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ABSTRACT: 
 
An enhanced odometry method coupled with an inertial navigation sensor is introduced for skid-steered vehicle positioning in 
outdoor environments.  In the proposed scheme, robot positioning and attitude is estimated based on an experimentally derived 
kinematic model.  Besides, a low-cost INS unit is used to improve the quality of the rotational velocity of the robot as it is obtained 
by differential odometry.  It is concluded that a reliable positioning can be derived with the use of a comprehensive DIA procedure 
for outlier removal and the fusion of odometry with inertial data through a discrete Kalman filter.  The map-building component of 
the system is based on the integration of a pair of high sensitivity 2D laser scanners suitably mounted on the vehicle.  Finally, an 
optimum estimate of the robot position and attitude is derived through data fusion of the dead-reckoning and map-matching 
information.  The technique has been implemented on-board an experimental skid-steered vehicle in cases of extreme motion, 
including runs with steep turns and variable velocity. 
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1.  INTRODUCTION 
 

Reliable positioning is an essential component of any 
autonomous vehicle system.  In the case of a moving robot the 
navigation problem is usually termed as Simultaneous 
Localization and Mapping (SLAM).  In this problem, the 
mobile robot starts in an unknown position in an unknown 
environment and proceeds to incrementally build a navigation 
map of its surroundings while simultaneously use this map to 
update its position (Nebot, 2002; Bayout 2006).  There have 
been several applications of this technology in a number of 
different environments such as indoors, underwater and 
outdoors.  This study focuses in the semi-structured outdoor 
environment.  Known problems encountered in this 
environment relate to the fact that the ground surface is rarely 
clean and the distances and velocities are of higher order 
compared to the ones found indoors.  The surroundings are 
often not well defined and there are limitations imposed by 
topography and vegetation.  Most of the existing work in 
outdoor environments is based on the use of Extended Kalman 
Filter.  In this approach, the inherent state vector in most 
algorithms consists of the vehicle states (robot position and 
orientation) as well as of the feature states (point positions).  
The downside of this generalized approach lies in the large 
number of system states.  As the number of features grows with 
the area of operation, the standard filter computation becomes 
impracticable for real time applications. 
 
In this study, an alternative positioning and map-building 
methodology appropriate for skid-steered mobile robots is 
introduced.  Skid steered vehicles differ from explicit steering 
ones in the way that they turn.  The lack of steering wheel 

results in navigation that is determined by the speed change in 
either side of the skid steering vehicle.  As a result, terrain 
irregularities may cause unpredictable power requirements 
which, in turn, affect the kinematics of the vehicle (Doitsidis et 
al, 2002; Tao et al, 1999).  The navigation technique adopted in 
this study relies on dead-reckoning data derived by differential 
odometry and an inertial sensor as well as laser scanning 
observations.  As opposed to other techniques, the feature states 
are defined in the form of line segments – and thus, the number 
of states in the system is reduced which, in turn, makes the 
computational algorithm more efficient in the large scale 
environment.  The observations are fused using a modified 
Kalman filter that is based on the covariance intersection 
approach.  In this manner the computational steps are simple 
and fast, whereas the disadvantage of processing uncorrelated 
observations is mitigated.  The proposed method is assessed 
with real data collected for a number of field experiments. 
 
 

2.  PROBLEM FORMULATION 
 
The proposed algorithm works iteratively in a number of 
sequentially applied steps according to the layout diagram 
shown in Figure 1.  A first estimate of the robot’s position 
comes from fusion based integration using wheel-encoder and 
inertial data.  Next, a local visible map attached to the robot 
coordinate system is constructed based on laser scanning 
readings.  This information is coupled with the robot position to 
produce a visible global map of the vehicle’s surroundings.  As 
no absolute positioning systems assumed in this study, the 
global map refers to an arbitrary chosen space coordinate 
system – i.e., it does not relate to an earth centered earth fixed 



 

or map projection coordinate system.  Through map feature 
association between the currently visible portion of the global 
map and the global map obtained from previous iterations, a 
second estimate of the robot’s position is computed.  Finally, 
based on this estimate and the data from dead-reckoning an 
improved location of the robot and an updated version of the 
global map is produced based on the covariance intersection 
data filtering technique. 
 
 

             
Figure 1.  Proposed SLAM processing scheme 

 
 
2.1 Robot’s Positioning Based on Dead Reckoning 
 
2.1.1 Differential odometry:  In the case of explicit steering 
vehicles a differential odometer allows to derive distance and 
direction information from which the kinematics of the vehicle 
can be computed.  With vr and vl denoting the velocities 
measured by the right and left wheel encoders, the linear 
velocities ux, uy and the angular velocity ωODO are given by 
(Hofmann-wellenhof, 2003): 
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where l is the wheel separation (Figure 2).  In the case of skid 
steering, the motion is achieved by creating a differential thrust 
between the two sides of the vehicle – and thus, Equation 1 is 
not explicitly applicable.  To cope with this fact an 
experimentally derived kinematic model was adopted for the 
purpose of this study.  More specifically, a terrain-dependent 
relation between the linear and angular velocity of the robot and 
the velocities observed on the two sides of the vehicle was 
determined through extensive experiments on various terrains.  
For this purpose, a specially constructed trailer system was used 
to measure the linear and angular velocity of the robot for 
different trajectories.   The elements of matrix A that relates 
these velocity expressions for a specific type of terrain were 
computed based on linear regression analysis [Kyriakopoulos 
and Anousaki, 2004].  In algebraic notation the experimental 
kinematic model stands as: 
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with [ ]TODOyxODO ω u uu = ,  [ ]TlrODO u vv =  
 
2.1.2 Inertial positioning:  Since in this study it is assumed 
that absolute positioning (such that provided by GPS or other 
GNSS systems) is unavailable, a low cost inertial unit was used 
to aid robot odometry.  This system provides a complete suite 
of tri-axial accelerations and angular velocities.  However, due 
to the low dynamics associated with the robot performance and 
other factors relating to temperature induced bias, only the yaw 
angular velocity measurements were utilized.  More 
specifically, this type of low latency dynamic information was 
proved particularly useful where the wheel encoders failed.  A 
detailed analysis of the preliminary tests, the problems and the 
results concerned with the use of the INS system in this study 
are given in (Kyriakopoulos and Anousaki, 2004). 
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2.1.3 Fusion Based Integration:  A first estimate of the robot 
position is obtained by integrating odometry with inertial data 
by means of a Kalman filter.  In effect, dead-reckoning results 
in the following information for the robot kinematics: 
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It is assumed that these two estimates exhibit a Gaussian 
character.  However, their correlations are unknown and hence 
the Covariance Intersection (CI) filtering scheme is used for 
fusing the observations (Uhlmann and Julier,1997; Dissanayake 
et all, 2002).  The CI method is a sub-optimal covariance update 
technique that relies on the Kalman filter principle.  In fact, it 
provides a computationally efficient mechanism for data fusion 
but discards a considerable amount of information (albeit 
unknown) of the cross-correlations between the two robot 
position estimates.  According to this integration scheme the 
velocity of the robot uDR and its associated covariance matrix 

DRuC is computed as follows: 
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In Equations 5 and 6, ODOu , INSu and 

ODOuC , 
INSuC refer to the 

robot velocity estimates and their covariance matrices for the 
odometry and inertial data respectively.  According to the 
formulation of the CI filter the parameter ω (0≤ω≤1) is 
computed to minimize the size of the trace of the updated 
covariance matrix

DRuC .  Also, in order to improve to assure 
quality control the data are pre-filtered for outliers according to 
the equation: 
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where 2

INSωσ and 2
ODOωσ are the variances of the yaw angular 

velocity for the wheel encoders and the inertial system.  Finally, 
the robot position as derived from dead-reckoning is computed 
as follows: 
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where (-) and (+) denote the previous and current instant state 
and covariance matrix estimates and δτ is the time step.  Given 
the relatively low dynamic behaviour of the robot kinematics 
and the low operational frequency of the laser scanners a time 
step of ~0.4 sec was set to operate the Kalman filter. 
 

 
Figure 2.  Laser scanning observation layout 

 
2.2  Visible Map Construction 

 
As pointed out in Section 1, in this study the feature states 
which map the robot surroundings are defined in the form of 
line segments.  Thereby, a set of polar line parameters 

[ ]Tkkk b,al = , k=1, …, n and the coordinates of their starting 

and ending points [ ]Tstartkk y,x , [ ]Tendkk y,x  are computed in the 
robot coordinate frame.  This is performed in three subsequent 
steps.  Firstly, the feature coordinates [ ]Tii y,x for every 
observed point i are computed using the laser scanner raw 
observations.  As shown in Figure 2, the observed directions θi 
and distances ri are reduced to their respective values in the 
robot coordinate system φi and di as follows: 
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Figure 3.  Processing algorithm for line segmentation 
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points, each cluster containing a significant number of 
neighboring points.  In mathematical terms, this separation is 
obtained by applying the following formula on the reduced 
direction and distance measurements φi and di: 
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here the threshold values φmax and dmax are set equal to 20 cm 
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and 0.018 rads considering the robot size.  At a final stage, the 
data points that belong to every cluster are split in a number of 
line segments by applying the recursive line split method 
depicted in Figure 3.  Then, the data points that correspond to 
every line segment are regressed to compute the line parameters 

[ ]Tkkk y,xl = and their covariance matrix
klC . 

 
.3  Map Matching 

t this stage of the process the local visible map produced at the 
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A
previous computational step is transformed from the robot 
coordinate frame to the global map coordinate system.  
Coordinate systems transformation is achieved by applying a 
translation and a rotation on the line parameters of the local 
map using the robot position and orientation computed by   
Equation 8.  Thus: 
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here 
 
w L
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NEWl  denote the line parameters observed at the 

current epoch, expressed at the robot and global coordinate 
systems respectively and XDR denotes the robot states as 
computed from dead-reckoning.  The statistical significance of 
the map features obtained at the current epoch G

NEWl with 
respect to the map features obtained from previou ochs s ep

G
FIXEDl  is assessed by applying the χ2 distribution on the 

lanobis distance with two degrees of freedom at 90% 
confidence level.  This test reads as (Manly, 1994): 
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This testing procedure results in a subset I of the total number 
of line segments k that fulfills the criterion of Equation 15.  
Based on this information an improved estimate of the robot 
position XM is obtained by computing a translation and rotation 
set of parameters using the pairs of respective line parameters 

G
NEWl  and G

FIXEDl .  This is realized by minimizing the following 
criterion: 
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2.4  Robot Positioning and Map Construction Update 
 
In the final stage of the computing circle an improved estimate 
for the robot position and an updated version of the global map 
is computed.  In a similar manner to the data fusion approach 
detailed in Section 2.1.3, a CI Kalman filter is used to integrate 
the robot position derived from dead-reckoning XDR and from 
the map matching steps XM.  This is realized by: 
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where ζ (0 ≤ ζ ≤ 1) is a weighting factor that is computed to 
minimize the trace of the updated covariance matrix. 
 

 
Figure 4.  Experimental setup 

 
Finally, based on the improved robot position estimate the 
global map is updated.  The process differs for the line 
segments constructed in previous iterations and for those 
constructed for a first time in the current epoch.  Previously 
constructed line segments are incorporated in the global map by 
applying Equation 14 in the improved robot position which is 
given by Equation 17.  These, are statistically examined as 
explained in Section 2.3 and selectively merged in the global 
map.  Finally, the newly constructed line segments are 
introduced into the global map for use in the next iteration after 
they have been updated by applying the improved robot 
position on       Equation 14.  
 
 

3.  EXPERIMENTAL EVIDENCE 
 
3.1 Mobile Robot and Navigation Sensors 
 
The experimental system that was used to test the proposed 
algorithm is shown in Figure 4.  It consists of the mobile robot 
Pioneer 2-AT made by Activmedia.  It is a four wheel, 
differently steered vehicle that is primarily designed to operate 
in the outdoor environment.  It bears two optical encoders at the 
front which measure the rotation of the wheels at both sides of 
the vehicle.  Data manipulation and recording was 
accomplished with the help of an onboard computer provided 
by Octagon, running Linux.  Data communication was done 
serially, whereas the operation of the vehicle was accomplished 
via a wireless LAN system. 
 
Vehicle navigation and area mapping were performed using the 
robot encoders, a low cost inertial navigation sensor and the 
laser scanners.  The inertial unit is a DMU-HDX system 
manufactured by Crossbow.  It is based on MEMS technology 
and incorporates three accelerometers (± 2Gs) and three gyros 
(200 deg/sec).  As shown in Figure 4, two SICK LMS-200 laser 
scanners were fixed on the top of the vehicle providing a 360 
deg azimuthal coverage.  They operate at 2.5 Hz, while their 
operational range can reach 8 m with an angle increment            
of 0.5 deg. 
 

 
Figure 5.  Robot navigation and mapping solution 

 

3.2 Data Analysis and Results 
 
In order to test the feasibility of the algorithm in terms of 
correctness and computational efficiency a number of 
experiments were conducted.  These, include runs on different 
terrains and for varying trajectories.  In this article only 
summary results are discussed for a limited number of test runs.  
The data were collected at a parking area featuring buildings on 
its surroundings.  Figure 5 shows the robot navigation and 
mapping solution derived at the three stages of the applied 
algorithm – i.e., the robot odometry, the map matching and the 
final robot position.  The first thing to note from this plot is that 
odometry, if used alone, deviates considerably from the actual 
robot path.  The same conclusion is evident from the robot 
azimuth estimates shown in Figure 6.  This phenomenon is 
mainly due to wheel skidding at sharp curves.  Examination of 
Figure 5 in more detail shows that the map matching solution 



 

produces a relatively spiky solution.  This is due to the 
differences in the feature locations computed at subsequent 
epochs.  However, the robot trajectory derived after the 
covariance intersection filtering has been applied is rather 
continuous and smooth.  Finally, despite the fact that the map 
estimate is a clear representation of the robot surroundings, a 
large number of overlapping segments is evident.  It is 
anticipated that, if a high pass filter is applied at the stage of 
line formation, a sharper outline of the map features will be 
produced. 
          

 
Figure 6.  Robot orientation 

 
 

4.  CONCLUNDING REMARKS 
 

Extended tests undertaken under various terrain and robot 
operating conditions have shown that the system can produce 
satisfactory results.  More specifically, the maximum errors 
observed in the robot navigation solution are 0.1 m and 3 deg.  
Also, the accuracy of the final map is of the order of 0.04 m 
with respect to the robot position.  These figures were overall 
verified using conventional geodetic techniques of a higher 
accuracy. 
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