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ABSTRACT: 
 
The paper reports two analytical methods capable to reliably perform the simultaneous global registration of non static 3D LiDAR 
point clouds, and investigates their applicability by analysing the results of some preliminary numerical examples. The first method, 
proposed by Xiao (2005), and Xiao et al. (2006), apply a direct SVD factorisation to non static 3D fully overlapping point clouds 
characterised by target points. The factorisation is applied to a matrix, sequentially containing by rows the coordinates of the 
corresponding targets present in the cloud scenes. Besides the rigid transformation parameters, a number of shape bases is determined 
for each point cloud, whose linear combination describes the dynamic component of the scenes. A linear closed-form solution is 
finally obtained, enforcing linear constraints on orthonormality of the rigid rotations and on uniqueness of the linear bases. The 
second method analysed is the so called “Robust Generalised Procrustes Analysis”, recently proposed by the authors. To overcome 
the lack of robustness of Generalised Procrustes Analysis, a progressive sequence inspired to the “forward search” was developed. 
Starting from an initial partial point cloud configuration satisfying the LMS principle, the configuration is updated, point by point, till 
a significant variation of the registration parameters occur. This reveals the presence of non stationary points among the new 
elements just inserted, that are therefore not included in the registration process. Both methods are capable to correctly determine the 
registration parameters, when compared to the commonly applied “two steps method”, where the registration of deformable shapes is 
biased by non - rigid deformation components. 
 
 

1. INTRODUCTION 
 
In some papers published a few years ago (e.g. Beinat and 
Crosilla, 2001), the authors proposed the Generalised Procrustes 
Analysis to perform a high precision simultaneous registration 
of multiple partially overlapping 3D point clouds acquired with 
terrestrial laser scanning devices. The proposed technique 
requires for each point cloud the matching of a sufficient 
number of artificial targets, eventually pre-signalised on the 
object surface to survey. Furthermore, the same authors have 
recently proposed (Beinat, Crosilla, Sepic, 2006) an automatic 
registration technique that does not require any manual 
matching of the target points, but that instead uses the 
morphological or the radiometric local variations on the 
surveyed surface. The method, by studying the differential 
properties of the sampled point surface, computes at first the 
local values of the Gaussian curvature, then applies a 
topological research to define for each point cloud the 
corresponding zones characterised by the same curvature 
values. By applying an SVD algorithm, it is possible to 
automatically solve a coarse registration followed by an 
Iterative Closest Point (ICP) global refinement. 
Both registration approaches can be correctly applied if the 
object does not change its shape during the survey of the 
complete sequence of point clouds. That is, the registration 
problem consists in the definition of the correct similarity 
transformation parameters for each point cloud. On the other 
hand, registration and modelling of dynamic point cloud scenes 
is a prominent problem for robot navigation, for reconstruction 
of deformable objects, and for monitoring environmental 
phenomena. The recovery of the resulting shapes can be 
regarded as a combination of rigid similarity transformations of 
the 3D point clouds and unknown non - rigid deformations. In 
the literature (e.g. Dryden and Mardia, 1999), the problems 

solution is usually carried out in two consecutive steps. The first 
step registers the point clouds by similarity transformation, 
considering the deformable shapes as contaminated by Gaussian 
noise. The second step determines the linear deformable model 
of the registered shapes by applying Principal Component 
Analysis (PCA) to the registration residuals. Proceeding in this 
way, the registration of deformable shapes is biased by non - 
rigid deformation components. It is therefore necessary to apply 
some procedures that make possible to reliably estimate the 
roto-translation components, and the deformable shapes.  
The paper synthetically describes two methods recently 
proposed in the literature, and analyses the results obtained for 
the registration of a 3D scene characterised by static and 
dynamic elements. The first method, introduced by Xiao (2005), 
solves the combined problem of registration and dynamic shape 
modelling by a direct factorisation of the points coordinate 
matrix, containing by rows for each acquired scene the 3D 
sampled model point coordinates. The method works well when 
the dynamic object shape can be described by a linear 
combination of a small number of shape bases, that, together 
with the similarity transformation parameters for each cloud, are 
the unknown elements of the joint registration and shape 
modelling problem. The second method proposed (Crosilla, 
Beinat; 2006) represents a robust solution of the Generalised 
Procrustes problem. The described algorithm derives from the 
Robust Regression Analysis based on the Iterative Forward 
Search approach proposed by Atkinson and Riani (2000), and 
Cerioli and Riani (2003). The procedure starts from a partial 
point configuration only containing stationary points. At each 
iteration, the transformation parameters are determined, and the 
initial dataset is enlarged by one or more new points, till a 
significant variation of the transformation parameters occur. At 
this point the method allows to identify in the various 
configurations the remaining non stationary points that 
represent the dynamic component of the scene. 



2. JOINT REGISTRATION AND SHAPE MODELING BY 
SVD FACTORISATION 

 
The method proposed by Xiao (2005) and Xiao et al. (2006) is 
based on the fact that the shape Si of a deforming object, or of a 
non static scene at epoch i (i = 1…N), can be modelled as a 
linear combination of k shape bases Bk (k= 1…K). Each basis is 
a (D×P) matrix, where D is the space coordinate dimension and P 
is the number of the points. According to these positions, we 
can write that:  
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=
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where lik is a coefficient to apply to the Bk basis in order to 
define the shape S at epoch i. Of course, every shape Si can be 
measured from a different point of view, (eventually) with a 
different scale, and the coordinates of each shape model may be 
defined with respect to a different coordinate system. Therefore, 
the measured shape Wi can be considered as a similarity 
transformation of the shape Si, that is  

1'i i i i ic= +W R S t     (2) 

where ci is a non zero scalar, Ri is a (D×D) rotation matrix, ti is a 
translation vector and 1 is a unit vector. Combining formula (1) 
and (2), matrix Wi can be expressed as  

( )( )1 1i i i ik i i kµ µ ′′ ′=W R R t B B 1L L  

Now, considering all the N measurement epochs, a (DN×P) 
matrix W can be defined. Of course matrix W can be 
considered as a result of the following matrix expression 

′= +W MB t1      (3) 

Where M is a (DN×DK) matrix  
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B is a (DK×P) basis matrix ( )1 k
′′ ′=B B BL  and t is a 

(DN×1) translation vector ( )1 N
′′ ′t tL . 

The joint registration and shape modelling problem proposed by 
Xiao et al. (2006), considers at this point a direct factorization 
of matrix W. Before doing so, all the point coordinates are 
translated into a barycentral system, so to neglect the translation 
components. From now on, let W be the coordinate matrix, 
where the coordinates of each sampled point cloud are referred 
to the corresponding centroid. Next step is to proceed to the 
Singular Value Decomposition (SVD) of W, so to obtain a 
factorization that can be written as =W MB% % . 
The rank of W is min(DK, DN, P). Since generally DN>DK and 
P>DK, the SVD of W makes possible to determine K, that is the 

number of shape bases required to describe the shape variation 
model. In fact, if rank(W)=DK, than K=rank(W)/D.  
Furthermore, the SVD of W allows to obtain at first a (DN×DK) 
matrix M% , and a (DK×P) matrix B% . Matrices M and B, 
containing the unknown terms of the problem reported in 
Equation (3), can be determined by applying a further unknown 
linear “corrective transformation” (DK×DK) matrix G to the 
matrices M% and B% , that is  

=M MG%   1−=B G B%    (4) 

in order to satisfy: 

1−= =W MGG B MB% %  

Matrix G can be partitioned into the following K sub-matrices 
of size (DK×D): 

G = (G1 … GK) 

Sub-matrices Gk (k=1...K) satisfy the following property: 
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Now, let Qk = GkGk
’ be a (DK×DK) matrix. Then, from Eq. (5) it 

is possible to consider the following general condition: 

i k j ik jk i jµ µ′ ′=M Q M R R% %   (i, j = 1…N)  (6) 

that has to be considered in order to satisfy two fundamental 
constraints: 
1. orthonormality of the rotations 
2. uniqueness of the shape bases. 
The first constraint is satisfied by the following condition: 

2
( )'i k i ik dxdµ=M Q M I% %  (i=1..N)    (7) 

As an example for D =3, since Qk is symmetric, and due to the 
presence of the unknown term 2

ikµ , for each submatrix iM%  
(i=1...N), condition (7) generates the following system of linear 
equations 

(1) (1) (2) (2)' ' 0i k i i k im m m m− =Q Q% % % %  
(1) (1) (3) (3)' ' 0i k i i k im m m m− =Q Q% % % %  
(1) (2) ' 0i k im m =Q% %     (8) 
(1) (3) ' 0i k im m =Q% %  
(2) (3) ' 0i k im m =Q% %  

where (1)
im% , (2)

im% , (3)
im% are the first, second and third row of the 

(D×DK) sub-matrix iM% . 
Enforcing the orthonormality constraints alone, is not enough in 
the case in which a deformation of the point clouds occurs. It is 



therefore necessary to enforce also the second constraints that 
guarantee the uniqueness of the bases. 
The problem can be solved analysing the independence 
properties of the measured shape random samples. That is, it is 
necessary to determine K measured shapes that contain 
independent deformable shapes. This can be done by measuring 
the condition number for all the possible permutation sets of 
(DK×P) sub-matrices of W, and by choosing the set that 
minimizes that value (Xiao et al., 2006). Smaller condition 
number means higher independence. The deformable shapes 
contained in the selected K measurement shapes are considered 
as the unique bases. Since scaling does not influence the 
independence of the shapes, the scalars 2

ikµ  are absorbed into the 
bases, and then the chosen K measurements are simply the 
rotated bases.  
Denoting the K selected basis measurements as the first K 
measurements in the barycentral coordinate matrix W, it 
follows that i i i=W R B  (i=1...K). The corresponding 
coefficients are thus: 

1iiµ =   (i= 1…K)    (9) 
0ijµ =   (i,j = 1… K ; i ≠ j) 

According to Equations (7), and (9) the uniqueness of the bases 
is satisfied by the following conditions  

( )' 0i k j dxd=M Q M% %  (i = 1.. K ; j = 1..N; i≠k) (10a) 

( )'i k j dxd=M Q M I% %  (i=j=k)    (10b) 

As in the previous example for D=3, for each matrix product 
reported in (10a), we can write the following set of linear 
equations  

(1) (1) ' 0i k jm m =Q% %  
(1) (2) ' 0i k jm m =Q% %  
(1) (3) ' 0i k jm m =Q% %     (11) 
(2) (2) ' 0i k jm m =Q% %  
(2) (3) ' 0i k jm m =Q% %  
(3) (3) ' 0i k jm m =Q% %  

While, for each matrix product reported in (10b) it follows the 
following equations 

(1) (1) ' 1i k jm m =Q% %  
(1) (2) ' 0i k jm m =Q% %  
(1) (3) ' 0i k jm m =Q% %     (12) 
(2) (2) ' 1i k jm m =Q% %  
(2) (3) ' 0i k jm m =Q% %  
(3) (3) ' 1i k jm m =Q% %  

Systems (8), (11), and (12) enlarged for all possible indexes i 
and j make possible to find an inconsistent system of linear 
equations in the unknown terms of the symmetric matrix Qk 
upper triangle that can be solved by least squares. 

Once kQ is determined, to compute kG , it is necessary to apply 
an SVD to matrix kQ , since k k k′=Q G G . This decomposition 
allows to determine matrix kG  apart for an arbitrary (D×D) 
orthonormal transformation F, since k k k′ ′ =G FF G Q . This 
ambiguity is due to the fact that matrices kG  (k=1...K) are 
independently estimated under different coordinate systems 
(Xiao et al., 2006). Therefore matrices kG  (k=1...K) have to be 
transformed under a unique reference system. Before doing so, 
it is necessary to determine for each k the rotation matrices iR  
relating to each scene.  
Remembering that i k ik iµ=M G R%  (i=1...N), since iR  is 

orthonormal, i.e. 1R = , than i k
i

i k

= ± M GR
M G

. 

In this way K sets of rotation matrices iR  (i=1...N) are 
computed. Specifying one of the sets as the reference one, an 
Ordinary Procrustes Analysis (OPA) is applied to all the other 
sets so to align them to the selected one. The result furnished by 
OPA makes also possible to transform kG  (k=1…K) under a 
common coordinate system, and in this way the searched 
transformation matrix G is achieved. 
The coefficients are then computed by (5), and the shape bases 
B are recovered by (4). In this way the shape of a non static 
scene at epoch i can be finally determined by (1). 

3. ROBUST GENERALISED PROCRUSTES ANALYSIS 
 
Generalised Procrustes Analysis (GPA) is a well known 
multivariate technique used to provide multiple and 
simultaneous L.S. similarity transformations of M ≥ 2 data sets 
composed of P corresponding D-dim points, whose coordinates 
are referred to M ≥ 2 different reference frames, and 
characterised by measurement noise. The following least 
squares objective function has to be satisfied: 

( ) ( )

( ) ( )

M

S tr c c

c c min

i i i i j j j j
i j

i i i i j j j j

+ +
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∑ X R 1t X R 1t

X R 1t X R 1t
  (13) 

under the orthogonality condition R’R = I; where X1 … XM are 
M ≥ 2 data matrices of size (P × D), each one containing the 
coordinates of the same set of P corresponding points defined in 
M different reference frames; 1 is the (P×1) auxiliary unitary 
vector; tj, Rj and cj are the unknowns (j=1 … M), i.e. the (D×1) 
jth translation vector, the (D×D) jth rotation matrix, and the jth 
isotropic scale factor, respectively.  
The solution of Equation (13) represents the GPA problem 
described by Kristof and Wingersky (1971), Gower (1975), ten 
Berge (1977), and Goodall (1991). 
This problem has an alternative formulation. Said 

p ci i i i i′= +X X R 1t , the following measures: 

( ) ( )
M M2p p p p p ptri j i j i j

i j i j< <

′− = − −∑ ∑X X X X X X   (14) 

( ) ( )
M M2p p pM M tri i i
i i

′− = − −∑ ∑X H X H X H   (15) 



are perfectly equivalent (e.g. Borg and Groenen, 1997), where 
H is the unknown centroid. Therefore Eq. (15), instead of Eq. 
(14), can be minimised so to determine the unknowns {c, R, t}j 
(j= 1…M) that make it possible to iteratively compute the final 

p
iX  (i=1…M).  

Matrix 
M

p

1

1ˆ
M i
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= ∑H X  represents the LS estimate of H. Note that 

p
i i+ =H E X , where ( ) ( ){ }2vec : 0,i n kN = σ ⊗E Q QΣ  and σ 

has a factored structure. 
In the current algorithm implementation of the Robust 
Generalised Procrustes problem solution, the procedure starts 
from a partial point configuration containing only stationary 
data. At each iteration, the initial dataset is enlarged by one or 
more points, till a significant variation of the transformation 
parameters occurs. 
In order to define the initial configuration subset Xi of X, i.e. the 
one containing stationary data, it is necessary to compute the LS 
estimate of the corresponding centroid Hi, and consequently 
determine the similarity transformation parameters for all the j = 
1 … M data sub-matrices Xj

i: 

M

1

ˆ 1 c
M

i i i i i
j j j j

j =
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where ˆ iH  corresponds to the LS estimate of the unknown Hi. 

This procedure is repeated for every i = 1 … 
P
S
 
 
 

 possible 

configuration subset Xi, where S is the number of points forming 
the subset. 
Now, the global pseudo-centroid is computed by applying the 
transformation parameters, relative to the i-th data submatrix Xj

i, 
to the full corresponding Xj, obtaining Xj

P(i): 

( ) ( )
M MT

1 1

1 1c
M M

P ii i i i i
j j j j j

j j= =

= + =∑ ∑H X R 1t X%   (17) 

To define the initial subset Xi containing stationary points, the 
least median of squares (LMS) principle is applied (Rousseauw, 
1984). As well known, this regression method can normally 
reach a break down point as high as 50%: among all the 
possible configuration subsets Xi, the one satisfying the 
following LMS condition is chosen as the initial one: 

( )( ) ( )( )M T

1
med diag minP i P ii i

j j
j =

− − =∑ X H X H% %   (18) 

This initial subset is then enlarged joining up the point for 
which: 

( )( ) ( )( )M T

1
diag minP i P ii i

j j
j =

− − =∑ X H X H% %    (19) 

selected from the remaining (P –S ) points of the configuration, 
not belonging to the initial subset. 
The LS estimate of the enlarged partial centroid Hi(+1), and the 
S-transformation parameters for the M sub-matrices Xji(+1), are 
computed again as: 

( ) ( ) ( ) ( ) ( )( ) ( )M MT ,P 11 1 1 1 1

1 1

ˆ 1 1
M M

i ii i i i i
j j j j j

j j
c  ++ + + + +  

= =

= + =∑ ∑R 1tH X X  (20) 

Now, Procrustes statistics (Sibson, 1979; Langron and Collins, 
1985) is applied to verify whether a significant variation of the 
S-transformation parameters occurs by enlarging the original 
selected data subset. To this aim, the total distance between the 

partial centroid ˆ iH  and the M sub-matrices ( ),P 1i i
j

+  X , obtained 

by applying to the original Xji the S-transformation parameters 
relating to the i(+1) dataset, is computed:  

[ ]( ) [ ]( )M T,P ( 1) ,P ( 1)
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The following distances are also computed: 
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after having taken care of the fact that the translation 
components relating to the i(+1) subset must be previously 
reduced by the difference between the centroids of ( )1ˆ i +

H  
and ˆ iH . These distances are residual distances after a Procrustes 
transformation. In particular tG  is the residual distance after a 
translation, tRG  is the residual distance after a translation and a 
rotation, and tRcG  is the residual distance after a translation, a 
rotation, and a scaling.  
Assuming a proper first kind error α, and the proper degrees of 
freedom df1 and df2 , the rejection of the null hypothesis for the 
following tests (Langron and Collins 1985): 

1 1

t t tR tR tRc
1 , df , df

tRc tRc tRc

G G G G G G;  ;     
G G G

F α−

 − − − > 
 

 (23) 

indicates a significant variation of some or of all the 
transformation parameters at this step, due to the possible 
entering into the Xji(+1) datasets of non stationary data. 
If the null hypothesis for all the tests is accepted instead, the 
iterative process continues with the insertion of a further new 
point Xji(+2), satisfying Equation 19 within the remaining ones of 
the dataset.  

4. ALGORITHM IMPLEMENTATION AND TESTING 
 
The SVD factorisation, and the Robust GPA methods were 
implemented in Matlab™, in order to test their capability to 
correctly register models by using both static and non-static tie-
point configurations. The experiments, related to simulated 
environments, let us to introduce variably modulated 
measurement noise in the tie-point coordinates. 



 

 
Figure 1a,b,c,d: Simulated models of an urban environment, and 

static and non-static tie-points for model registration. 
 
As example, we report one of these tests. Figures 1a to 1d depict 
four models (or scenes) of one reconstructed urban 
environment, in different reference systems (or poses). Of the 
12 tie-points employed for the model alignment, 8 identify static 

entities (buildings, roofs, walls, roads), and 4 relate to moving 
objects (cars). Static tie-points are evidenced by red diamond 
symbols, non static ones by blue circles. 
 

 
Figure 2: Global registration by Robust GPA 

 
Figure 2 shows the result of the global alignment of the four 
models of Figure 1, performed by Robust GPA. The method 
identifies all the non-static tie-points, and treats them as 
outliers: the global registration is then achieved by way of the 
largest static tie-point subset, common to all the models.  
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Figure 3: Tie points distribution after Robust GPA registration: 

static ones (red diamonds) appear precisely overlapped. 
 

Figure 3 shows the tie-point distribution after the registration: 
non-stationary points are automatically detected, and outlined 
by blue circle symbols, while static ones are marked by 
overlapping red diamonds.  
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Figure 4: Tie points distribution after Ordinary GPA 

registration: static tie-points are not overlapped, and the high 
value of the residuals represents a distorted reconstruction 



Figure 4 represents, for comparison, the results obtained 
performing the registration by an ordinary GPA: non-static tie-
points heavily contaminate the registration accuracy by a 
quantity proportional to their number, displacement length and 
relative position (leverage effect). 
Several experiments were performed varying tie-points location, 
number, and accuracy. A detailed analysis of the numerical 
experiments will be presented in a future work. 

5. CONCLUDING REMARKS 
 
Our investigations concerning the registration methods for non 
static models are still under development, nevertheless some 
clear considerations regarding the methods discussed here can 
be expressed.  
As commonly known, ordinary GPA, although very efficient, 
may fail in achieving an acceptable registration accuracy due to 
the presence of outliers or non-stationary data.  
On the contrary, the SVD factorisation method (Xiao et al., 
2006) reported in the paper, does not exclude, but is capable to 
employ the non-stationary points for a correct registration 
process. Moreover it furnishes the geometric bases to 
reconstruct the deformable shapes. But this method, although 
robust against measurement noise, introduces a restrictive 
operative condition: the shape deformations, in whole, must 
span all the model space dimensions. As mentioned in Section 
2, the shape of a deformable object can be regarded as a linear 
combination of a selected number of shape bases. When at least 
three points simultaneously move along three different fixed 
directions in the 3D space, their trajectories form a deformation 
basis of rank 3. If two points move along fixed directions within 
a 2D plane, their trajectories form a rank-2 shape basis. If 
finally one point moves along a fixed direction, its trajectory 
forms a rank-1 basis. Non-degenerate bases of a 3D non rigid 
shape are characterized by a full rank 3 and, according to what 
reported in Section 2, a closed form solution exists enforcing 
linear rotation, and basis constraints. Degenerate deformations 
often occur in practice, i.e. some bases are of rank 1 or 2. 
Relating to the reported example, cars moving independently on 
a straight plane road refer to rank-1 deformation of the scene. 
Cars moving along two differently oriented straight plane roads 
refer to a rank-2 deformation of the scene. Finally, cars moving 
on two differently oriented straight and slope roads refer to 
rank-3 non-degenerate deformation of the scene. The solution of 
degenerate deformations could require further and 
computationally heavy constraints, or may not exist (Xiao and 
Kanade, 2004). 
Robust GPA overcomes the drawbacks due to insufficient rank 
deformations providing a correct model registration. If the 
number of non-static tie-points is less than the LMS breakdown 
limit of 50%, and the number of the static tie-points is at least 
equal to the model space dimensions, Robust GPA can represent 
a valid complement, or a valuable alternative, to SVD 
factorisation for the deformable shape registration, and for the 
relative non-stationary components detection. 
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