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ABSTRACT: 
 
This paper presents a general architecture of the large-area terrain simulation system based on a single processor PC. It provides 
methods of modeling, management and dynamic scheduling for large-area terrain, achieving a balance between image quality and 
real-time rendering. The Grid stacks methods are developed to manage the database. The AOI approach has been developed to 
dispatch the database dynamically in the browse. The kalman filter approach has been developed to forecast the observer’s position 
to improve the fluency of the browse. The implementation is based on OpenGL, and the technology is based on MultiGen-Paradigm 
Vega Prime platform, which provide a developer interface for a special system.  
 
 

1.  FOREWORD 

In the recent years, with the computer science’s development, 
especially the PC, the application of the visual simulation is 
becoming more and more popular. As an important part of 
visual simulation, the large-area realtime 3D terrain simulation 
is the base of the computer simulation, such as city design and 
planning, GIS (geographic information system) and battlefield 
training. The paper introduces an approach of large-area terrain 
visual simulation based on PC. 
 
 

2. OVERALL STRUCTURAL DESIGN 

2.1 System Function 

1. Complex large-area realtime 3D terrain databases. 
2. A number of simulation entitles are included. 
3. User can change the pan formats and the viewpoint freely. 
4. A good user’s interface. 
 
2.2 System Hardware and Software 

Computer configuration: Inter Pentium 4, 1.8GHz, 512 RAM, 
60GB HD, GeForce 4 MX 440 Graphics Card. 
Operating system:  Windows 2000 Professional or Windows XP. 
Software developing platform:  Microsoft VC++ 6.0, Vega 
Prime and OpenGL  
Modeling tool: CTS (Creator Terrain Studio). 
 
2.3 System Structural 

 
Figure 1. System structural 

Figure 1 depicts the overall system structure. A description of 
the functionalities of its components follows: 
 
(1) 3D terrain database: this is the most important data in the 
system. It is the base of the other function and application. It 
includes terrain data and scenery data. The terrain data come 
from the DEM and the scenery data come mainly from the 
culture feature data and attribute data. 
 
(2) 3D entity model: simulation entities and geographical data. 
Those entities can be having various computational models 
conducting different types of activities, such as tanks firing, 
aircraft bombing craters. 
 
(3) Display module: usually, displaying per-frame include three 
parts: Application, Cull and Draw. In the Application, after 
loading the data, the module accepts the all kind of parameters, 
such as view point, angle of view. In the Cull, the module 
traverses the data, and finds the visibility data. In the Draw, the 
module draws the visibility data, making it into a frame, and 
pulls the frame into the frame buffer. 
 
(4) 3D terrain adm module: in order to improve the quality, 
efficiency and lower cost, the 3D terrain administering module 
is developed to administer and dispatch terrain patches. The 
main idea is to forecast the visibility terrain patches and only to 
load the patches. 
 
 

3. MODELING, ADMINISTERING AND 
DISPATCHING THE 3D DATABASE 

3.1 Modeling the 3D Database 

We mainly use CTS to build the 3D database. They are maked 
up of three parts (Figure 2). 
Figure 2 depicts the overall process of modeling the 3D 
database. A description of the functionalities of its components 
follows: 
(1) CTS reads gridded elevation data that are in the following 
formats: DEM, DED. CTS tessellates the elevation data using 
either the Polymesh or Irregular Mesh algorithm that you 
specify. You can design the tiles and triangle spacing for your 
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needs. Since CTS is output oriented, you define the desired 
tiling and triangle sampling of the output that the CTS 
tessellators build. CTS creates an OpenFlight file for each 
terrain tile. 
 
 

 
 

Figure 2. Flow chart of building the database 
 

(2) A virtual texture is a tiled multi-layered (MIP-mapped) 
image, which can be geo-referenced. The highest resolution tiles 
are displayed when the observer is close to the terrain on which 
the virtual texture is mapped; lower-resolution tiles are 
displayed when the observer is farther away. The goal in 
generating a virtual texture is to make the transitions between 
the high resolution imagery and lower resolution imagery as 
visually seamless as possible. To support this goal, the Image 
Tools allow you to Blend and Feather the image. 
 
 (3) In CTS, Project Culture converts and tessellates point, 
linear, and areal features from source files into 3D models. The 
feature data can be either in MultiGen DFD or ESRI shapefile 
format and be included in a vector grid dataset. (To convert 
existing DFD data to shapefile format, use the Convert Vector 
tool.) The 3D models are then projected onto the terrain. 
 
3.2 Data Administering 

If you've used Levels of Detail (LOD) for models, you know the 
advantages of displaying the right amount of visual information 
to the observer based on the observer's distance from a model. 
We’ve used Grid stacks for the models. Grid Stacks apply the 
LOD concept to textures, elevation data, and vector feature data. 
Grid Stacks are created for a specific area block in a terrain. As 
the observer approaches the area block, higher LODs replace 
lower LODs until the highest level of detail is displayed.  
 
With Grid Stacks, the terrain can consist of many layers, each 
with its own data. Each layer is divided into cells along lines of 
latitude and longitude. As the observer moves across the terrain 
during runtime, the cells are “paged” into memory as needed, 
which ensures efficient rendering times. This concept of Virtual 
Textures (which are called clip maps on some high-end SGI 
workstations) maps imagery data, such as a satellite image, 
across the entire terrain skin as a single “virtual” texture. The 
terrain is then divided into cells small enough to page into 
memory as needed during runtime.  
 

Grid Stacks extend this idea of Virtual Textures to include not 
only Imagery data but all the data in a simulation. Each level 
contains all the vector features, imagery, and terrain data for a 
given amount of detail. There is usually more than one level for 
each cell, so that more detail is visible as you approach an Area 
of Interest. A landing strip, for example, would display its 
highest level of detail closest to the landing strip, where detail is 
visible to observers when the aircraft is taking off or landing. 
With a Grid Stack, it is easy to coordinate the textures, elevation 
data, and vector features for each level of the landing strip. 
 

 
 

Figure 3. Grid stacks 
 

Figure 3 depicts Grid stacks. The Grid stack is divided into 
levels. Each level has cells that have a 1 to 4 relationship with 
adjacent levels. For example, here Level 0 has one cell, Level 1 
has four cells, Level 2 has 16 cells, and Level 3 has 64 cells. 
Each level (except Level 0) has “parent cells” and may have 
“child cells”. Collectively, these levels and their relationship are 
referred to as a “Grid Structure”. 
 
3.3 Dispatching the 3D Database 

3.3.1 AOI: Generally, a terrain database has a lot of data, and 
so the computer can’t load all the data to the memory. 3D 
terrain adm module must dynamically dispatch the patches of 
the database and only keep the AOI (Area of Interesting) in the 
memory. With the area of interest analysis, different patches of 
a terrain can be compared. The patches including the areas of 
interesting will load into the memory, and when the patches in 
memory not including areas of interesting, they will be thrown 
from memory. 
 
 

 
 

Figure 4. Display the patches 
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As can be seen from the Figure.4, when an observer is moving 
out of a patch it is currently on, some patches are swapped from 
the corresponding display database and then the new display 
patches will be loaded into the memory. Thus, the number of 
patches in the display database remains the same and the 
observer will always be on its center patch. 
 
3.3.2 Forecast the Observer’s Position: If knowing the 
observer’s moving way or the other useful information, we can 
forecast the next position of observer. And so we find an 
approach to improve the implementation of dynamically 
dispatching. We can load the patches of AOI before the 
observer’s moving into some patches, which can make the 
simulation system run more fluently and higher efficiently. In 
the system, we use the kalman filter to forecast the observer’s 
position. 
 
The Kalman filter estimates a process by using a form of 
feedback control: the filter estimates the process state at some 
time and then obtains feedback in the form of (noisy) 
measurements. As such, the equations for the Kalman filter fall 
into two groups: time update equations and measurement update 
equations. The time update equations are responsible for 
projecting forward (in time) the current state and error 
covariance estimates to obtain the a priori estimates for the next 
time step. The measurement update equations are responsible 
for the feedback—i.e. for incorporating a new measurement into 
the a priori estimate to obtain an improved a posteriori estimate. 
The time update equations can also be thought of as predictor 
equations, while the measurement update equations can be 
thought of as corrector equations. Indeed the final estimation 
algorithm resembles that of a predictor-corrector algorithm for 
solving numerical problems as shown below in Figure 5. 
 
 

 
Figure 5. The ongoing discrete Kalman filter 

 
Discrete Kalman filter time update equations. 
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where    kx̂ = the state at the step k 

 u = the process noise 
−

kP = the a priori estimate error covariance 

kP = the a posteriori estimate error covariance 

Q   = the process noise covariance 
The nn×  matrix A in the difference equation (1) relates the 
state at the previous time step k-1 to the state at the current step 
k, in the absence of either a driving function or process noise. 

Please notice how the time update equations 1, 2 project the 
state and covariance estimates forward from time step k-1 to 
step k.  
Discrete Kalman filter measurement update equations. 
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where      kz = the measurement  
                 v  = the measurement noise 
               R  = the measurement noise covariance 
 
The nm× matrix H in the equation (4) relates the state to the 

measurement kz . In practice H might change with each time 
step or measurement, but here we assume it is constant. 
The nm× matrix K  in (4) is chosen to be the gain or 
blending factor that minimizes the a posteriori error 

covariance kP . The process noise and measurement noise are 
assumed to be independent (of each other), white, and with 
normal probability distributions. 
Above the five equation, kx , kz , A , H denote as fallows: 
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where   t∆ = the interval between the step k-1 with the step k. 
 
 

4. COMBINING VEGA PRIME AND OPENGL 

As a current simulation platform, Vega Prime doesn’t support 
many special functions, such as drawing pipe-thread. In order to 
achieve those kinds of functions, we use OpenGL in Vega 
Prime. Four key points in it follows: 
(1) How to use the OpenGL in Vega Prime? In Vega Prime, 
vsChannel defines the draw function as callback. Default 
function is provided which perform basic functionality, 
however, the user is free to override the function as desired. 
And so we can draw the special scene by OpenGL in the 
function. The signature for the function is defined below:  
DrawFunc —uint (*)(const vsChannel *, vrDrawContext *). 
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(2) How to adjust the coordinate of OpenGL with the 
coordinate of Vega Prime? We can see the coordinates of 
OpenGL and Vega Prime in the Figure.6. 
 
Notification for the projective transformation, we must make the 
viewing volume of OpenGL equal with that of Vega Prime. For 
instance, in Vega Prime, we use the function of 
makeSymmetricProjection to set the projection matrix to a 
matrix that describes the given symmetric viewing frustum. So 
we can get the corresponding parameters (hfov, vfov, near, far) 
by the two functions of getFOVSymmetric and getNearFar and 
then apply the parameters to OpenGL. 
 
 

 
Figure 6. Coordinates of OpenGL and Vega Prime 

 
(3) In whichever OpenGL or Vega Prime, the observers must 
have the same positions. That is, the two viewpoints overlap. 
How to convert the viewpoint of OpenGL to that of Vega Prime? 
In Vega Prime, we can use the function of getPosition to get the 
observer’s position. And in OpenGL, we can place the observer 
to the same position by the function of gluLookAt, which takes 
an eye position, a position to look at, and an up vector. 
 
(4) In order to use OpenGL in Vega Prime, the observers not 
only have the same viewpoints but also have the same viewports. 
How to convert the viewport of OpenGL with that of Vega 
Prime? Resembling viewpoint, in Vega Prime, we can use the 
function of getViewport to get the rectangular region of the 
window to which to the image will be mapped. And in OpenGL, 
we can transform from OpenGL coordinate to Vega Prime 
coordinate system by calling the gluViewport function. 
 

 
5.  CONCLUSION AND FUTURE WORK 

Based on the current software platform and tools, we have built 
a large-area terrain visualization system on PC. Grid stacks 
model has been developed to use the computer resource at the 
most important fields in order that the simulation system has 
better quality, higher efficiency and lower cost. A dynamic 
dispatch model has been developed to administrate the database, 
by which the performance of simulation system has no relation 
with the area of terrain. A dynamic dispatch forecast approach 
has been dreamed up to forecast the observer’s position, which 
can improve the dispatch speed and make the browse more 
fluently. Additionally, Combining Vega Prime and OpenGL is 
the entrance to building a complex simulation system. 
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