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ABSTRACT:

At present all commercially available digital photogrammetric software products are utilizing points to solve the 

problem of image orientation. Photogrammetry based on linear features is still at the research level. The challenge is to 

represent appropriate features to overcome the inherent singularities. This paper addresses the utilization of linear 

features in image orientation by using the 4-parametric representation of lines in object space proposed by Schenk 

(2004). The relationship of the lines in object space and in image space is established based on the perspective 

projection. The collinearity equations are modified accordingly. The algorithms are tested by using simulated data of 

aerial configurations for single image resection. Experiments revealed some geometric configurations of the object 

control lines for which the condition fit of the normal equation matrix indicated numerical instability with the 

mathematical model. But in general, the spatial resection for a single image has been performed with straight lines 

successfully by strengthening the geometrical stability. The accuracy of the estimated parameters is slightly higher than 

in the classical point based model. 

1 INTRODUCTION

1.1 Background

Points play an important role in photogrammetry 

especially in image orientation and aerial 

triangulation. The ground control point information is

collected by surveying methods or taken from existing 

maps. Point based measurement in photogrammetric 

images is well performed by the human operators with 

the knowledge of the object space. The transfer from 

analogue to digital photogrammetry has dramatically 

changed the equipment from specialised hardware to 

modern digital photogrammetric workstations. In 

addition, digital photogrammetry became highly 

influenced by other disciplines such as computer 

vision, image understanding and pattern recognition. 

These disciplines reinvented many well known

photogrammetric procedures, in particular in the field 

of image orientation. But they also pushed algorithmic 

developments towards linear and direct solutions 

based on points. Beyond points, line features and areal 

features are of interest as well. 

Most of the direct solutions lead towards non-

redundant approaches without consideration of error 

propagation. Direct solutions as well as linear ones are 

of particular interest if the execution time is a crucial 

factor of an application. Linear non-redundant 

solutions can be extended into redundant models, but 

often at the price of replacing traditional objective 

functions, observations or orientation parameters.

The most remarkable breakthrough of digital 

photogrammetry is its potential for automation. Since 

extracting features from a digital image in the form of 

points, lines or regions is no longer a novel idea, 

extracted points replaced the manually selected and 

measured points in traditional practice. Matching 

techniques have been used for searching the 

corresponding points on the other images. Ambiguity 

in finding such corresponding points indicates the 

necessity of utilizing of higher features which are 

geometrically more unique and stable than points to 

carry out tasks in image orientation and aerial 

triangulation. Habib et al. (2002) point out some 

advantages of utilizing lines over the representation of 

points as,

• points are not as useful as linear features when it 

comes to tasks like object recognition.

• it is more efficient to extract linear features 

automatically than points (Kubik, 1988).

• linear features are often available in man made 

environments.

Schenk (2003a, 2004) discussed automatic orientation 

with linear features in detail and strongly 

recommended to move from points to features.

The concept of using features in photogrammetry has 

a relatively long history. For example, straight lines 
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were employed by Tommaselli and Lugnani (1988)

while Mulawa and Mikhail (1988) used conic sections. 

Mikhail and Sayed (1990) explored the use of linear 

(straight and circular) features in the photogrammetric 

restitution process. Zielinski (1993) used a similar 

model to define a point on the 3D line. Habib et al. 

(2000a) discussed issues in line photogrammetry and 

extended the concept from frame imagery to linear 

array scanners. These concepts were improved further 

towards robust parameter estimation in Habib and 

Kelly (2001), Habib et al. (2000b) and Habib et al. 

(2002). 

A detailed review on the progress in automatic aerial 

triangulation is given by Schenk (2003a). Schenk 

(2004) proposed a new approach, which is based on 

unique 4-parameter line representation. The 

parameters of the lines appear in block adjustment like 

the tie points do. This paper addresses characteristics 

of the 4-parametric model within the adjustment. 

Results are analysed for single photo resection of

different line configurations.

2 THEORETICAL BACKGROUND

Linear features are quite common in man-made 

environments. They can often be extracted as straight 

lines. A straight line is a fundamental primitive of 

feature-based photogrammetry.

The theoretical background of the 4-parameter line 

concept is briefly outlined in this section. For more

details of the mathematical and stochastic model the 

reader is referred to Schenk (2004).

2.1 Linear Feature Representation

Schenk (2004) states that for solving orientation and 

reconstruction an optimal line representation in 

Euclidean 3D space should fulfill the following 

requirements

• the line representation should be suitable for 

parametric expression,

• the representation should be unique and free of 

singularities,

• number of parameters should be equal to the 

minimum number of parameters necessary to 

specify a 3D line,

• there should be a one to one correspondence 

between the representation and the definition of the 

line,

• the parameters should allow a meaningful stochastic 

interpretation.

2.2 Approaches for Using Linear Features in 

Orientation 

Basically, there are two different ways to establish a 

relationship between a line in image and in object 

space. One way relies in the coplanarity condition 

which requires that the lines are lying in the same 

plane in 3D space. These approaches employ some 

straight line fitting through the respective image pixels

to get an image line. The relationship between the 

image line and the object line can be established based 

on the coplanarity model. 

The second type of approaches is based on the 

collinearity model. It deals with an arbitrary point on 

the line representation of the image feature and a 

corresponding representation of the feature in object 

space. To establish the image-object relationship 

through the collinearity model is more complex than 

the coplanarity model. In return, the collinearity

equations allow working with lower level primitives 

(e.g. edge pixels). The collinearity equations are used 

in this research and the way the original equations are 

extended along with the defined parametric model is 

discussed in the following section.

2.2.1 The Collinearity Approach

Calculating the exterior orientation parameters using 

points is well understood and straight forward in 

photogrammetric practice. The collinearity condition 

requires that the vector from the perspective centre to 

a distinct point on the image is a scaled version of the 

vector from the perspective centre to the 

corresponding object point. To extend the approach to 

object lines, instead of individual object control points 

a set of control points are defined along the selected 

control line. Through this trick the parametric 

representation of the control line connects well to the 

collinearity model. Let the line be represented by point 

A = (X
A
, Y

A
, Z

A
) and the direction vector d = (a, b, c). 

Then any point on the line is defined (Equation 1) by 

introducing a real variable t denoted as the line 

parameter.
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The collinearity equations for point P with object 

coordinates (X
P
, Y

P
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P
) read as
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where

x
p
, y

p
measured image coordinates

R the rotation matrix 

X
0
, Y

0
, Z

0
the object space coordinates of the 

perspective centre

f focal length



The superscript T denotes the transpose of the matrix.

Now U, V, and W can be modified with the line 

parameter representation
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and the standard collinearity equations (2) and (3) are

modified accordingly.

This is the basic mathematical model to incorporate 

line features into the collinearity constraints. 

Moreover, this does not give a unique solution 

because there are infinite number of points that can be 

selected and many ways to define the direction. Two 

constraints are added to fix that ambiguity. One is for 

fixing the point and the second constraint is for 

defining the direction. The most acute problem which 

is faced is the appropriate parametric representation. 

Schenk (2004) proposes a 4-parameter representation 

which simplifies the unnecessary complication that 

appears in the general approach. The proposed four 

parameters do not need additional constraints to define 

a point uniquely. 

2.2.2 4 – Parameter Representation

Let L be a line given in 3D Cartesian space O-XYZ. 

Let O-X′Y′Z′ be a coordinate system with the same 

origin and which is rotated such that to find its Z′ axis 

is parallel to L. The direction of the line is given by 

the mutual rotation of two systems. Two angles are 

sufficient to define the direction while the third angle 

which is the rotation about the line itself is kept fixed, 

for example by setting it to zero. For more information 

reader is referred to Schenk (2004).

The proposed representation of a line is based on two 

orientation parameters and two positional parameters. 

Two orientation parameters define the direction of the 

line. Positional parameters are the intersection point of 

the line and a plane, which is perpendicular to the line 

and passes through the origin.

Figure 1: Illustration of the 4-parameter representation 

(taken from Schenk 2004.)

Figure (1) illustrates the concept of 4-parameter 

representation. Two parameters (φ, θ) which are 

bounded by 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π, define the 

direction of the line L. All possible directions of the 

line L are defined with these two angles. The 

positional parameters are denoted as (x
o
, y

o
) which are 

the coordinates of the intersection point of the line 

with the (X’,Y’)-plane. Then the line can uniquely be 

represented by the 4_tuple {φ, θ, x
o
, y

o
}. (Schenk 

2004).

2.2.3 4- Parameter Transformation

A straight line in 3D space can be represented in the 

form of L{p,d} where p = (X
P
, Y

P
, Z

P
) is the position 

and d = (a, b, c) is its direction vector. If the same line

is represented by the four parameters {p
1
, p

2
, p

3
, p

4
}

the procedure to find the line’s 4-parameter 

representation can be given as follows. Two 

orientation parameters of the 4-parameter 

representation can be determined by converting the 

direction vector into spherical coordinates φ, θ and ρ

where φ is the azimuth, θ the zenith angle and ρ the 

radius of the sphere. The two parameters φ, θ can be 

found independent of  hence d does not need to be a 

unity vector. The rotation matrix R
φ

is formed as,
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 rotates the point p from the original object space 

into the 4-parametric space whose Z axis is parallel to 

the object control line. Then the transformed point p′

is given by the following relationship.
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It is obvious that any point on the line will have the 

same planimetric coordinates (x
o
,y

o
) but a different z

coordinate. In fact this represents a vertical line in the 

4-parametric space. The inverse relationship of 

Equation 7 maps any point in the 4-parametric space 



to the corresponding point in the original object space. 

The equation 8 shows the inverse relationship as
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which can be used to replace Equation (1) within the 

adjustment process.

2.3 Redundancy Considerations 

The coordinates of the perspective centre and the three 

attitude angles of the rotation matrix are the six 

exterior orientation parameters. Every measured point 

on the image renders two observations to the model. It 

needs at least three points to solve the problem in the 

standard point-based calculations of exterior 

orientation. The line parameters are additional 

parameters that have to be solved along with the 

exterior orientation parameters in the extended 

collinearity linear feature based model. Each point on 

the line adds one additional line parameter to the bulk 

of unknowns. Three non-collinear control lines 

measured by two edge points per line lead to 3 x 4 

equations of the collinearity model (Equations 2 and 

3). Thus three lines are needed to solve 6 orientation 

unknowns and 6 unknown line parameters. Observing 

more than two points per image line does not reduce 

rank deficiency but increases the redundancy. 

Alternatively the orientation can be solved with six 

control lines using only one point per line. 

3 METHODOLOGY

The extended collinearity model contains additional 

unknowns and looks more complex than the standard 

formulation with points. Line parameters are the added

unknowns to the model with one additional unknown

for each measured point on the line. The 

implementation of the algorithm is done using 

simulated data to study properties of the proposed 

model. Replicating the process with real data follows 

once the elementary behaviour is understood.

Image flight parameters are simulated assuming a 

camera with 150 mm focal length at the altitude of 

1500 m. The perspective centre is fixed at (1150.0, 

1150.0, 1500) m. 1

0

, 1

0

, 3

0

 are the rotations that have 

been applied on the image as Omega (ω), Phi (φ) and 

Kappa (κ) respectively. Size of the image is 230 ×230 

mm

2

 as the standard. Control lines in different 

configurations are selected (see section 2.3) using 

starting and end points of a 3D line and corresponding

image coordinates are calculated accordingly. A 

similar methodology is used to calculate the image 

coordinates when the measured points along the 

control line are increased. Randomly generated noise 

is added finally on to the calculated image coordinates 

in order to obtain more realistic image coordinates.

3.1 Implementation of Algorithms

To compute the exterior orientation parameters for 

both points and linear features the collinearity 

equations for the standard and the extended version of 

the line feature based model (4-parameter line 

representation) are implemented. This will help to 

compare the results subsequently. 

The implementation takes into account that 3D control 

lines are typically collected by field survey or taken

from available GIS or map data. The directional 

parameters (azimuth φ, and the zenith angle θ ) are 

computed by converting the direction vector of the 

line into spherical coordinates. Further the positional 

coordinates (x
o,

y
o
) are determined and introduced into 

adjustment model for further computations as 

mentioned in the Equations 6 and 7. Each line has its 

orientation (azimuth and zenith) and gives different 

rotation matrices R
φ

. 

3.2 Geometrical Configuration

Different geometrical configurations are used to 

determine the exterior orientation of each simulated 

image and results are compared accordingly. Various

orientations in object lines configuration permit to 

analyze the behaviour of the computational model. 

Line configurations consist with dissimilar 

geometrical orientations of each other, for example, 

exact vertical lines, lines parallel to the X axis, parallel 

to the Y axis and slanted lines. It gives a platform to 

evaluate the contribution of the line geometry towards 

the accuracy in the process.

Four line configurations (A, B, C & D) as can be seen 

from above in object space are shown in Fig. 2 and 3

and are used for the computation. Line arrangement B 

and C are formed based on configuration A. A vertical 

line is denoted as a dot in Figures 2 and 3. The 

minimum of three lines with two points is sufficient to 

solve the exterior orientation parameters as described 

in Section 2.3. The line geometry B in Figure 2 (b)

shows almost the same orientation but with longer 

lines than A.

Figure 2: Line geometry A & B; (a) Configuration A 

includes four lines with different orientations; (b) 

Configuration B uses the same line orientation but 

longer lines.

(a) (b)



Figure 3: Line geometry C & D; (a) Configuration C 

includes 3 more lines than A & B, (b) Configuration D 

consists of arbitrarily collected lines with different 

orientations.

The major difference between configuration C and A 

is some additionally added short lines. Finally short

lines have been randomly selected and added in 

configuration D which is shown in Figure 3 (b).

4 RESULTS AND ANALYSIS

With noise free data the simulated exterior orientation 

parameters (1

0

, 1

0

, 3

0,

1150m, 1150m, 1500m) have 

been obtained for all configurations as expected. By 

adding small noise to the image coordinates of 

configuration A and B, corresponding deviations of 

the simulated parameters are observed which was to 

be expected. By increasing the number of points 

within the lines an improvement towards the simulated 

orientation parameters was expected because or the 

increased redundancy. The following table shows the 

estimated coordinates of the projection centre for 

configuration A.

Number of points per line

2 6 10 15 20

X
0

1149.5 1147.7 1149.7 1151.3 1151.5

Y
0

1149.7 1146.9 1149.3 1152.3 1152.0

Z
0

1497.7 1497.4 1500.4 1497.3 1501.1

Table 1. Estimated projection centre coordinates of 

configuration A for a different number of points per 

line.

Adding points within the lines leads to non-systematic 

deviations from the simulated coordinates of the 

perspective centre. A similar behaviour was observed

in the rotation parameters for the same line geometry. 

The lines of configuration B follow the same non-

systematic behaviour. Obviously the impact of the 

randomly generated noise on the orientation estimates 

was bigger than the accuracy improvement which was 

expected with increased redundancy.

The line configuration C shows a significant

improvement compared to the results of configurations

A and B. Seven lines with ten points for each line 

were used. Table 2 gives the results for the orientation 

parameters of line-based model. For comparison the 

results of the standard point based exterior orientation 

method are listed as well. The end points of each line 

are taken as the ground control points for the point 

based calculation. 

Line based

Method

Point based

Method

Observations  140 14

Unknowns 76 6

X
0

1149.947 m 1149.915 m 

Y
0

1150.030 m 1149.988 m

Z
0

1499.996 m 1499.982 m

ω 0.9994

0

1.0006

0

φ 0.9978

0

0.9984

0

κ 3.0000

0

2.9991

0

σ
0
(estimated) 5 µm 7 µm

Table 2. Exterior orientation parameters of 

configuration C calculated with the line based method 

and the point based method.

The estimated orientation parameters of configuration 

C are much better than those found for configurations 

A and B. The result obtained for line geometry D was 

quite similar to the result of configuration C. 

Surprisingly the line based method and the point based 

method lead to results with fairly similar quality.

From the results we can learn, that the quality of the 

estimated exterior orientation parameters depends on 

the geometry of the lines which are selected. The 

length of the lines seems to have no significant impact 

on the results found by comparing the results of A and 

B. The geometrical stability of the line constellation 

can be assessed using the condition number of the 

normal matrix of the adjustment model. The condition 

number of a matrix measures the sensitivity of the 

solution of a system of linear equations to errors in the 

data. With very high condition numbers the accuracy 

of the results from matrix inversion and the linear 

equation solution gets doubtful. 

Line Configuration

A B C D

Condition 

Number

2x10

12

3x10

10

4x10

8

6x10

8

Table 3. Condition numbers of line configurations 

with 2 points per line.

Table 3 reveals that extending the lines leads to an 

improvement of the condition number by a factor of 

100 if configurations A and B are compared. Another 

improvement by a factor of 100 is observed for line 

combinations C and D compared to B. This 

improvement indicates the higher geometrical stability 

obtained by adding additional lines to the 4 line 

configurations A and B. The condition number for the 

standard point based calculation with four points at 

corners is also in the order of 10

8

.

(a) (b)



5 CONCLUSIONS 

Single photo resection is performed successfully with

the 4-parametric line based model proposed by Schenk 

(2004) and compared with the traditional point based 

calculation. Investigations with configurations of only 

four lines showed that the length of the lines seems to 

have no significant impact on the results of the line 

based method. An improvement could also not be 

observed by using more points within the lines, e.g. 

ten instead of just two points per line. One of the 

reasons might be the weak condition number of the 

normal equation matrix (in the order of 10

9

or more) 

which has been observed for four lines configurations.

Experiments with different line configurations confirm 

that the quality of the estimated parameters depends

on the stability of the line geometry. A significant

improvement of the estimated orientation parameters 

was observed for the 7 and 8 line configurations

compared to the 4 line geometry. Somewhat 

unexpected was the result found by comparing line 

based and traditional point based solutions. The 

accuracy of the estimated parameters is only slightly 

better with the line feature based orientation than the 

standard point based method.

The 4-parametric representation has a potential to 

handle control lines irrespective of its orientation in 

the object space and this property encourages testing

the Aerial Triangulation with linear features.
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