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ABSTRACT:

Integration of INS and GPS is necessary for comtirsugeoreferencing in Mobile Mapping (MM); improvethematical models,
such as tightly coupled solutions, make very dffitiuse of the available information, especiallthyoor GPS solutions. However,
experience shows trajectory errors still ariseddfa from the two system components do not agnee/tiatever reason, deciding
which data is wrong may not be easy and dependitenimplementation. The availability of data froother sensors can help to
identify the erroneous data source. In this paps,of photogrammetry to verify the consistencEBS/INS data is proposed.

First, the GPS-aided inertial navigation solutionplemented is introduced, discussing its extensmmphotogrammetry-aided
solution. Some reliability tests are reviewed. Hinahe concept and implementation details of atomatic procedure providing a
photogrammetric check of the GPS/INS data is deedriln short, the idea is rather simple: to comphe image locations of a set
of object points, computed from the stereo patimag t, with those of the same points projected on thagies att;, based on the
exterior orientation computed by the navigatiorutoh at time ;.

Although no test of the method has been made ygereence shows that tracking points on the roathse in MM image
sequences is feasible; implementation details ¢ake of redundancy as well as of speed of computaith principle the check can

be applied to every consecutive pair of the seqeienc

1. INTRODUCTION

1.1 Mobile Mapping Vehicles

Mobile Mapping Vehicles (MMVs) are used to georefere
data acquired by different sensors along roads toer
surroundings.

The survey missions of MMVs fall in two main areaf
application, to a large extent overlapping. Thestfiis data
collection for the population or the updating ofoad cadaster
database or a urban GIS; in this case geometricafntute
data about the road infrastructure but also abast i
surroundings area of interest are collected. Theorsd
normally of interest to road and traffic departnsentich are
responsible for road maintenance and road safetycentrates
more on the state of the road surface (frequendysererity of
potholes, cracks, degree of surface roughness)erQfisues
concerning safety (such as driving comfort, vigipitlistances),
as well as the impact on the environment (pollutod noise
level due to traffic on nearby buildings, etc.) cha also
relevant to a survey mission.

From a functional standpoint, a MMV hosts a Poaitig and
Orientation System (POS), which provides navigatiata, and

a Data Acquisition System, which manages the omeboa
sensors; both have their storage and power reqeiesmand
must be synchronized to allow for data georeferemci

Today's MMVs are designed to acquire data at opeyapeed
around 50-80 km/h; data georeferencing is achievitid an
on—board POS, typically composed by an INS andarmaore
GPS receivers, providing the position of the bogstem with

respect to a mapping reference system and itstatien with
respect to a local level system at high frequed®@{200 Hz).
Geodetic-like antennas with optical gyroscopes wibdating
accelerometers are actually the most used configardn most
cases, a Distance Measuring Instrument (DMI) is altegrated
in the POS, either as a support to navigation a$ ageto
provide a coarse georeferencing in terms of lingiatances
along the road, useful for operational purposes.

Active on-board sensors depend on the task; norntiady

_include one or several digital cameras; laser ss@nmvith

different speed, operating range and accuracy ds® a
increasingly used. Image data are mostly collettedetrieve
geometric information by photogrammetry; carefukiga of
image resolution, frame rate, focal lengths, plas@mand
orientation of cameras should ensure stereo coeecddghe
corridor of interest of the survey. Besides, ott@neras may be
mounted for specific purposes, such as crack detedmage
processing techniques can also be used to autoataesgst to
some extent, some of the tasks (e.g. to measurarkewidth,
recognize road signs, detect cracks, etc). Lasannszs were
installed at first mainly to measure road surfaaemeters (e.g.
the International Roughness Index) by along- tracKiling
with mm level accuracy) or the extent of rutting the lane by
cross profiling; today they also provide other infiation, such
as the clearance under bridges and overpassesiebeshe
distance to nearby buildings or a detailed DSMhef torridor
may be generated to study traffic noise propagationas
support for 3D city model generation.



Depending on the mission purpose, on the georefirgn
accuracy required and on the sensor characteristioce
synchronization and offsets as well as misalignsdrgtween
the body system and the sensor systems must ba tate
account with an accurate calibration and monitdoedstability
over time. For instance, image georeferencing isiobd by
interpolation of the navigation data at the expestime,
accounting for the offset and misalignment of themera
reference frames with respect to the body frame.

1.2 Aided inertial navigation

The integration of GPS and INS data benefits mapeets of
the navigation solution and the overall survey fyabecause
of the improved accuracy and reliability of an gristed system
respect to the separate ones. Improvements in #tieematical
modelling and software implementation such as yotaupled

solutions make very efficient use of the availaipl®rmation,

especially with poor GPS solutions. However, exgreze shows
that use of these sensors and algorithms is natyalaufficient
to guarantee a fault tolerant system. Sometimesr eaused by
outliers or residual model errors even in only afethese
sensors can lead to incorrect estimates of posaioattitude.

This is particularly true in case of GPS outagestmnges in
GPS constellation which often result in suddentshifi the

trajectories. If the two system components (GPS &) do

not agree, at least weights should be adjustedhénfitter to

minimize the contribution of erroneous data. Wittlyawo data
sources available, deciding which data are wrong ma be

feasible. Due to the error characteristics of &) however,

the system often relies primarily on GPS data; tekative

weighting of IMU and GPS data therefore favour kdter as
long as their quality is believed to be accurate.

If GPS outages are long and severe, drift errorshef IMU

become too large and the accuracy of the POS dati@akes.
This may happen for instance in city centres, wtgrerating
speed is sometimes slow because of traffic (sogestdast
longer), along narrow streets where buildings ae «lose to
the road, along boulevards or countryside roadsidved by
dense tree rows, in road sections through forastsgels, etc. In
such cases, we may turn to a purely photogrammeicoach
to recover the image orientation parameters andegab with
restitution, possibly keeping human interactioratainimum.

Automatic image sequence orientation to supporhVld/GPS

system to overcome GPS outages was proposed in l{Chap

Chapman, 1998 and 2001; Tao et al, 1999; Roncella
Forlani, 2005).

There are however cases where the GPS solutiorieaainto
errors, if unchecked. It is not uncommon indeed htove
trajectory jumps (up to tens of cm and more) evéh wore
than 5-6 satellites continuously available: this & the case
for instance when a new satellite rise or one béiagked is
masked if this causes a significant change in dwergtry of the
solution, that might be reflected in a PDOP changke
trajectory shift may last for some time and finalpnish with a
new jump, back on the correct position. In our epee as
GPS users, these sudden shifts in the OTF solatienoften
very hard to correlate to any degradation of ther-asailable
quality parameter of the GPS kinematic solution (RMIS
trajectory coordinates, number of satellites trackad PDOP).
In other words, it’s difficult to find out if and lmat went wrong,
unless you have an independent check (the projeafothe
trajectory on the map being a poorly accurate hueast an
always available one). With GPS and IMU integratioe did

ang

not expect these problem to arise; but in a seriasins over
the same road section with a MMV equipped with mercial
GPS/INS system, we found that problems with the G&&tion
resulted, rather than in a sudden shift, in a sthift to a
wrongly shifted trajectory (about 40 cm in heighfJhis
example highlights the need for greater reliability the
navigation solution, especially from a user stamatpoAs for
GPS outages, we believe that photogrammetry mayigean
aid in the identification of problems in the natiga solution.
In the past years we have been working to the dpweént of
an aided inertial navigation algorithm, where plgoaonmetry
may also be used as aid to the IMU, should the @R&ge last
too long. Although work is still in progress, welieve that
photogrammetry can be successfully applied to check
extensively (i.e., all along the trajectory) the vigation
solution, providing much needed reliability.

In the following, the navigation solution is firstddressed,
briefly describing the characteristics of our impéntation,
including photogrammetrically aided inertial naviga; some
proposals for a reliability theory are then revidwEinally, we
present how the cross-check of the IMU and GP Stisoliby
photogrammetry can be implemented efficiently s thcan be
performed all over the image sequence.

2. NAVIGATION SOLUTION

Integration of INS and GPS is usually accomplishisihg a
Kalman filter for recursive estimation, althoughstlis not the
only feasible way. The advantage of this methatiéssupply of
a real time result which allows the user to getst fdea about
the quality of the solution during the survey; nuer, it
carries out a recursive estimation of the parametérinterest
with a modest numerical effort.

2.1 Kalman filter

Let x, be them-dimensional system state at titkeThis is a
vector of parameters which are supposed to descoimpletely
the system. Suppose that this system is a timeingadiscrete
dynamic system, evolving in time with a linear miodé the
type:

Xi = FykaXya + &

@

Fy 1 is the state transition matrix from tirkel tok andgy is a
noise which takes into account model errors and-non
deterministic components which affect the systerolugion.
uch an error is hypothesized with zero mean, nigrma
distributed, time independent and with known caaece
matrix Cg , SO

Ele,]=0 Ok

Csksi :kazi

Equation (1) is thesteady-state equatioand represents the
mathematical model.

It is necessary to initialise the system stateinief

Xy=t, = Xo

under the hypotheses thag is normally distributed and
uncorrelated witte

Xo ~ N(llolco)

Cygs =0



Let y;,¥,...¥, be ng measurementsrelated by a linear

relation with some of the parameters which chareseteour
dynamic system:
Yi = Ap-Xk T8

@)

Ay k1 is the design matrixg is the measurement error, which is

hypothesized with zero mean, Gaussian distributed &ith

known covariance matrixCe. This is the measurement
equation Also in this case we suppose that the ermae

independent frorg:

Ele]=0 Ok
Cekej :5ka‘ﬁ
Cype, =0
C,. =0

£€j

The Kalman filter allows to determine the optimahelar
estimate of the system state [k , in a Wiener — Kolmogorov
sense, by means of a two step procedureKdiman filtering
typically used for real time purpose, and Keman smoothing
which follows it and is employed usually in postepessed
applications like mobile mapping surveying. Thestfistep is
also composed by two stages: firedictionand theupdate

The prediction supplie the estimated value of patans at time
k, given their values estimated at tikael and their precision:

§(k|k—l = Fk,k—ls\(k—:uk—l
— T

Crk = FukaCromkaFik-1 +Cex
While the update equations give the estimated vafuke state
at timek given the measurements at the same time:
Xk = Xiger K (Vi = A kaXiper)
Cuk = (' -K kAk)Ck|k—1
whereK is theKalman gain matrix

— T -1
Ky = Ck|k—1A k,k—l(A k,k—le|k—1A kk-1 T Ce,k)

The smoothing stage allows to determine the optilimaar
estimation of the system state at tikpdaking into account not
only the measurements obtained up to this epodtalba of all
the measures collected during the successive tsstarll,

2.2 The implemented navigation solution

We developed an integrated solution which uses @E#s8ions
of three antennas and IMU data. Usually, classqalations of
the INS errors are used as a system model, whifereiices
between the INS and GPS positions and velocitiesuaed as
measurements. This kind of integration schemefesned to as
cascaded approach. In our case, instead, we us&jaeufilter
for GPS positions and IMU corrected data, in aédwsoupled
fashion. The system model has been developed &adh-fixed
frame, with cartesian coordinates, and the navigatiquations
have been solved analytically. The analytic appnoatows to
eliminate some approximations made in many numlerica
solutions. This method of integration is simple amdversal for
different kind of inertial systems and GPS recevedn the
other hands, it suffers from two limitations in i®urrent
implementation: at least four satellites are neeedrovide a
GPS solution, which is fed to the integrated filtier the time
being, it needs three antennas on the vehicle.dBgsthe
presence of both the GPS-only solution and thegiated
solution simplifies fault detection if a failure @as in either
systems.

2.3 Photogrammetry—aided inertial navigation

As already pointed out, during long GPS outages IM¥
solution must be strengthened by other means. ogramnmetry
may be up to the job. It has been shown in previoapers
(Roncella and Forlani, 2005) that tie points can
automatically extracted along a small sequence @0§-300
m), to provide a consistency of the EO parameteespective
of the IMU and GPS solution.

To this aim, a stereo sequence is processed, tiogse two
overlapping strips, with known orientation parametat both
ends, i.e. at the last image pair where the PO&isalis still
reliable (the beginning of the sequence) and affitseimage
pair (the end of the sequence) where the POS enligi again
reliable. Tie points may be tracked with Structarel Motion
techniques (Fitzgibbon and Zissermann, 1998; Rojlekt al,
1998) on a large number of images. Because of ¢mg small
base compared to scene depth, the inner stabilityedblock is
very low. Constraints such as epipolar geometrpugh the
fundamental matrix (Longuet—Higgins, 1981) and geemetry
of three cameras through the trifocal tensor (Shad994) can

be

k+2,... T, where T is the last epoch of the survey. That be added to reject outliers. The solution will saorlater drift,

procedure is performed with reverse time scale: stag from
the last epoch of measurement and updates sedlyeati¢he

estimates of the states, from fhel epoch to the initial instant.
The relations involved are the following:

By =Ck‘kaTC;iuk
)A(k\T = )A(k\k + Bk(f(kﬁlﬁ _)A(kwk)

— T
Ck\T - Ck\k + Bk(ckﬂﬁ _Ck+ﬂkhk
In this way one obtaing; and its covarianc€r LK .

These Kalman filter estimators are optimal in théehér —
Kolmogorov sense, have minimum variance and arenaly

distributed. Optimality, however, is assured orgyl@ng as the
assumptions of mathematical and statistical modktke filter

are correct. This is not always the case, for m=tawhen
reduced order model of the real navigation systeeniployed.
To guarantee Kalman filter stability it is requektaerely that
observability and controllability conditions areted.

due to the poor control applied; since the relativientation of
the on-board cameras is known by calibration, ttda be
enforced in the strip adjustment, effectively impny the
stability over time of the solution.

During GPS outages, a cooperation of the position a
orientation data of a low—grade IMU with the Stwuret and
motion (S&M) reconstruction is possible and has nbee
proposed in (Horemuz and Gajdamowicz, 2005). Bexafithe
characteristics of our Kalman filter implementatiamientation
data from photogrammetry can be straighforwardly
incorporated. In fact, the measurement equationsbeaeasily
reconfigured to accept attitude parameters  from
photogrammetry, only changing the covariance matspect
to that of GPS attitude information. At the momehgugh, the
system has not yet been tested, so we have noieqneal
evidence of the benefits of combining both techagueach
with its drift behaviour.



3. RELIABILITY OF THE SOLUTION

In a mobile mapping survey, identification of oath, failures
or variation in the mathematical model, in realdior in post—
processing, is of extreme importance. These sitnatcan be
generated by a wide variety of problems like, fosténce,
sensor bias shifts in INS or variation of the ndesee=l, but also
in jJump or drift in the GPS solution which can afféhe results.
Redundancy is often used as a means of providirofezk
against failures. However a single redundant imsémt may be
used to detect a failure, but not isolate to aipaler system and
this redundancy methods are costly due to poweghveand
value of redundant systems. An alternative methmglois the
use of dissimilar instrumentation to provide intggrof
operation, decreasing the overall cost of the umséntation
system. Usually are installed DMIs, but also corspas
magnetometers and other instruments can be usedh&e are
other sensors which are yet present onboard andgaessibly
used to aid navigation solution and reliabilitye tbameras. A
test has been performed by (Horemuz and Gajdamp2a5),
obtaining interesting results.

In the case of recursive algorithms, it is possilbde use
statistical tests test which can identify the faglin real time, or
in near real time.

3.1 Reliability theory

Let us defineinnovation or predicted residualthe difference
between the actual real
predicted on the basis of the predicted state:
Vi =Yk _Ak,k—ls\(lqk—l
Innovation represents the new information introdudy the
last observation. In fact, the filtered state isvaar combination
of the predicted state and the innovation.
If the mathematical or statistical model has beesfindd
correctly, the innovations are independent and &ans
distributed
v, ~Nfo.c, )
with known covariance matrix:

— T
C,, =Cy, +*ACiyAx

Knowledge of the distribution of the innovation da@ used for
integrity monitoring. In fact the parameters forgirthe
innovations are based on all past and present maasnts
with a model of the system. Hence this parametetaios all
the information needed to detect changes in thennodéathe
Gaussian sequence.

3.1.1 Output separability: It is possible during design to
know if the system is able, and the critical sitorag in which it
is not, to detect and isolate the faults. One camehtwo
possible failures: a failure in the system model arfailure in
the measurements.

In case of a system failure, equation (1) can heitten as
Xy = Fy Xy + B galtir &k 3

where B, is the direction matrix angl,_,is the unknown

fault to be detected. In this case no hypothesis been
introduced about the particular kind of failure.

In case of a failures in measurements, in a simi@anner,
equation (2) can be rewritten as
Vi = AgkaXi Dy My T (4)

where m, is a fault whit a known directio, ;.

It can demonstrated (Williamson et al., 2005) thdault in the
measurement model can be rewritten like a systartt, fand

therefore the equation (4) can be rewritten inguivalent form
of (3). So the problem of a measurement fault ifieation is
equivalent to a system fault identification.

For a given fault directiorB,,_, , if (Ak,k_lka_lBk,k_l) is full
rank for any choice ob, then the fault direction is identifiable.

If we have more than one possible failure, it ifficient to
perform this test for any hypothesised failure.

This simple test can be performed before the system

implementation, so one can carefully design mohi@pping
system.

3.1.2 Chi-square test It is possible to identify the presence
of a blunder in the observations by means of alldest
(Teunissen and Saltzmann, 1989) which analyze fd t
observations at each epoch. If we want to veriy fifllowing
alternative hypotheses:

Hop Vi ~ N(O,C\,k)

Hap iV~ N(\_/k,CVk)

The appropriate statistics is
T = VICQin

so

Howi : T ~Xa

Haki Tk ‘“)(;12(/‘)

measurements and the measu?"’hereA is the non—centrality parameter of a non—centnét ¢

squared distribution and n the degrees of freedom.
The null hypothesis is rejected at a significaresel g, if

2
Tk 2/Ynk,a

This test, nametbcal overall test has the great advantage that
it is particularly simple to be implemented, doeg imply an
increment of computational load during the filtgrirstage,
because innovations and their covariance are mtdbent at
each step of update, and allows fault detectiaieahtime.

If, between the observations, we want to identify erroneous
measure, it is possible to use tbeal slippage test

_lreawf

kJ C;t i
with

¢ =(0 1 o)

1 i n,

fori=1...,n,.
The null hypothesis is rejected for
i 2 )(fa :

This test presents the same advantages of theopgewhne and,
if we have the necessary observability and sepisatallows
the identification of the failing sensor.

Local tests sometimes are not able to identify nuodelled
trends and little jumps in bias. So it is usefulifgplement a
global test on the innovations estimated from tir®instantk.

This can be done simply extending the previousst@stthe
following mean, for the overall test:

K
N T
Tx=2Vi CvjVj

j=l



and the null hypothesis is rejected when
T2 Xha
where
k
N=Xn,
i=l

This test is nameglobal overall test

For the slippage test

K 2
[ZCTC;}VJ-]
j=l
L% v
ZciTC\jlicj
j=l
In this case thély hypothesis is rejected if
bk, ZXfa .
The global tests need a greater complexity of impgletation
than the local ones, as the need of a moving windawd
because the identification of the failure instaguires to come

back to this time and start a new solution stratégytaining
this can be tricky for an automatic algorithm.

3.2 Isolation of navigation data anomalies

Modelling of a fault, increasing the number of etain steady
state equations or augmenting the terms in the unee®ents
equations with error models, can results in an @teuerror
estimates which are used for error compensatioougir the
proper
information. However, excessive complication of ystem

model degrades the estimation accuracy of the stattor

components. For many purposes, it can be suffittense a not
augmented filter which supposes a no-fail condjtithren to

estimate the innovations and successively to tesntwith a
global or slippage test, and finally to remove orrect, only if

necessary, with appropriate modelling of the errdisus, the
filter size is kept to a minimum without a lossganerality. On
the other hand, problems arise from the use okthests when
we have a not completely correct mathematical atissical

model, for instance when we have a non-white nafe
measure or an approximation of steady—state equstike due
to linearization. In such cases we can get marsefalarms,
which may increase the elaboration time. It canubeful to

model at least the noises, for instance as simip¢-drder

Markov processes.

In such a scheme, the inertial sensor outputs @@ &timates
are integrated in the Kalman filter. The inertiahtal are
compensated before by the bias estimates. Innoafar each
sensor are then evaluated by using the filter'snese for the
output of the sensors. As previously stated, ifrtreasurement
noises are zero mean, white and Gaussian, the atinav
sequence, in absence of sensor failures, is appabely

(exactly in the linear case) a zero mean, whitepsSian

sequence of random vectors. Detectors, which imptenthe

statistic tests, operate over a window of the mtedi residuals.
The start of the window is the hypothesized timdadtire, and

the length of the window is based on the sensoe,type

expected failure level, the probability of falserahs and the
desired detection speed. In the case of singleoséamitures, the
total number of detectors is equal to the number

measurements.

If a failure is declared, with only GPS and an IMWe are

generally unable to identify the failed sensor.this case,

use of the available process and measurement

photogrammetric information becomes useful. Withis th
information it is possible to identify the probleticasensor.
Two possibilities now face the designer. Firstpdafssible, one
can model the failures, for instance as bias jurmpshe
measurements equations. In the linear case thes afsensor
failures manifest themselves in an additive fashidth respect
to the residuals. In this way we need to estimageitensity of
the failure in the associated sensor output (whish
hypothesized to occur at the beginning of the spwading
window) and the effects of the hypothesized sefaiture are
removed from the filter innovation by processing #stimated
sensor failure level. Distinguishing between normpérating
sensor errors and sensor failures, in particulén wiases, can
be difficult, because most analytic fault tolerasystem
techniques model failures as bias jumps in senstputs. If
modelling is not feasible, or the sensor measurénene
completely absent, like in case of GPS outagess¢hsor must
be removed from the analysis and the Kalman fifterst be
reconfigured to take into account its absence.

4. THE IMPLEMENTATION CONCEPT

As already underlined in the introduction, for tirae being we
have just defined the flow chart combining the etiint sensors
data to check the reliability of the navigationwmn. Since the
photogrammetric check is the novel contribution toe
problem, in the following we will concentrate on eth
implementation details of the procedure.

4.1 Overview of the photogrammetric check

To be valuable and feasible, the contribution of
photogrammetric observations to the reliability dbenust be
sufficiently accurate and computationally affordabl

We have therefore devised a simple procedure watisboth
requirements. In a nutshell, the idea is just tongare the
image locations (pixel positions) of a set of objeoints,
computed from the stereo pair at timentith those of the same
points projected on the images at,tbased on the exterior
orientation (EO) computed by the navigation solutat time
ti+1-

If the computed and predicted image locations athinmthe
accuracy of the forward-backward projection, thes expect
the chi-square test to be satisfied; otherwise ut faill be
highlighted in the data at timg.t Calculating the difference
between computed and predicted image informatitowal to
increase innovation dimensions (adding them todhaistained
from GPS and IMU observations) and to identify thaded
sensor. As far as IMU and GPS data are concerres,
underlying assumption is that orientation dataimiety are
correct. Therefore the check can be either perfdrateevery
shooting time or just if the test between IMU anéSGfails. In
the former case, navigation data must be routimgirpolated
to the shooting time to provide the orientationadatt the stereo
sequence. In the latter, the comparison may beopeed at a
different rate (e.g. at the data rate of the GP&ndations) to
spot inconsistencies: if any is found, then intémpon at
nearby exposure times is performed. Since the rdetbi@es on
the correctness of data at time when a system failure is
declared, it is safer to start the photogrammethieck some

0]frames before the time of GPS and IMU data disagree



4.2 Selection of a region of interest in object space

To address the accuracy and computational requiresméhe
number, distribution and location of the objectrgsishould be
considered. Since the aim of the procedure ish®btientation

critic perspective changes, simple normalized cooseelation

is used (rather than least squares matching), beistgr and
still up to the task. Once the set of homologoummtsdor the
image pair at timg has been found, their object coordinates are
computed by forward intersection.

of the stereo pair at timg4t but just to assess if measured and

predicted EO agree, the object points to be usethéncheck
need not to be well distributed over the wholeesiscopic area,
to ensure good accuracy for the EO elements: alemahe
should be enough, provided it is visible in botlages and it
ensures good conditions for the identification ofologous
points. To this aim, the nearest strip of the readace, say 3-4
m deep and 6 m wide, visible in both image pairs loa used.
This ensures that the image resolution is the ibdsbth images
and that every consecutive stereo pair can be edeck
Moreover, using the areas nearest to the vehibleuld grant
that even small discrepancies between estimatedreaidOE
paramaters can be detected. Adding a larger arglat tmiing in
some cases well defined points, but also possibibf
occlusions. In order for the method to be feasitile, distance
between consecutive image pairs should not bedtog (3-5 m)
to avoid the perspective to reduce too much thelwéen in the
image pair farthest from the strip.

To select the same strip in object space in corisecatereo
pairs we take advantage from the fact that thecleluns on a
smooth surface. For our purpose the road surfacebeawell
approximated by a plane, therefore the
(homography) between the image plane of each caametdahe
road surface plane is constant (or anyway statbeign for the
task) and can be computed just once. Besides, 8t oases is
the DMI that commands the exposure, so the distaebgeen
image pairs is constant, irrespective of speed gisrishould
the image acquisition run on a fixed time ratednd{ again the
limits can be easily computed, because both OE esiesnat

4.4 Compatibility check between consecutive image pairs

To check the compatibility of GPS and IMU data with
photogrammetry, the object points computed fromttistereo
pair are projected on the stereo pait Since the projection on
the left and on the right should give the same rinfdion
(occlusions should not be expected and the relagta@metry
camera-point is the same for the two images), inisecessary
to reproject on both. The rectified image for thay( left image
at time ., is generated. Once the ideal position (i.e. trstjom
without errors in EO) is available, the limitstbe search area
for the homologous point are computed by error agapion of
the intersection-resection and of the EO covarianatix from
the Kalman filter. Afterwards, exhaustive simplerretation
search is carried out on the rectified image pigkas template
the image around the point location selected &t tinif there is
at least a match with correlation coefficient largean a
threshold (say, 70%) the point is accepted as hogools.
Ideally, it should be a yes-no test: if one matslpassed, all
should be; in practice, even if some do, other$ mat due to

relationshipseveral reasons (noise, sensor response, illummatianges,

gray values changes due to change in the angl®rsehgect-
sun, occlusions, etc.). From a probabilistic staralp there is
no need to verify all points: as soon as a clegoritya emerges
in probabilistic terms, the chi-square procedurg stap.

5. CONCLUSIONS

time t, and t.,, are known). To avoid an extensive search over

the whole strip, a set of locations can be arranigedbject
space within the strip (e.g. in a grid-like fashi@md projected
(only once) in image space.

4.3 Selection and computation of reference object poist

To select image points, interest operators or ofieature
extraction techniques should be applied to the latmpmage
(say, the left image at timg in a window around each location
of the set; the Harris operator (Harris and Steph&@87) has
been used successfully. Being the epipolar geomefrhe
stereo pair known from calibration and given thidyaonstant
relationship between cameras and road surface ,flamsearch
for the homologous points in the slave image isnoleal along
the epipolar line.

In a previous paper (Forlani et al, 2005) the Haoperator
proved successful in selecting and finding homolmgpoints
as far as rotations and perspective differences wet too big.
In such cases, the Lowe operator (Lowe, 1999) aedLbwe
descriptor (Lowe, 2004) may be more robust in figdiand
matching features. Using feature matching in ousega
nevertheless, may not be the best option. Basegrevious
work on road marking extraction and following (Relia and
Forlani, 2006), a different technique is used.

To reduce the effect of perspective differencesmiage space,
both images are rectified to the road surface plaased on the
already computed homography: using look-up taltgs, does
not affect computing time.

The templates are selected using the Harris opgemtothe
rectified template image. To find the homologougtie slave
image, since both images after being rectified ddeshow

The reliability issue on navigation data from MM\ashbeen
discussed and a procedure has been devised tesieelgradd
to the navigation solution from GPS/INS an automati
photogrammetric check. Although no testing has peen
performed, the implementation details based on ipusv
experiences with MM data ensures that it is contmrtally
feasible. The question of how sensitive it is tooes in the
GPS/IMU data could not be addressed yet, howenerwéll be
the primary goal of ongoing work.

Other issues of practical relevance, such as wehebtonce an
inconsistency has been highlighted, has not yen belelressed
either, but will involve switching to photogrammietlly-aided
inertial navigation, at least during GPS outageput data from
INS will also be used to support search for comesiences
along the sequence.
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