 45 
Sum 97 29 104 91 93 83 85 582 
Totals  
Overall Accuracy 0.725 
KIA 0.6739 

 
Table 1.  Land cover classification accuracy assessment 

 
 
 
 

5. IMPROVEMENT OF THE LAND COVER 
CLASSIFICATION USING RADAR TEXTURE 

 
The land cover methodology presented previously didn’t benefit 
from the high texture content of the radar images. Radar texture 
could enlarge the uncorrelated feature space used in 
classification. We test here the usefulness of textural features 
extracted by multi-resolution decomposition provided by a 
wavelet frame that acts as a differential operator. The method is 
described in detail in [De Grandi et al., 2006]. In a nutshell, 
textural features are captured by spatially local estimates of: i) 
variance of the smooth signal, ii) variance of the wavelet 
coefficients. Intuitively, these measures are sensitive to sharp 
transitions (contours of areas with different reflectivity, point 
targets), and to edge density, smoothness and swing (at a given 
scale) within extended targets. Proper normalization of the 
estimated wavelet variance is introduced for dealing with 
multiplicative speckle noise.  
In this application the two first dyadic scales in the wavelet 
decomposition are used. Therefore textural features that develop 
with characteristic scales of 100 m and 200 m are considered. 
Also we disregard directional effects and measure the variance 
of the squared sum of the wavelet components along the row 
and column directions.   
This type of texture in radar imagery of the Siberian ecosystem 
has not been studied previously and there is no clear assumption 
or theoretical explanation on how such texture should be used in 
land cover classification. We base therefore our analysis purely 
on experimentally observed correlation between textural 
features and thematic classes. These observations indicate a 
strong correlation between group of land cover classes and 
texture range of values. We define three groups of land cover 
classes based on their textural behavior: 
 
Group 1: riparian vegetation, river, anthropic area and bare soil 
Group 2: broadleaf forest and dark taiga 
Group 3: bogs, lakes, lichens and moses 
 
For each group we define three ranges of wavelet variance 
values and we observe how the spatial distribution of each range 
matches the corresponding land cover group. The texture values 
considered here are the mean texture values of the second image 
object level. 
 

 
 
Figure 3.  Wavelet variance scale 1 versus land cover groups 
a) land cover group 1, b) high wavelet variance, c) land cover 
group 2, d) medium wavelet variance, e) land cover group 3, f) 
low wavelet variance, g) land cover group 1 (light grey), 2 
(grey), 3 (dark grey), h) wavelet variance, high (light grey), 
medium (grey), low (dark grey). 
 



In figure 3, the spatial distribution of the land cover groups and 
the texture range values calculated for the second image object 
level are compared. We can observe how similar are the spatial 
distribution of the land cover groups compared to the texture 
range values. Table 2 shows the error matrix resulting from the 
comparison of the texture range values with the land cover 
groups. Accuracy assessment is based on 50 object samples for 
each land cover group. Overall accuracy is 0.73 and Kappa is 

0.6. This high accuracy demonstrates that wavelet texture can 
contribute positively to land cover discrimination. 
In view of these results, work is currently under way to modify 
the wavelet variance computation from point-estimates using a 
local smoothing kernel to an object-wide estimator. This 
passage would allow for far better accuracy of the estimator, 
provided that good criteria can be found to check the 
stationarity of the wavelet variance process within the object. 
 

Confusion Matrix  

User Class \ Sample Broadleaf forest, 
Dark Taiga 

Bogs, Lichen, 
Moses, Lakes 

Riparian, Anth. Area, 
Bare soil, River Sum

Low_wl-scale 1 42 10 4 56
Medium_wl-scale 1 7 38 16 61
High_wl-scale 1 1 2 30 33
Sum 50 50 50 150
Totals  
Overall Accuracy 0.7333 
KIA 0.6 

 
Table 2.  Texture-based classification accuracy assessment 

 
 
 

6. CONCLUSION 
 
The combination of L-band radar data and MERIS imagery 
allows us to resolve some major classification confusions that 
occur when only radar data is available. The spectral 
information can be very useful for example in distinguishing 
between agriculture and wetlands, alpine meadows and bogs, 
urban and high biomass vegetation etc. Object-oriented 
image analysis facilitates the use of combined radar, 
multispectral and ancillary data in a transparent classification 
process avoiding complex image fusion. 
 
In the next months, ESA will deliver through the 
GLOBCOVER project a 16 monthly MERIS composites of 
the globe covering the entire Siberia. Those composites will 
be cloud screened and orthorecitified. Using both the GBFM 
JERS-1 mosaic and the GLOBCOVER MERIS composites, 
it will be then possible to produce a land cover map of 
Siberia at 100 m resolution. According to our preliminary 
results, such a classification could benefit from a texture 
extraction approach based on an object-based wavelet 
variance estimator. 
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