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ABSTRACT: 
 
Using high-resolution remotely sensed imagery to timely detect distribution and expansion of residential area is one of most 
important jobs of national 1:5 spatial database updating. In view of complicated spatial characters of residential area and working 
disable of current automatic interpretation methods based on spectral features on high-resolution remotely sensed imagery, a 
classifier based on Gaussian Mixture Model (GMM) of texture is proposed. The combination of co-occurrence texture features 
(contrast, entropy, mean, standard deviation and correlation included) and edge density are used to substitute for spectral features as 
classification features. A mixture density function is employed to represent classes’ distribution in texture spaces. And residential 
areas are extracted through the classification based on GMMs obtained through estimating using Expectation Maximum (EM) 
algorithm. The proposed method is examined by an IKONOS panchromatic imagery. 
 
 

1. INTRODUCTION 

Residential area occupies a relatively small portion of earth 
surface, but their exact extent, distribution and expansion have 
a great concern for governors and planers. In a rapid 
development region such as eastern china, timely updating 
spatial database that adequately reflect the change and 
expansion of residential area is widely recognized as one of the 
most challenging tasks for an operational GIS (Gu et al., 2005). 
Remotely Sensed data provide an efficient source of 
information for detecting and monitoring the change of 
residential area, especially when images with high-resolution 
(e.g. IKONOS, SPOT5 and QuickBird) become readily 
available (Jensen and Cowen, 1999; Zhang et al., 2002; Tatem 
et al., 2004).  
 
However, with the increase of spatial resolution, between-class 
spectral confusion and within-class spectral variation were 
found to increasing for land cover/land use studies (Barsley and 
Barr, 1996; Shaban and Dikshit, 2001; Coburn and Roberts, 
2004). It is impossible to define a spectral homogeneous class 
as ‘residential area’ (Zhang et al., 2002). Thus, current 
automatic interpretation methods assume that different surface 
materials have different spectral characteristics which work 
well on medium-low spatial resolution multi-spectral remotely 
sensed data lost its efficiency on high-resolution remotely 
sensed imagery (Barnsley and Barr 1996; Zha et al., 2003; 
Shackelford et al., 2003).  
 
As more and more studies have addressed that the incorporation 
of spatial information in image classification procedures 
improves image classification, especially high-resolution PAN 
image are used (Guindon, 2000; Shackelford et al., 2003; 
Coburn et al., 2004). Karathanassi et al. (2000) classified built 
areas into high, medium and sparse density based on statistical 
measurement of texture using SPOT panchromatic remote 
sensing images. Shaban and Dikshit （2001） improved the 
classification in urban areas by use of texture features. 
Hofmann (2001) combined spectral and textural features to 

extract residential area by using eCognition software. Statistical 
information of imagery was used in all above research, but 
structural information was overlooked. Zhang et al. (2003) 
performed a supervised classification based on a single 
Gaussian probability function based classifier using statistical 
and structural texture features when study of urban spatial 
patterns from SPOT panchromatic imagery.  
 
A single Gaussian probability function based classifier 
assuming that the distribution of residential area in texture 
spaces is mono-modal. But in fact, it is poorly approximated 
using single Gaussians (Ünsalan, 2004) for different residential 
area in the same image may have different texture distribution. 
In this condition, a single Gaussian distribution fails to describe 
the probability function of residential area in texture spaces. 
 
GMM is a type of density model which comprises a number of 
component Gaussian functions. These component functions are 
combined with different weights to result in a multi-model 
density. Indeed, if one is allowed an arbitrary number of 
components, any continuous density function of residential 
class can be approximated to any desired accuracy. In this paper, 
a mixture model of texture for extracting residential areas from 
high-resolution remotely sensed imagery is proposed. The 
following sections are organized as follows: section 2 
introduces the extraction of texture features. Section 3 presents 
classification method of GMM of texture. Section 4 gives 
experiments and evaluates the extraction method. Finally, 
conclusions are given in Section 5. 
 
 

2. TEXTURE MEASUREMENTS  

The Haralick grey-level co-occurrence matrix is one of the most 
popular second-order statistics for texture processing (Coburn 
and Roberts 2004). Haralick and Shanmugam (1973) suggested 
fourteen textural features describe some characteristics of 
texture based on co-occurrence matrix are computed. Among 
the fourteen textural features, eight ones are mostly used in 
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remote sensing imagery analysis: contrast, homogeneity, 
correlation, entropy, dissimilarity, asymmetry, mean and 
standard deviation. For details about the GLCM method refers 
to Haralick et al. (1973).  
 
Bayer (2000) divided these eight features into three groups: the 
‘contrast’ group (Contrast, Dissimilarity and Homogeneity), the 
‘orderliness’ group (Asymmetry and Entropy) and the 
‘descriptive statistics’ group (Mean, Standard deviation and 
Correlation). The texture features in contrast group are 
correlated with each other, so are the features in the orderliness 
group.  
 
This research investigates the significance of GLCM in 
measuring textures of three typical kinds of Chinese residential 
areas in high-resolution remotely sensed imagery. Nine usual 
land cover types were selected: new urban residential area, old 
urban residential area, rural residential area, water, grass land, 
wood land, road, bare farmland and bare land.  
 
Figure 1 presents three texture features (Contrast, Dissimilarity 
and Homogeneity) of nine land cover types in contrast group. It 
is easy to found all three textures can reflect the contrast 
property of land cover. From the statistical results, it can be 
concluded that new urban residential area, road, rural residential 
area, old urban residential area and wood land have more 
contrast surface and water, grass land, bare farm land and bare 
land have relatively homogeneous surface. For three texture 
features are correlated with each other, contrast was selected to 
measure contrast of surface of residential area because that both 
three kinds of residential areas have the highest value, water 
and grass land have zero value in contrast space. 
 
 

 
 
 
 
 
Figure 2 shows two texture features (Asymmetry and Entropy) 
of nine land cover types in orderliness group. All three kinds of 
residential areas have less order or uniform surface, wood land 
and road have medium uniform surface, and water, grass land, 
bare farm land and bare soil have uniform surface. For the 
correlation of two features, entropy was selected to measure 
orderliness of surface of residential area. 
 
 

 
 
 
 
 
Figure 3 indicates other texture features based on GLCM: mean, 
standard deviation and correlation. Mean feature reflect the 
bright degree of land cover in imagery. It can be found that all 
three kinds of residential areas have higher mean values than 
other land cover except bare land. This is somewhat similar to 
what we see by eyes. Residential areas have larger standard 
deviation values and smaller correlation values proved that 
pixels in this areas more discrete and less dependent. 
 
 

 
 
 
 
 
 
Based on above statistics and analysis, all texture features based 
on GLCM can describing some texture characters of residential 
area in high-resolution remotely sensed imagery from different 
aspect. In order to describe residential area from different 
aspects, this study selects contrast, entropy, mean, standard 
deviation and correlation instead of spectral signatures to act as 
classification features.  
 
However, GLCM texture features cannot reflect edge 
information of residential area which is important for human 
eyes. Edge density is added to complement GLCM. Edge 
density extracted from SPOT XS imagery has been used to 
improve urban land use classification (Gong and Howarth 1990). 
In this study, for simplification, edge density was produced 

Figure 1 Contrast statistics of nine land cover types in 
high-resolution remotely sensed imagery 

Figure 2 Orderliness statistics of nine land cover types in  
high-resolution remotely sensed imagery 

Figure 3 Other textures statistics of nine land cover types 
in high-resolution remotely sensed imagery 
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through two steps. Firstly, edge detection by Canny edge 
detection operator (Canny, 1986) is performed which will 
produce a binary edge map coded as ‘1’ and ‘0’, with ‘1’ 
representing edge pixels. Secondly, the count of edge pixels 
(pixel value is coded as ‘1’) appear in a certain window is act as 
the edge density in this local region. Fig. 4 shows edge density 
statistics of nine land cover types. And it can be clearly seen 
that residential areas have larger edge density value. 
 
 

 
 
 
 
 
 

3. THE CLASSIFICATION METHOD BASED  
ON GMM OF TEXTURES 

Since textures are available, we have to combine this 
information by using a GMM joint probability density function 
of texture measures for which enables one texture measure to 
support the other one if it becomes unreliable due to 
environmental changes. 
 
3.1 GMM of Textures 

Given texture vector is denoted as { , , }1 2,x x x xn=  

where n is the dimension of the feature vector, in this paper n 
equals to 6. We model the distribution of all samples by the 
following formula: 
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Where ( )p xi is a normal PDF which is a component of the 

GMM. It is parameterized by a mean vector iμ , and a 
covariance matrix i∑ :  
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iω is the weight of the component ( )p xi , 0 1 iω< < for all 

components, and 1iω =∑ . iλ is the parameter vector of 
component i  and will be estimated through given training data., 

( , , )i i i iλ ω μ= ∑ . M is the number of mixture components. 

And ( , , ) { , , | }1 i MM i i iλ λ λ ω μ= = ∑ ∈ . Mixture model 

(1) is called the Gaussian Mixture Model (GMM). 
 
In this study, two classes were defined: residential class and 
background class. Therefore, two GMMs need to be constructed: 
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Where formula (3) is GMM of residential class and formula (4) 
is GMM of background class. rλ and bλ are corresponding 

parameter vectors. 
 
3.2 Estimation of Parameters of GMM 

Parameters of GMM model are estimated from training samples 
for which we know the classes. Maximum-likelihood (ML) 
estimation and Bayesian estimation are commonly used 
approaches. While there are strong theoretical and 
methodological arguments supporting Bayesian estimation, in 
practice the ML estimation is simpler and, when used for 
designing classifiers, can lead to classifiers nearly as accurate 
(Paalanen et al., 2005). Many implementation issues support the 
selection of maximum-likelihood estimation.  
 
The expectation maximization (EM) algorithm is an iterative 
method for calculating maximum likelihood distribution 
parameter estimates from incomplete data (elements missing in 
feature vectors) (Bilmes, 1997). The algorithm can also be used 
to handle cases where an analytical approach for maximum 
likelihood estimation is infeasible, such as Gaussian mixtures 
with unknown and unrestricted covariance matrices and means. 
Although the EM algorithm has some limitations (e.g. it is not 
guaranteed to converge to a global rather than a local maximum 
of the likelihood), it is generally efficient and effective for the 
parameters’ estimation of GMM. 
 
EM algorithm is involving two steps: E-step and M-step. For a 
GMM and a feature vector { , , }1 2,x x x xN= , suppose that 

( )tλ denotes the estimation of λ obtained after the t th 
iteration of the algorithm. Then at the ( 1)t+ the iteration, the E-
step calculates the expected sample data log-likelihood function 
 
 

( ) ( )( , ) {log ( | } ( | ; }
1 1
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Where ( )( | ; )tP m xk λ  is a posterior probability and is computed 
as 

Figure 4 Edge density statistics of nine land cover 
types in high-resolution remotely sensed imagery
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The M-step finds the ( 1)t+ th estimation ( 1)tλ + of λ by 

maximizing ( )( , )tQ λ λ  
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Check for convergence of the resulting log likelihood function 
(5) or a ‘sufficiently small’ change in the estimated parameters. 
If convergence is reached, then stop. Otherwise, repeat. 
 
3.3  Classification Based on GMMs 

As soon as the distributions and the associated parameter 
vectors of residential class and background class are known. 
Then the classification is performed based on Bayesian decision 
theory. An unlabeled pixel is assigned the class according to 
posterior probabilities or decision risks (10) 
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4. EXPERIMENTS AND RESULTS 

4.1 Test Site and Image Data 

The proposed method was evaluated by Wangjing District 
which is located in the north-east fringe of Beijing City. It is 
one of the biggest residential districts of Beijing city with a 
population over 120 thousands. It is experiencing rapid 
development with the increasing expansion of Beijing city. In 
the past, it was rural area. Most people lived in Chinese style 
courtyard houses- bungalows with small yard. With the 
development of urbanization, a lot of people working in 
downtown of Beijing City chose to install their houses in this 
places. A lot of new medium to high-rise residential and/or 
office buildings were recently built up. Some are still under 
construction. IKONOS Panchromatic imager acquired on 26 
April 2001was used for it is the highest resolution images 
available for us. Samples of different types of residential area 

contained in three test sites were also magnified for authors to 
have a clear seeing, respectively. 
 
 

 

 
4.2 Extraction of Texture Features 

To compute second-order statistical features (entropy, 
dissimilarity, mean value, standard deviation and correlation) 
from a grey level co-occurrence matrix, firstly the quantization 
level (QL) of images was reduced to 5 bits (grey level 0-31). 
The reason for reducing QL was that most of the texture 
features are calculated by forming a matrix, the order of which 
is dependent on the QL of the image and this is expensive to 
store and process (Shaban and Dikshit, 2001). Marceau et al. 
(1989) have also shown that QL is not significant in affecting 
texture classification accuracies. The QL for test images, 
therefore, reduced to 5 bits for computing texture feature only 
by following a histogram equalization procedure explained by 
Haralick et al. (1973). Secondly for a trade-off between our 
ability to discriminate classes and the accuracy of boundary 
estimation, the window size 13*13 was used as window unit to 
compute texture values of a pixel. Thirdly the distance metric is 
setting to 1 pixel according to the observations (Rosenfeld, 
1982). Finally the mean value of texture features in four 
principal directions, horizontal, vertical, right-diagonal and left-
diagonal, was calculated and used as a texture feature (Haralick 
et al. 1973). The computation of edge density is also based on 
the same window unit. 
 
4.3 The Estimation of Models’ Parameters 

To ensure better estimation of models parameters of residential 
area and background, sufficient training data were selected from 
test sites. Training sample set of residential area should include 
as many representative types as possible residential area in the 
test sites. Training sample set of background should include all 
kinds of land cover types of background such as bail soil, water, 
grass, threes and roads. Both samples were generated from 
contiguous groups of pixels belonging to distinct land cover 
classes. They were extracted manually with the help of 
IKONOS on the false color composite imagery. The training 
samples of residential class were 394615 pixels and those of 
background class were 398028 pixels. 

Figure 5 A sub-scene of Wangjing District 
(2719*2449 pixels) 
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Before the estimation of model’s mixture parameters, the 
number of mixture components should be set. In order to find 
the best number of mixture components, a set of number 8, 16, 
32, 64, 128, 256 and 512 were used to estimate the model’s 
mixture parameters by training samples and extract residential 
area. And accuracy assessment was also made for each result. 
Relationship between number of mixture components and 
accuracy was presented in Figure 6. Accuracy of each test site 
improved greatly at with the increasing of number of mixture 
components until 256. When number is set to 512, the accuracy 
made little improvement compared to the accuracy of 256. 
Therefore, mixture parameters of all GMM models in this paper 
are set to 256. The mixture parameters of the models were 
obtained under the condition of 256 mixture components and 
training samples. 
 
 

 
 
 

 
 
4.4 Classification Results and Accuracy 

We extracted residential areas from the image based on the 
method proposed above (Figure 7). In order to compare the 
performance of the proposed GMM method, the texture images 
were also classified using a single Gaussian based classifier. 
Table 1 presents the accuracy assessments and comparison of 
two classifiers. It can be seen that the accuracy based on GMM 
method is significantly higher than that based on a single 
Gaussian method. 

 
 

 
 

 
 
 

 GMM based 
classifier 

Single Gaussian 
based classifier

Residential area
PA 
UA 

 
77.82% 
72.14% 

 
69.57% 
61.54% 

Background 
PA 
UA 

 
75.50% 
80.67% 

 
62.96% 
70.83% 

OA 76.53% 66.22% 
Kappa 0.63 0.32 

PA: Producer’s accuracy   UA: User’s accuracy 
OA: Overall accuracy 

 
Table1 Classification accuracy  assessments and comparison of 

GMM based classifier and single Gaussian based classifier 
 
4.5 Post Processing of Classified Residential Data 

In the classification results, those pixels have high texture 
values in background class such as edges of roads, barren land 
and noise were likely to classified to residential class which 
made “salt and pepper” in the background. And at the same 
time, these land cover types in residential area were classified 
as the background class which made the residential area 
classified seemed fragmented. For this reason, post-
classification based on mathematical morphological operation 
was implemented through three steps. The first step is to 
remove small parts and filling small holes by combination of 
erosion and dilation operations. The second step is to smooth 
residential area’s boundaries. There are a lot of spurious peaks 
and pits of the boundaries of residential area. Opening operator 
removes small “necks” that connect larger regions, and the 
smaller spurious regions. Closing operator was used to remove 
the spurious pits. The third step is to implement area filtering 
and big holes filling. In this step, all connected components 
(objects) that have fewer pixels than threshold were removed. 
And holes inside residential area smaller than pre-defined 
threshold were also removed. 
 
In order to make the classification results can be used to update 
GIS database, we converted the raster binary classification 
results into vector polygons through operators provided by 
ERDAS 8.6. For a clear eye seeing, we overlay vector results to 
corresponding image and it is shown in Figure 8. It can be seen 
that most residential area were extracted and their shape kept 
correctly. 
 
 

5.  CONCLUSIONS 

This paper developed an extraction method of residential area 
from high resolution remotely sensed imagery using 
classification based on GMM of texture. Texture derived from 
GLCM: contrast, entropy, mean, standard deviation and 
correlation and edge density were selected to measure texture of 
residential area in high resolution remotely sensed imagery. 
GMM is used to instead of traditional single Gaussian model in 
classification procedure. 
 
The method proposed in this research was tested over IKONOS 
panchromatic imagery. It can be found higher extraction result. 
And the overlay of vector polygons obtained from extraction 
results with original images also showed that the approach 
works well on extraction of complicated residential area from 
high spatial resolution remotely sensed image. 

Figure 7 Residential extraction result of 
Wangjing District by GMMs 

Figure 6 Relationship between number of  
mixture components and accuracy 
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As present, experiments are being conducted to apply the 
method on IKONOS PAN imagery. This research needs to be 
tested in other environment. In the following studies, 
multispectral information will also be added to obtain a better 
result. 
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Figure  8  Overlay of vector polygons of 
residential areas extracted with original image 


