
SEMI-AUTOMATIC LANDFORM MAPPING AT STEEP SLOPES

Martin Schneider und Reinhard Klein

University of Bonn
Institute of Computer Science II

Römerstrasse 164, 53117 Bonn, Germany
ms,rk@cs.uni-bonn.de

http://www.cg.cs.uni-bonn.de

KEY WORDS: semi-automatic segmentation, landform mapping, image matching, surface parameterization

ABSTRACT:

The traditional mapping on digital aerial photos and elevation models has its limits at steep slopes where the surface is only very sparsely
sampled even in high resolution data sets. As a consequence, there is too few information available to perform a detailed mapping. In
this paper we present a framework for augmenting terrain data with additional photos and show how to utilize this additional information
in the mapping process. The photos are matched to a textured elevation model by marking correspondence points through a simple
point-and-click interface, which are then used to solve for the camera projection matrix. To compensate for different lighting conditions
during acquisition, a histogram matching is applied in order to align the color distributions of the photo and the data set. The photos are
rendered onto the terrain using projective texture mapping. If multiple overlapping photos are available, the best views are determined
and blended together to avoid visible seams. The photos are incorporated into the segmentation process by computing a patch-wise,
adaptive parameterization of the terrain geometry which defines a mapping of the surface into the plane with minimized distortion. The
resulting image patches are connected appropriately at their boundaries and used as input for the segmentation algorithm.

1 INTRODUCTION

Landform mapping often serves as a basis for various kinds of
further investigations of an area at focus. Maps compile knowl-
edge on landforms, surface processes and surface materials that
have a widespread application in land management practices, nat-
ural hazard assessments or landform evolution studies. Tradi-
tionally, mapping is based on field work supplemented by the in-
terpretation of aerial photography and literature research. The
availability and usage of high resolution digital elevation models,
satellite and aerial images reduces the amount of time-consuming
and costly field work. Modern GIS tools facilitate the compila-
tion, production and distribution of maps by providing enhanced
digitizing tools, data layers, data base functions, symbol creation,
print and web publishing. However, most of the cartographic
features of GIS software are limited to a two-dimensional rep-
resentation of the base data. Although derivatives of the base
data (slope-, aspect- and curvature maps) can be used to enhance
the identification of objects, the natural three-dimensional human
perception of the landscape is disabled by the restriction to a fixed
viewpoint. In order to overcome these limitations semi-automatic
landform mapping tools were presented in (Schneider and Klein,
2006, Schneider and Otto, 2006) that are integrated in a 3d visu-
alization environment.
As a result of improved acquisition devices, aerial photography
and digital elevation models with a resolution up to a few meters
or even centimeters have become available. However, the reso-
lution specification is with respect to a surface perpendicular to
the acquisition direction, whereas the effective resolution of sur-
faces at oblique angles is much lower. Hence, the representation
of steep slopes, which are of great interest in many disciplines,
suffers from a sparse sampling. As a consequence, even in recent
high resolution data sets there is usually insufficient information
available in these areas to perform a detailed analysis or precise
mapping. In this paper we present a mapping framework that
gives the user the possibility to provide additional photos in or-
der to accomplish a selective increase of resolution in areas of
interest. The photos are matched to the textured elevation model

Figure 1: Segmentation performed on a textured elevation model
with the help of additionally matched photos.

interactively by marking corresponding points in the photo and in
the 3d environment, which allows solving for the camera matrix.
The photos are visualized by means of projective texture mapping
using the camera matrix resulting from the matching procedure.
In order to prevent a projection of a photo through geometry and
mapping it onto areas not visible from the calculated camera po-
sition, a shadow mapping algorithm is used to handle visibility.
Since the terrain data and photos were probably acquired at differ-
ent times and under different illumination conditions, a histogram
matching algorithm is applied to the photos in order to adapt their
color histograms to the data set’s histogram. Additionally, deter-
mining the best available views for every surface point and blend-
ing them together helps to avoid visible seams between them.
The mapping algorithm, that originally only operates on the aerial
photography and elevation data, is extended to incorporate the
additional information supplied with the input photos (see Figure
1). For this purpose, we adaptively parameterize the terrain ge-
ometry on a per-patch basis. The parameterization defines a map-
ping of the surface to the plane optimized for area and, as much

Figure 2: The bottom row shows a screenshot of the textured elevation model (left), with a photo mapped on it (middle) and with
applied histogram matching and blending (right). The top row shows close-ups of the corresponding views below.

as possible, angle preservation, which results in a nearly uniform
sampling of the surface. The segmentation algorithms can then be
performed on these image patches. The patch boundaries have to
be connected appropriately to assure smooth transitions between
them.
The presented tools specifically target the mapping of geomor-
phological objects but are not limited to them. As a proof of
concept we matched several photos to a HRSC (High Resolution
Stereo Camera) data set of Turtmann valley (Switzerland) and
used the revised mapping tools to map objects at steep slopes.

2 PREVIOUS WORK

Semi-automatic segmentation techniques provide high efficiency
and accuracy by allowing users to do the object recognition and
letting computers capture the fine details. These methods can
basically be divided into region-based and boundary-based ap-
proaches.
Boundary-based methods cut out an object by allowing the user
to surround its boundary with an evolving curve. The user traces
along the object boundary and the system optimizes the curve in
a piecewise manner. One well-known group of boundary-based
techniques are those based on Intelligent Scissors (Mortenson and
Barrett, 1995, Falcâo et al., 1998). Intelligent Scissors is a highly
interactive tool which formulates the boundary detection prob-
lem in an image as a shortest path search in graph. While these
tools provides highly interactive visual feedback once all short-
est paths have been computed, it is time-consuming to recompute
them especially when the image is large. Therefore, several at-
tempts (Mortenson and Barrett, 1999, Falcâo et al., 2000, Wong
et al., 2000, Kang and Shin, 2002) were presented that aim at in-
creasing the efficiency of the boundary construction by restricting
the search domain.
Region-based methods on the other hand work by allowing the
user to give loose hints as to which parts of the image are fore-
ground or background without the need to fully enclose regions.
An underlying optimization algorithm extracts the actual object
boundary based on the provided user input. In the seminal work
(Boykov and Jolly, 2001) a graph cut optimization was used for
this purpose. Since then, many approaches were published (Li

et al., 2004, Rother et al., 2004) that extended and improved the
original method, while others aimed at further accelerating the
graph cut (Lombaert et al., 2005, Juan and Boykov, 2006).
In (Schneider and Klein, 2006, Schneider and Otto, 2006) two
semi-automatic segmentation method were integrated into a 3d
environment and applied to textured elevation data to allow land-
form mapping in 3d. Since these tools use out-of-core and hier-
archical techniques they perform interactively even on very large
data sets. Unfortunately, the methods do not allow a precise land-
form mapping at steep slopes due to the sparse sampling of the
surface inherent in the aerial photography.

3 PHOTO MATCHING AND RENDERING

3.1 Matching

The task of matching a photo to a textured digital elevation model
can be formulated as estimating the camera projection matrix
which is known as resectioning. Given sufficiently many cor-
respondences between world and image points the camera matrix
can be determined from them by using the Gold Standard algo-
rithm (Hartley and Zisserman, 2004). In our framework we let
the user select appropriate correspondence points in the supplied
photo and in the 3d the terrain through a simple point-and-click
interface.
Given the point correspondences between 2d image points xi and
3d world pointsXi, a camera matrix P is estimated that maps the
Xi onto the xi, i.e. PXi = xi. Since P is a 3×4 matrix with 11
degrees of freedom, 11 equations are needed to solve for it. Be-
cause each point correspondence results in two equations at least
6 correspondences are needed. Given the minimum number of
correspondences an exact solution can be found by organizing the
equations in a matrixA and solving forAp = 0, where p contains
the entries of the camera matrix. If 6 or more points are provided,
there is no exact solution and the maximum likelihood estimate
of P is determined. To this end, the image points xi as well as
the world points Xi are normalized using similarity transforma-
tions T and U , respectively. Then, a linear solution is computed
using the Direct Linear Transformation (DLT) algorithm which

computes the camera matrix as the unit singular vector of A cor-
responding to the smallest eigenvalue. This linear result is then
used as input for the non-linear minimization of the geometric er-
ror
∑
i ‖xi − PXi‖

2 with the Levenberg-Marquardt algorithm.
Lastly, the camera matrix P of the original points is computed
in a denormalization step from the estimated camera matrix P of
the normalized points as P = T−1PU .

3.2 Rendering

Rendering the photographs on the terrain can be performed using
projective texture mapping (Segal et al., 1992). Projective texture
mapping is directly applicable to image-based rendering because
it simulates the inverse projection of taking photographs with a
camera and can be thought of as replacing the camera with a slide
projector that projects the original photo back onto the terrain. In
order to perform projective texture mapping, the estimated cam-
era matrix is used to calculate the texture coordinates for each ver-
tex by multiplying its 3d position with it. Since projective texture
mapping does not automatically perform visibility tests, a photo
will project through any geometry and be mapped onto polygons
that are not visible from the camera’s point of view. Thus, vis-
ibility information needs to be explicitly computed when using
projective texture-mapping. While such occluded regions could
be determined using object-space visible surface or image-space
ray casting algorithms, we apply an image-space shadow map al-
gorithm (Williams, 1978). To this end, we once render the scene
from the camera’s point of view in an offscreen buffer and store
the depth values in a depth map. During rendering each fragment
is transformed to the camera’s coordinate system and its depth
value is compared to the corresponding value in the depth map.
If the depth value stored in the depth map is smaller than the depth
value of the current fragment, it is not visible from the camera’s
point of view and therefore rejected.
In general, a photograph will only contain a part of the object of
interest. Thus, it is usually necessary to combine multiple over-
lapping images in order to render the entire object at increased
resolution. Consequently, some parts of the object are covered
by only one while others might be covered by several photos. If
a surface point is contained in multiple images, the renderer has
to decide which image or combinations of them to use. What
is more, the images will usually not agree perfectly in the over-
lapping areas due to different lighting conditions, non-lambertian
reflection or unmodeled geometric detail in the terrain surface.

3.3 Histogram matching

To account for the different color distributions in the data a his-
togram matching is applied, which adapts the distribution of color
values in the photo to that of the aerial photography. We use
the histogram matching proposed in (Reinhard et al., 2001) that
transfers the color characteristics from a source to a target image.
In our case the target images are the input photos. The corre-
sponding source images are created by rendering the scene from
the previously computed camera’s point of view corresponding to
that photo.
In this algorithm the rgb values of the source and target image are
first transformed into the orthogonal lαβ color space. Since the
axes in the lαβ space are decorrelated, different operations can
be performed on the different color channels independently with-
out introducing cross-channel artifacts. Since we want to transfer
some properties of the distribution of color values from the source
to the target image, mean µs, µt and standard deviation σs, σt are
computed for both. Then, each color value in the target image is

Figure 3: A square screen pixel that covers a curved surface has
a curvilinear quadrilateral preimage in texture space called foot-
print. This footprint can be approximated by a parallelogram.

transformed as follows

l′ =
l − µlt
σlt

σls + µls

α′ =
α− µαt
σαt

σαs + µαs

β′ =
β − µβt
σβt

σβs + µβs .

After this transformation the resulting color values in the target
image have a mean and standard deviation conform to that of the
source image. Finally, the color values are converted back to rgb.
The quality of the result of the algorithm depends on the simi-
larity in composition of the source and target image. Since in
our case source and target image show the same scene from the
same viewpoint, they are usually identical in composition and the
algorithm produces satisfying results.

3.4 Blending

Although histogram matching helps to adapt the photos to the
data set and each other, they still do not match perfectly in the
overlapping regions and at the borders. Using only a single view
at every pixel means that neighboring pixels may be sampled
from different original photos, which can cause visible seams in
a rendering. To account for this, transitions are smoothed by per-
forming a weighted averaging of the best available views. Com-
puting the corresponding weighting factors based on the angle be-
tween surface normal and acquisition direction alone, completely
ignores the resolution of the photos. Instead, we compute for each
pixel a blending factor wf by estimating the area of the footprint
of this pixel (see Figure 3). The footprint is the preimage of the
pixel in the photo and its area is thus a measure of how much in-
formation the photo contains about this part of the surface. The
footprint can be approximated by a parallelogram spanned by the
vectors

fx =

(
∂u
∂x
∂v
∂x

)
and fy =

(
∂u
∂y
∂v
∂y

)
,

consisting of the partial derivatives of the texture coordinates u
and v in x and y direction. The area of the footprint is then com-
puted as wf = |fx × fy|. Even with this weighting, neighboring
pixels can still be sampled from different views at the boundaries
of a projected image, because the contribution of an image has
to be zero outside its boundary. To address this, pixel boundary
weightswb are introduced that are 1 in the image’s center and fall
off towards the border. The final weight b for an image’s pixel is
then computed as w = min (wf , wb) v, where v is a visibility
term that is 0 if the fragment is not visible from the camera’s
point of view and 1 otherwise. The final color is then computed
as a weighted sum of the pixels with the largest blending factors
w. Although this method does not guarantee smooth transitions
in all cases, it proved to eliminate most artifacts during rendering
in practice.

4 REVIEW OF PREVIOUS SEGMENTATION
METHODS

In this section we will shortly review the preliminary work (Schnei-
der and Klein, 2006, Schneider and Otto, 2006) the presented
framework is build upon. In that work traditional mapping tools
were extended by integrating semi-automatic segmentation tools
in a 3d visualization environment. This combination allows a
real-time exploration of the terrain and marking of objects of in-
terest at the same time. By navigating in the 3d environment,
landforms can be inspected from arbitrary views, which helps the
user to identify objects of interest. The user is able to perform the
mapping of an object in this 3d environment by simply marking
it directly on the terrain surface. The tools simplify the mapping
of objects because they demand only loose mouse gestures as in-
put, indicating the approximate position of the object. In contrast
to common manual mapping, which is tedious and time consum-
ing, this results in reduced user input without sacrificing accuracy.
The two tools presented are a boundary-based approach based on
Intelligent Scissors and a region-based approach using a graph cut
optimization. Both were optimized to work on a quadtree repre-
sentation of the data. The base level of the quadtree contains the
original data partitioned into equally sized square tiles. Tiles on
higher levels of the hierarchy are created by merging 2× 2 from
the next lower level and downsampling them by a factor of 2.
The quadtree data structure allows to efficiently handle out-of-
core data sets since it provides fast access to spatial subparts of
the data set at different levels of detail.

4.1 Intelligent Scissors based segmentation

The Intelligent Scissors based segmentation algorithm formulates
the boundary detection problem as an optimal path search in a
graph. The objective is to find the optimal path from a seed node
to a destination node where pixels in the image represent nodes
with directed and weighted edges connecting its eight adjacent
neighbours. An optimal path is defined by the minimum cost
path, i.e. a path with the smallest sum of edge costs. Since a
shortest path in the graph should correspond to an object bound-
ary in the image, pixels with strong edge features in the image
should lead to low local costs in the graph and vice-versa. Hence,
local costs are created as a weighted sum of the edge features.
Despite the fact that the Intelligent Scissors technique provides
a powerful tool for image segmentation its speed and memory
consumption constrain its feasibility when large data sets need
to be processed. Since in the case of terrain data usually very
large data sets must be processed, the direct application of the
original Intelligent Scissors approach is not possible. In order
to ensure interactive response even on very large data sets the
quadtree data structure is exploited in two ways: Localizing the
search domain within a quadtree level and employing a multilevel
banded heuristic to exploit the hierarchical structure. Localizing
the search domain means to search for a shortest path only in a
restricted area around the user input. The search domain is incre-
mentally extended based on the user input and necessary parts of
the data set are loaded from disk and corresponding edge features
are computed on-the-fly. As a result only a very small subset of
the whole data set has to be held in memory while the majority
resides on disk. The multilevel banded heuristic starts the seg-
mentation on a coarser level and propagates the result to the next
higher resolution level where the segmentation is performed only
within a narrow band surrounding the projected result from the
coarser level. This procedure is repeated until the highest resolu-
tion level is reached.

4.2 Graph cut based segmentation

The graph cut based algorithm formulates object extraction as a
binary labeling problem which assigns to each node p in a graph,
i.e. pixel, a unique label xp ∈ {foreground, background}. The
solution X = {xp} can be obtained by minimizing a Gibbs en-
ergy (Geman and Geman, 1984)

G(X) =
∑
p

R(xp) + λ
∑
(p,q)

B(xp, xq).

R(xp) is the likelihood energy that encodes the cost when the la-
bel of node p is xp, i.e. it encodes the likelihood that the pixel
belongs to the foreground or background. The likelihood is es-
timated as the color similarity of the pixel’s color to the color
distribution of the areas marked by the user as foreground and
background. The prior energy B(xp, xq) denotes the cost when
the labels of adjacent nodes p and q are xp and xq , respectively.
B is defined as a function of the color gradient between the two
nodes. In other words, B is a penalty term when adjacent nodes
are assigned with different labels. The more similar the colors
of the two nodes are, the larger is B, and thus the less likely the
edge is on the object boundary. The influence of the region and
boundary terms is controlled by the weighting factor λ. Decreas-
ing λ leads to more complex and longer boundaries and generally
increases the number of resulting objects, especially small ones.
The energy function G(X) is minimized using the max-flow al-
gorithm presented in (Boykov and Kolmogorov, 2001) which is
especially designed for vision problems.
Since it is crucial to generate the object boundary with very lit-
tle delay, a multilevel banded heuristic (Lombaert et al., 2005)
is applied to reduce both running time and memory consump-
tion of the graph cut optimization. The procedure is similar to
the heuristic proposed to accelerate the Intelligent Scissors based
approach.

5 REVISED SEGMENTATION ALGORITHM

A limitation of all segmentation tools working solely on aerial
photography and elevation data is that they cannot be used to per-
form a reasonable mapping at steep slopes due to lack of data in
these areas. Therefore, we revise our segmentation algorithms to

Figure 4: An example of a surface geometry patch (top). The
corresponding textured projections into the plane using the com-
puted parameterization and a photo (bottom left) and using or-
thogonal projection and the aerial photography (bottom right).
Corresponding areas are marked by red ellipses demonstrating
the irregular sampling of the surface in the air photo.

be able to incorporate the information contained in the matched
photos in addition to the aerial photographs. To this end, we have
to find a suitable mapping of the surface into the plane. For an in-
finitesimal small surface patch a projection to its tangential plane
defines a perfect mapping. In contrast to that, parameterizing the
terrain surface as a whole introduces noticeable distortions. As
a reasonable compromise we apply an adaptive, i.e. distortion-
controlled, parameterization of the terrain surface in a prepro-
cessing step. For this purpose, we start on the finest level of the
quadtree and parameterize each patch in it. Then, we recursively
merge and parameterize neighboring 2× 2 tiles until the the dis-
tortion imposed by the parameterization exceeds a given thresh-
old.

5.1 Parameterization background

A parameterization of a surface can be viewed as a one-to-one
mapping from a suitable domain to the surface. These surfaces
are usually represented by triangular meshes and the mappings
are linear over the triangles. Parameterizations almost always in-
troduce distortion in either angles or areas. Most applications de-
mand parameterizations that minimize these distortions in some
sense. Many different ways of achieving this have been proposed
in the literature. A comprehensive survey of local parameteriza-
tion methods can be found in (Floater and Hormann, 2005).
Given an orientable 2-manifold surface patch S ⊂ Rk a parame-
terization is defined as a homeomorphism

φ : Ω ⊂ R2 → S

(u, v) 7→ φ(u, v)

from the parameter space Ω into S. In the following we consider
the problem of finding a parameterization for a set S that has a
triangulation MS = {[1 . . . n] , T, (pi)i=1...n}. Furthermore, we
require the inverse parameterization φ−1 to be linear within the
triangles of MS . Such a mapping is uniquely determined by its
values ((ui, vi))i=1...n := (φ−1(pi))i=1...n on the mesh ver-
tices and MΩ = {[1 . . . n] , T, ((ui, vi))i=1...n} is a parameter
domain triangulation for the image φ−1(S). The inverse param-
eterization φ−1 maps vertices and faces of MS onto vertices and
faces of MΩ respectively.

5.2 Parameterization of geometry patches

Many parameterization methods demand the boundary mapping
to be fixed in advance and map to convex polygons which may
be sufficient or even desirable for some applications. In our case
it would be advantageous because fixing the boundary vertices
and mapping to a square would result in patches with coinciding
borders. However, such restrictions usually introduce additional
distortion. For the sake of quality we decided to use a param-
eterization method that does not constrain the boundary. This,
however, comes at the cost of having to handle patch borders ap-
propriately, since they do not match.
We use the parameterization presented in (Degener et al., 2003)
to parameterize each surface geometry patch in the quadtree rep-
resenting the data set. The algorithm quantifies angle and global
area deformations simultaneously and lets the user control the rel-
ative importance between them through a parameter. We choose
this parameter in order to obtain a parameterization that is opti-
mized for a uniform sampling of the surface.
A 2d image of the patch can then be created by rendering the ge-
ometry of the patch where its 2d texture coordinates are used as
vertex positions (see Figure 4). The corresponding texture coor-
dinates for accessing the photo are computed by multiplying the
original vertex position with the camera matrix. Since the sur-
face geometry patches in our data set contain usually about up

Figure 5: Surface patches S (top) and their respective domains
Ω (bottom). Projecting the surface into the domain results in ar-
bitrarily shaped patches (grey). Note that neighboring patches
have common borders, which allows transitions from one patch
to another.

to a thousand vertices, parameterizing a patch with the aforemen-
tioned algorithm might take up to about several seconds. Because
of this, we perform the parameterization in a preprocessing step,
store the texture coordinates on disk and load them on demand.

5.3 Handling patch borders

The border of neighboring patches that were not parameterized
together do not have the same borders in the parameter domain
and therefore demand a special handling. Given a point ti in the
parameter domain Ωi at the border of patch i, we want to find its
neightbor tj in the parameter domain Ωj of the adjacent patch j
(see Figure 5). Since ti is a border vertex it is located on an edge
and can therefore be represented as the linear combination of its
edge vertices. Assuming the edge vertices are ti,0 and ti,1 then
ti can be expressed as

ti = λiti,0 + (1− λi)ti,1.

Since the parameterization is linear over the triangles, we can
transform it into Si as

φi(ti) = λiφi(ti,0) + (1− λi)φi(ti,1)

= λipi,0 + (1− λi)pi,1 = p.

Since neighboring geometry patches have common boundaries
we can write p as a linear combination of vertices in Sj

p = λjpj,0 + (1− λj)pj,1

Again using the linearity condition we can transform the result to
the parameter domain by applying φ−1

j . Then, the corresponding
point tj in Ωj can be computed as

tj = λjφ
−1
j (pj,0) + (1− λj)φ−1

j (pj,1).

However, in the discrete case a pixel in the texture represents an
interval in the domain Ω. That means that we map an interval on
the border of Ωi to an interval on the border of Ωj which must
not necessarily have the same length. Consequently, we have no
longer a one-to-one mapping of border pixels but a one-to-many
mapping. This does not affect the segmentation algorithms, since
they do not demand a fixed number of neighbors per node or a
grid graph. The mapping functions φ and φ−1 can be efficiently
implemented as a lookup table by rendering the geometry color
coded with texture coordinates as vertex coordinates and vertex
coordinates as colors for φ and vice-versa for φ−1.

Figure 6: Segmentation result performed on a matched photo.

For both algorithms image features, like image gradients, have
to be computed that serve as edge costs in the graph. Apply-
ing filter kernels to the created image patches to compute them
leads to biased results at the borders due to missing information
from neighboring patches. To this end, we parameterize geome-
try patches that slightly overlap, so that the overlap is at least as
big as half the size of the used filter kernel. Proceeding this way
the introduction of artifical edges at the borders is avoided.

6 RESULTS AND CONCLUSION

To assess the usability of our system, we first reparameterized and
then mapped several photos to an HRSC-A data set of Turtmann
valley in Switzerland. The data set covers an area of about 200
km2 and has a resolution of 1m for aerial photography as well as
elevation data. Unfortunately, the HRSC-A data does only con-
tain a red channel that is shifted to near-infrared, which is why
the data set’s color look, despite postprocessing, somewhat un-
natural. An additional difficulty is that the used photos were ac-
quired during summer when snow was only present at the highest
mountains, while the data set was generated late in the year with
snow also in lower-lying areas. This presents a challenge for the
histogram matching and blending because images acquired under
completely different conditions have to be combined. Neverthe-
less, the results look convincing in most parts (see Figure 2).
Augmenting a textured elevation model with additional photos
drastically enhances its visual quality and information content.
Especially the in the aerial photography only sparsely sampled
steep slopes benefit from the additional information and their res-
olution can be increased by orders of magnitude, which is a re-
quirement for a detailed landform mapping in these areas. Figure
1 and 6 show segmentation results at steep slopes using infor-
mation from matched photos. Moreover, photos can not only in-
crease resolution but contain information of parts of the surface
that might be hidden or not clearly visible in the aerial photog-
raphy due to snow or shadows, for example. Additionally, other
segmentation methods working on aerial photography and eleva-
tion data can benefit from the proposed parameterization as long
as they can handle arbitrarily shaped image patches.

REFERENCES

Boykov, Y. and Jolly, M.-P., 2001. Interactive graph cuts for op-
timal boundary & region segmentation of objects in n-d images.
Proceedings of ICCV 1, pp. 105–112.

Boykov, Y. and Kolmogorov, V., 2001. An experimental compar-
ison of min-cut/max-flow algorithms for energy minimization in

vision. Energy Minimization Methods in Computer Vision and
Pattern Recognition pp. 359–374.

Degener, P., Meseth, J. and Klein, R., 2003. An adaptable sur-
face parametrization method. The 12th International Meshing
Roundtable.

Falcâo, A. X., Udupa., J. K. and Miyazawa, F. K., 2000. An ultra-
fast user-steered image segmentation paradigm: live wire on the
fly. IEEE Transactions on Medical Imaging 19(1), pp. 55–62.

Falcâo, A. X., Udupa., J. K., Samarasekera, S., Sharma, S.,
E., B. and Lotufo, R., 1998. User-steered image segmentation
paradigms: live wire and live lane. Graphical Models and Image
Processing 60, pp. 233–260.

Floater, M. S. and Hormann, K., 2005. Surface parameterization:
a tutorial and survey. Advances in Multiresolution for Geometric
Modelling pp. 157–186.

Geman, S. and Geman, D., 1984. Stochastic relaxation, gibbs dis-
tributions, and the bayesian restoration of images. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 6, pp. 721–
741.

Hartley, R. I. and Zisserman, A., 2004. Multiple View Geometry
in Computer Vision. Second edn, Cambridge University Press,
ISBN: 0521540518.

Juan, O. and Boykov, Y., 2006. Active graph cuts. IEEE confer-
ence on Computer Vision and Pattern Recognition.

Kang, H. W. and Shin, S. Y., 2002. Enhanced lane: interac-
tive image segmentation by incremental path map construction.
Graphical Models 64(5), pp. 292–303.

Li, Y., Sun, J., Tang, C.-K. and Shum, H.-Y., 2004. Lazy snap-
ping. ACM Transaction on Graphics.

Lombaert, H., Sun, Y., Grady, L. and Xu, C., 2005. A multilevel
banded graph cuts method for fast image segmentation. Proceed-
ings of ICCV pp. 259–265.

Mortenson, E. N. and Barrett, W. A., 1995. Intelligent scissors for
image composition. SIGGRAPH 95 Proceedings pp. 191–198.

Mortenson, E. N. and Barrett, W. A., 1999. Toboggan-based in-
telligent scissors with a four parameter edge model. Proceedings
of IEEE Computer Vision and Pattern Recognition 2, pp. 452–
458.

Reinhard, E., Ashikhmin, M., Gooch, B. and Shirley, P., 2001.
Color transfer between images. IEEE Computer Graphics and
Applications 21(5), pp. 34–41.

Rother, C., Kolmogorov, V. and Blake, A., 2004. Grabcut - in-
teractive foreground extraction using iterated graph cuts. ACM
Transaction On Graphics 23(3), pp. 309–314.

Schneider, M. and Klein, R., 2006. A multilevel banded intel-
ligent scissors method for fast segmentation in large virtual ter-
rains. II International Conference Remote Sensing Archaeology.

Schneider, M. and Otto, J.-C., 2006. A new semi-automatic tool
for 3d landform mapping. 9th International Symposium on High
Mountain Remote Sensing Cartography.

Segal, M., Korobkin, C., van Widenfelt, R., Foran, J. and Hae-
berli, P., 1992. Fast shadows and lighting effects using texture
mapping. Proceedings of the 19th annual conference on Com-
puter graphics and interactive techniques pp. 249–252.

Williams, L., 1978. Casting curved shadows on curved surfaces.
In SIGGRAPH 78 pp. 270–274.

Wong, K. C., Heng, P. A. and Wong, T. T., 2000. Accelerating
intelligent scissors using slimmed graphs. Journal of Graphic
Tools 5(2), pp. 1–13.

