

ISPRS Workshop on Service and Application of Spatial Data Infrastructure, XXXVI(4/W6), Oct.14-16, Hangzhou, China

 289

A LARGE-AREA TERRAIN SIMULATION ON PC

Chaoqun Wang a, Lingkui Meng a, Zhiyong Lin a

a School of Remote Sensing Information Engineering Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
wcq671@163.com, lkmeng@public.wh.hb.cn, zhy_lin@263.net

KEY WORDS: Large-area terrain, Simulation, Vega Prime, OpenGL, Grid stacks, Kalman filter

ABSTRACT:

This paper presents a general architecture of the large-area terrain simulation system based on a single processor PC. It provides
methods of modeling, management and dynamic scheduling for large-area terrain, achieving a balance between image quality and
real-time rendering. The Grid stacks methods are developed to manage the database. The AOI approach has been developed to
dispatch the database dynamically in the browse. The kalman filter approach has been developed to forecast the observer’s position
to improve the fluency of the browse. The implementation is based on OpenGL, and the technology is based on MultiGen-Paradigm
Vega Prime platform, which provide a developer interface for a special system.

1. FOREWORD

In the recent years, with the computer science’s development,
especially the PC, the application of the visual simulation is
becoming more and more popular. As an important part of
visual simulation, the large-area realtime 3D terrain simulation
is the base of the computer simulation, such as city design and
planning, GIS (geographic information system) and battlefield
training. The paper introduces an approach of large-area terrain
visual simulation based on PC.

2. OVERALL STRUCTURAL DESIGN

2.1 System Function

1. Complex large-area realtime 3D terrain databases.
2. A number of simulation entitles are included.
3. User can change the pan formats and the viewpoint freely.
4. A good user’s interface.

2.2 System Hardware and Software

Computer configuration: Inter Pentium 4, 1.8GHz, 512 RAM,
60GB HD, GeForce 4 MX 440 Graphics Card.
Operating system: Windows 2000 Professional or Windows XP.
Software developing platform: Microsoft VC++ 6.0, Vega
Prime and OpenGL
Modeling tool: CTS (Creator Terrain Studio).

2.3 System Structural

Figure 1. System structural

Figure 1 depicts the overall system structure. A description of
the functionalities of its components follows:

(1) 3D terrain database: this is the most important data in the
system. It is the base of the other function and application. It
includes terrain data and scenery data. The terrain data come
from the DEM and the scenery data come mainly from the
culture feature data and attribute data.

(2) 3D entity model: simulation entities and geographical data.
Those entities can be having various computational models
conducting different types of activities, such as tanks firing,
aircraft bombing craters.

(3) Display module: usually, displaying per-frame include three
parts: Application, Cull and Draw. In the Application, after
loading the data, the module accepts the all kind of parameters,
such as view point, angle of view. In the Cull, the module
traverses the data, and finds the visibility data. In the Draw, the
module draws the visibility data, making it into a frame, and
pulls the frame into the frame buffer.

(4) 3D terrain adm module: in order to improve the quality,
efficiency and lower cost, the 3D terrain administering module
is developed to administer and dispatch terrain patches. The
main idea is to forecast the visibility terrain patches and only to
load the patches.

3. MODELING, ADMINISTERING AND
DISPATCHING THE 3D DATABASE

3.1 Modeling the 3D Database

We mainly use CTS to build the 3D database. They are maked
up of three parts (Figure 2).
Figure 2 depicts the overall process of modeling the 3D
database. A description of the functionalities of its components
follows:
(1) CTS reads gridded elevation data that are in the following
formats: DEM, DED. CTS tessellates the elevation data using
either the Polymesh or Irregular Mesh algorithm that you
specify. You can design the tiles and triangle spacing for your

3D model database

3D terrain
database

3D entity model

3D simulation
platform
Display
module

3D terrain
adm module

ISPRS Workshop on Service and Application of Spatial Data Infrastructure, XXXVI(4/W6), Oct.14-16, Hangzhou, China

 290

needs. Since CTS is output oriented, you define the desired
tiling and triangle sampling of the output that the CTS
tessellators build. CTS creates an OpenFlight file for each
terrain tile.

Figure 2. Flow chart of building the database

(2) A virtual texture is a tiled multi-layered (MIP-mapped)
image, which can be geo-referenced. The highest resolution tiles
are displayed when the observer is close to the terrain on which
the virtual texture is mapped; lower-resolution tiles are
displayed when the observer is farther away. The goal in
generating a virtual texture is to make the transitions between
the high resolution imagery and lower resolution imagery as
visually seamless as possible. To support this goal, the Image
Tools allow you to Blend and Feather the image.

 (3) In CTS, Project Culture converts and tessellates point,
linear, and areal features from source files into 3D models. The
feature data can be either in MultiGen DFD or ESRI shapefile
format and be included in a vector grid dataset. (To convert
existing DFD data to shapefile format, use the Convert Vector
tool.) The 3D models are then projected onto the terrain.

3.2 Data Administering

If you've used Levels of Detail (LOD) for models, you know the
advantages of displaying the right amount of visual information
to the observer based on the observer's distance from a model.
We’ve used Grid stacks for the models. Grid Stacks apply the
LOD concept to textures, elevation data, and vector feature data.
Grid Stacks are created for a specific area block in a terrain. As
the observer approaches the area block, higher LODs replace
lower LODs until the highest level of detail is displayed.

With Grid Stacks, the terrain can consist of many layers, each
with its own data. Each layer is divided into cells along lines of
latitude and longitude. As the observer moves across the terrain
during runtime, the cells are “paged” into memory as needed,
which ensures efficient rendering times. This concept of Virtual
Textures (which are called clip maps on some high-end SGI
workstations) maps imagery data, such as a satellite image,
across the entire terrain skin as a single “virtual” texture. The
terrain is then divided into cells small enough to page into
memory as needed during runtime.

Grid Stacks extend this idea of Virtual Textures to include not
only Imagery data but all the data in a simulation. Each level
contains all the vector features, imagery, and terrain data for a
given amount of detail. There is usually more than one level for
each cell, so that more detail is visible as you approach an Area
of Interest. A landing strip, for example, would display its
highest level of detail closest to the landing strip, where detail is
visible to observers when the aircraft is taking off or landing.
With a Grid Stack, it is easy to coordinate the textures, elevation
data, and vector features for each level of the landing strip.

Figure 3. Grid stacks

Figure 3 depicts Grid stacks. The Grid stack is divided into
levels. Each level has cells that have a 1 to 4 relationship with
adjacent levels. For example, here Level 0 has one cell, Level 1
has four cells, Level 2 has 16 cells, and Level 3 has 64 cells.
Each level (except Level 0) has “parent cells” and may have
“child cells”. Collectively, these levels and their relationship are
referred to as a “Grid Structure”.

3.3 Dispatching the 3D Database

3.3.1 AOI: Generally, a terrain database has a lot of data, and
so the computer can’t load all the data to the memory. 3D
terrain adm module must dynamically dispatch the patches of
the database and only keep the AOI (Area of Interesting) in the
memory. With the area of interest analysis, different patches of
a terrain can be compared. The patches including the areas of
interesting will load into the memory, and when the patches in
memory not including areas of interesting, they will be thrown
from memory.

Figure 4. Display the patches

Observer’s position

Display patches at the
a position before the
moving

Display patches at the
b position before the
moving

Observer’s position

Matching the image to terrain

Observer’s
position

Building
*.flt of
terrain

Dealing
with the
image

Kings of
vector file

Shapefile of
point, line
and polygon

Projecting the objects to the terrain and making
the MateFlight

Building
virtual
texture

ISPRS Workshop on Service and Application of Spatial Data Infrastructure, XXXVI(4/W6), Oct.14-16, Hangzhou, China

 291

As can be seen from the Figure.4, when an observer is moving
out of a patch it is currently on, some patches are swapped from
the corresponding display database and then the new display
patches will be loaded into the memory. Thus, the number of
patches in the display database remains the same and the
observer will always be on its center patch.

3.3.2 Forecast the Observer’s Position: If knowing the
observer’s moving way or the other useful information, we can
forecast the next position of observer. And so we find an
approach to improve the implementation of dynamically
dispatching. We can load the patches of AOI before the
observer’s moving into some patches, which can make the
simulation system run more fluently and higher efficiently. In
the system, we use the kalman filter to forecast the observer’s
position.

The Kalman filter estimates a process by using a form of
feedback control: the filter estimates the process state at some
time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall
into two groups: time update equations and measurement update
equations. The time update equations are responsible for
projecting forward (in time) the current state and error
covariance estimates to obtain the a priori estimates for the next
time step. The measurement update equations are responsible
for the feedback—i.e. for incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori estimate.
The time update equations can also be thought of as predictor
equations, while the measurement update equations can be
thought of as corrector equations. Indeed the final estimation
algorithm resembles that of a predictor-corrector algorithm for
solving numerical problems as shown below in Figure 5.

Figure 5. The ongoing discrete Kalman filter

Discrete Kalman filter time update equations.

11ˆˆ −−
− += kkk uxAx (1)

QAAPP T
kk += −

−
1 (2)

where kx̂ = the state at the step k

 u = the process noise
−

kP = the a priori estimate error covariance

kP = the a posteriori estimate error covariance

Q = the process noise covariance
The nn× matrix A in the difference equation (1) relates the
state at the previous time step k-1 to the state at the current step
k, in the absence of either a driving function or process noise.

Please notice how the time update equations 1, 2 project the
state and covariance estimates forward from time step k-1 to
step k.
Discrete Kalman filter measurement update equations.

vHxz kk += (3)
1)(−−− += RHHPHPK T

k
T

kk (4)

)ˆ(ˆˆ −− −+= kkkkk xHzKxx (5)
−−= kkk PHKIP)((6)

where kz = the measurement
 v = the measurement noise
 R = the measurement noise covariance

The nm× matrix H in the equation (4) relates the state to the

measurement kz . In practice H might change with each time
step or measurement, but here we assume it is constant.
The nm× matrix K in (4) is chosen to be the gain or
blending factor that minimizes the a posteriori error

covariance kP . The process noise and measurement noise are
assumed to be independent (of each other), white, and with
normal probability distributions.
Above the five equation, kx , kz , A , H denote as fallows:

[]Tkckckckck yyxxx)()()()(ˆ &&=

[]Tkckck yxz)()(=



















∆

∆

=

1000
100

0010
001

t

t

A 







=

0100
0001

H

where t∆ = the interval between the step k-1 with the step k.

4. COMBINING VEGA PRIME AND OPENGL

As a current simulation platform, Vega Prime doesn’t support
many special functions, such as drawing pipe-thread. In order to
achieve those kinds of functions, we use OpenGL in Vega
Prime. Four key points in it follows:
(1) How to use the OpenGL in Vega Prime? In Vega Prime,
vsChannel defines the draw function as callback. Default
function is provided which perform basic functionality,
however, the user is free to override the function as desired.
And so we can draw the special scene by OpenGL in the
function. The signature for the function is defined below:
DrawFunc —uint (*)(const vsChannel *, vrDrawContext *).

Time Update
(“Predict”)

Measurement Update
(“Correct”)

ISPRS Workshop on Service and Application of Spatial Data Infrastructure, XXXVI(4/W6), Oct.14-16, Hangzhou, China

 292

(2) How to adjust the coordinate of OpenGL with the
coordinate of Vega Prime? We can see the coordinates of
OpenGL and Vega Prime in the Figure.6.

Notification for the projective transformation, we must make the
viewing volume of OpenGL equal with that of Vega Prime. For
instance, in Vega Prime, we use the function of
makeSymmetricProjection to set the projection matrix to a
matrix that describes the given symmetric viewing frustum. So
we can get the corresponding parameters (hfov, vfov, near, far)
by the two functions of getFOVSymmetric and getNearFar and
then apply the parameters to OpenGL.

Figure 6. Coordinates of OpenGL and Vega Prime

(3) In whichever OpenGL or Vega Prime, the observers must
have the same positions. That is, the two viewpoints overlap.
How to convert the viewpoint of OpenGL to that of Vega Prime?
In Vega Prime, we can use the function of getPosition to get the
observer’s position. And in OpenGL, we can place the observer
to the same position by the function of gluLookAt, which takes
an eye position, a position to look at, and an up vector.

(4) In order to use OpenGL in Vega Prime, the observers not
only have the same viewpoints but also have the same viewports.
How to convert the viewport of OpenGL with that of Vega
Prime? Resembling viewpoint, in Vega Prime, we can use the
function of getViewport to get the rectangular region of the
window to which to the image will be mapped. And in OpenGL,
we can transform from OpenGL coordinate to Vega Prime
coordinate system by calling the gluViewport function.

5. CONCLUSION AND FUTURE WORK

Based on the current software platform and tools, we have built
a large-area terrain visualization system on PC. Grid stacks
model has been developed to use the computer resource at the
most important fields in order that the simulation system has
better quality, higher efficiency and lower cost. A dynamic
dispatch model has been developed to administrate the database,
by which the performance of simulation system has no relation
with the area of terrain. A dynamic dispatch forecast approach
has been dreamed up to forecast the observer’s position, which
can improve the dispatch speed and make the browse more
fluently. Additionally, Combining Vega Prime and OpenGL is
the entrance to building a complex simulation system.

REFERENCES

Greg Welch. and Gary Bishop (1995)., An Introduction to the
Kalman Filter, University of North Carolina at Chapel Hill,
Department of Computer Science, Chapel Hill, NC, USA.
TR95-041.

Kalman R. E., 1960. A New Approach to Linear Filtering and
Prediction Problems, Transaction of the ASME—Journal of
Basic Engineering, pp. 35-45 (March 1960).

Larry S. Bonura., 2001. Vega Prime Programmer’s Guide
[M]MultiGen-Paradigm Inc

Larry S. Bonura., 2001. Vega Prime Desktop Tutor for
Windows 2000, Windows XP Professional Edition, Solaris 8.0,
and Red Hat 8.0 Linux [M]MultiGen-Paradigm Inc

Larry S. Bonura., 2003. Creator Terrain Studio Help
[M]MultiGen-Paradigm Inc

Larry S. Bonura., 2003. Creator Terrain Studio User’s Guide
[M]MultiGen-Paradigm Inc

Richard S. Wright. and Jr Michael Sweet., 2001. pp. 13-19, 52-
63.

Coordinate of OpenGL Coordinate of Vega Prime

