
INTELLIGENT TUNING OF A KALMAN FILTER USING LOW-COST MEMS

INERTIAL SENSORS

C. Goodall, N. El-Sheimy

The University of Calgary, Department of Geomatics Engineering

KEY WORDS: INS, GPS, Kalman filter, tuning, MEMS, reinforcement learning

ABSTRACT:

The demand for civil navigation systems in harsh environments has been growing over the last several years. The Global

Positioning System (GPS) has been the backbone of most current navigation systems, but its usefulness in downtown urban

environments or under heavily treed terrain is limited due to signal blockages. To help bridge these signal gaps inertial navigation

systems (INS) have been suggested. An integrated INS/GPS system can provide a continuous navigation solution regardless of the

environment.

For civil applications the use of MEMS sensors are needed due to cost, size and regulatory restrictions of higher grade inertial

units. The Kalman Filter has traditionally been used to optimally weight the GPS and INS measurements, but when using MEMS

grade sensors the tuned parameters are not always the optimal ones. In these cases, the position errors during loss of the GPS

signals accumulate faster than the ideally tuned case. To help correct imperfect tuning, a reinforcement learning algorithm was

used to tune the Kalman filter parameters as navigation data was collected.

Tuning any Kalman filter is a difficult task and is often done before navigation with the aid of the filter designer. This process often

entails much iteration using the expertise of the designer, and is in no way guaranteed to result in optimal parameters.

Reinforcement learning is an intelligent solution to this problem which uses a combination of dynamic programming and trial and

error exploration to develop a set of optimal parameters.

In comparison to a typical iterative approach, it was found that using reinforcement learning led to slightly better estimates of the

tuning parameter values; furthermore, the tuning process was performed with significantly less iteration, in comparison to an

exhaustive search, due to the learning capability of the method. This benefits both static parameters as well as time varying

parameters since the method is capable of constantly adapting the tuning based on collected navigation data.

1. INTRODUCTION

Integrated navigation systems are becoming increasingly

popular, especially within the civil community. Applications

are emerging which require better coverage and availability than

is currently possible using a stand-alone satellite navigation

system. Vehicle navigation in downtown/urban areas and

personal navigation in heavily treed environments are typical

examples of these applications.

The combination of GPS with INS is a robust solution for harsh

environments where the GPS signals are frequently blocked or

lost due to multipath. When available, GPS can be used to

provide absolute positions, and when the GPS signals are

blocked the INS can be relied upon for the navigation solution

since these sensors are fully self-contained and do not rely upon

external signals. Furthermore, the absolute positions from GPS

can filter and minimize the cumulative drift of the dead

reckoning inertial sensors. This creates a continuous navigation

solution with the accuracy determined by the quality of both the

GPS signals and inertial sensors used.

When integrated together, the largest errors often occur during

periods of long GPS signal outages. When used as a primary

navigation tool, an INS displays quadratic position error drifts

with respect to time due to integration of errors from previous

epochs [Barshan et al, 1995]. The magnitude of these drifts

depends largely on the error characteristics of the inertial

sensors. Navigation grade sensors can display errors of less

than a meter over several minutes; while micro-electro

mechanical sensors (MEMS) can drift several hundred meters

within this same time span [Yudan et al, 2005]. Many civil

applications are restricted to the use of MEMS inertial

measurement units (IMUs) due to cost, size and regulatory

restrictions of higher grade sensors. Furthermore, the use of

differential GPS is rarely available for everyday use. Single

point mode GPS (SGPS) combined with MEMS grade IMUs is

currently the only practical choice for civil applications, and is

the focus of this paper.

2. KALMAN FILTERING AND MEMS SENSORS

The Kalman Filter is a useful tool for combining GPS and INS

measurements. Several variants of the filter exist, such as the

Linearized Kalman Filter (LKF), the Extended Kalman Filter

(EKF) and the Unscented Kalman Filter (UKF). The EKF was

used for the analysis in this paper due to its popularity among

many designers of integrated navigation systems, but as will be

shown, the general approach and conclusions can be made for

any filter that requires a priori tuning parameters, regardless of

what these parameters represent.

The EKF combines measurements from SGPS with those of a

MEMS IMU using certain a priori information The filter

requires knowledge of the system and measurement dynamics as

well as a statistical description of the system noises,

measurement errors and uncertainty in the dynamic models

[Weston and Titterton, 1997]. This includes the noise

characteristics of both the MEMS and SGPS updates. The filter

then takes several assumptions, such as white noise behaviour

and Gauss-Markov properties, to weight the measurements in an

optimal manner.

The EKF used for this IMU/GPS integration contained 21 error

states: 3 states each for the positions, the velocities, the

attitudes, the accelerometer biases, the accelerometer scale

factors, the gyro biases and the gyro scale factors. The biases of

both the accelerometers and gyroscopes were fed back and

compensated before each GPS epoch.

3. RESIDUAL ERRORS DUE TO POOR TUNING AND

MEMS VARIABILITY

If the EKF estimation were perfect then the position errors

would roughly follow a quadratic drift with time due to

integration of time correlated stochastic sensor errors at each

epoch. Since it is impossible to predict random errors at an

individual epoch, this would be considered the ideal state when

navigating with inertial sensors. In practical applications,

several factors prevent this optimal situation when using a

Kalman Filter.

Since the EKF requires a priori knowledge, in the form of

statistical tuning parameters, its performance can vary. For

example, poor initial estimates of the MEMS noise levels can

greatly affect the drift rate experienced during GPS signal

outages due to accumulation of errors from the innovation

sequence. Proper tuning of the filter is best analyzed during

periods of GPS signal outages [Graefe et al]. During these

times, the positional errors accumulate due to the integrated

inertial errors. Therefore, if not properly tuned, the filter

position errors can grow more rapidly with time.

4. TYPICAL TUNING APPROACH

The actual tuning process for a Kalman filter can be very

iterative and time consuming. It usually starts from a static

estimate of the errors achieved through an Allan Variance

analysis [Shin, 2005]. This initial estimate is typically

optimistic, since many hours or even days of static data needs to

be collected. It is often used as a starting point for further

tuning, which is done by taking discrete steps in the tuning

parameters and evaluating the position drift during GPS

outages.

To determine the order of parameter tuning a priority setting

can be made by evaluating the drift caused by various

parameters during GPS outages. The gyro bias is usually tuned

first since it contributes the largest position error. An

uncompensated gyro bias in the horizontal direction introduces

an angular error proportional to time, as in (1).

tbdtb gg == �δθ
 (1)

This angle error causes misalignment of the IMU and projects

the acceleration vector in the wrong direction, which causes an

acceleration error proportional to time. This in turn creates a

positional error proportional to time cubed after double

integration, as in (2).

�� === 32

6

1

2

1
tbdtgtbvdtp ggδ

 (2)

A similar analysis can be done for uncompensated

accelerometer biases to reveal that they produce errors in

position proportional to time squared, as in (3). Therefore, the

gyro bias parameters are often tuned first, with others, such as

the accelerometer biases, angular random walks and velocity

random walks, tuned after.

�� === 2

2

1
tbtdtbvdtp aaδ

 (3)

Statistically, these parameters have to be tested on a significant

number of GPS outages covering a variety of dynamics, which

is hard to do without extensive field test data. Also, the size of

the discrete steps taken to tune the parameters affects the

optimality of the final parameters. Therefore, the optimal

parameters are rarely known in reality; the parameters chosen,

using this method, are often close to optimal but not necessarily

ideal.

The use of MEMS IMUs further complicates the problem of

accurate tuning [Basil et al, 2004]. Even similar MEMS

devices can display different error characteristics and since

tuning individual filters is expensive in comparison to the cost

of the sensors, general tuning parameters are used for similar

units. An example of different noise characteristics for three

similar MEMS sensors is shown in Fig. 1. The Allan variance

analysis for three Panasonic EWTS82 MEMS gyroscopes is

given. The trend for the three gyros is similar but not exactly

the same. Gyro 1 is quite different from gyros 2 and 3, which

would result in different noise characteristics for tuning. The

Allan standard deviations corresponding to cluster times of one

second denote the sensors white noise (angular random walks),

and the points of zero slopes indicate the sensor bias

instabilities. These noise values are different for the three

EWTS82 MEMS gyros and common values would not

optimally represent individual noise characteristics.

Figure 1. Allan standard deviation versus cluster times for three

Panasonic EWTS82 MEMS gyros

There are also other residual errors which can be different for

each unit. Axes misalignment involves non-orthogonality in the

body frame when the sensors are mounted in manufacturing.

This can be within the individual accelerometer or gyroscope

triads (non-orthogonality), and can also appear in the relative

orientations of the two triads with respect to one another. The

misalignment between axes within an individual triad can be

calibrated using special techniques, but for MEMS sensors this

is usually a time consuming and expensive process that is not

performed. Temperature also affects the tuning parameters,

especially the scale factors and bias estimates. These errors are

often left as residual errors for the EKF to estimate.

Unfortunately, estimates are prone to change with dynamics and

temperature, so a stable estimate has to be taken using a long

correlation time and cannot reflect quickly changing errors

[Shin, 2005].

5. REINFORCEMENT LEARNING

5.1 The Problem

Reinforcement learning (RL) involves learning what to do in

certain situations, i.e. mapping correct actions to situations. An

analogy to RL can be drawn when analyzing how babies learn

to walk; through a combination of watching someone else walk

and through their own trial and error interaction with their

environment. They receive reinforcement through a number of

signals such as falling (failure) or not falling (success). If

successful, this reinforces to them that their previous actions

were correct for walking.

RL has typically been used for intelligent game theory, such as

backgammon [Tesauro, 1995], but lately it has begun to emerge

in fields such as system control, dynamic prediction and even

quality control. Its use in Kalman filter tuning is beneficial in

helping the system learn how to properly tune the filter. Even

with the traditional approach there are many assumptions that

are taken such as the order of tuning and the size of discrete

steps taken. Furthermore, the curse of dimensionality prevents

optimal use of an exhaustive search method [Bellman, 1957].

As an example, consider the case of tuning 4 parameters, each

having 20 discrete steps. The number of iterations to fully

explore all combinations would be 204 or 160,000 iterations. If

we wanted to generate simulated GPS outages using a forward

KF on real navigation data that took 1 minute to process then

this iterative tuning would take over 44 days to complete. Of

course, in real applications this tuning is significantly reduced

due to the intelligent input by the designer. In the case of the

RL, it is this intelligent tuning that is trying to be replicated in

an automatic and more optimal fashion.

5.2 RL Nomenclature

In any RL problem there is always an interaction between an

agent and the environment, similar to a baby and its physical

surroundings. Within these two, the RL problem contains a

policy, a reward function, a value function and sometimes a

model (full/partial) of the environment.

A policy explains how the agent behaves in a given scenario, or

in other words, what actions should be taken in a given state.

Policies are the most important element of the problem, and

once learned they are all that is needed to determine appropriate

behavior. In the case of tuning an EKF, the policy would

roughly explain how to change the tuning parameters in order to

achieve better estimates of the true value during the tuning

process.

A reward function associates individual state/action pairs of the

environment to a number that describes the positive or negative

reward. The reward function is typically used to alter the

optimal policy depending on what is perceived to be good or

bad by the agent. For EKF tuning, if we are maximizing the

reward function, then an immediate reward could be the

negative average of several simulated GPS outage drifts over a

fixed outage length.

A value function defines what is good for long-term rewards.

Typically, an RL problem attempts to maximize the value

function over individual rewards so that the long-term success

of the policy is satisfied. When tuning the EKF, some rewards

when changing an individual tuning parameter might make the

GPS outage errors larger, but once other parameters are tuned

the end results might actually be better. In this case the long-

term rewards are most important once future states are taken

into account along with the rewards of those states.

The discounted returns are often used to relate newer and older

rewards. Equation (4) gives the discounted reward Rt using all

future rewards discounted by �, which is always between 0 and

1.

 13

2

21 ... +++++ ++++= nt

n

tttt rrrrR γγγ
 (4)

Finally, some RL systems use models of the environment.

These models can be provided ahead of time, if sufficient

information is available, or they can be learned through trial and

error, and then incorporated into the policy. When tuning a KF

the model is first developed through trial and error learning, and

then applied to help guide future tuning decisions.

In general, the interaction between the agent and environment

can be visualized as in Fig. 2 [Sutton, 1998]. The agent acts on

the environment, which in turn provides a reward back to the

agent based on the current state. This continues for the next

state/action pair in a recursive manner.

Figure 2: Agent-environment interaction [Sutton, 1998]

5.3 The RL Approach

Since the RL algorithm estimates value functions and attempts

to maximize these over future iterations, we define the value of

taking action a in state s under policy p as:

},|{),(aassREasQ tttp

p ===
 (5)

And from (4) we can insert the discounted reward as:

},|{),(
0

1 aassrEasQ tt

n

nt

n

p

p === �
∞

=

++γ
 (6)

This last equation says that as the number of states encountered

reaches infinity, the average reward will approach the actual

state value function. This form of learning is a type of Monte

Carlo method. The most commonly used RL algorithms use a

combination of modeling (dynamic programming) and trial and

error learning (Monte Carlo methods).

In terms of dynamic programming, RL learning follows

particular recursive relationships, such as the Bellman

optimality equation for Q*(s,a) shown here, starting from (6):

)]]',([max[),(

},|)]',([max{),(

},|{),(

1

*

''

'

'

*

1

*

'1

*

0

21

asQRPasQ

aassasQrEasQ

aassrrEasQ

ta

a

ss

s

a

ss

tttat

tt

n

nt

n

tp

p

+

++

∞

=
+++

+=

==+=

==+=

�

�

γ

γ

γγ

 (7)

The * denotes the optimal estimate, while P represents the

probability of the next state s’ from the current state s and

action a, and finally, R gives the expected value of the reward.

The importance of (7) is that if we have the optimal Q then the

agent does not even have to look one step ahead, all it has to do

is pick the action that maximizes the state/action pair of Q.

Unfortunately, explicitly solving the Bellman equation is similar

to performing an exhaustive search. Thus, RL theory attempts

to approximate solutions to this optimality equation by

‘experiencing’ the transitions instead of actually knowing them

ahead of time.

To obtain an updated policy iteratively, generalized policy

iteration (GPI) is used. Iteration is needed since there are two

simultaneous processes: one makes the value function

consistent with the current policy, and the other makes the

policy greedy with respect to the current value function [Sutton,

1998]. The term greedy means that it usually chooses the

policy with the maximum value function (if the value function

is being maximized). There is always some chance that the

maximum value function policy is not chosen, and this enables

further trial and error learning known as exploration.

This leads to the core RL algorithm used in this paper: temporal

difference (TD) learning. TD learning uses a combination of

DP and Monte Carlo methods. TD can learn directly from

experience, similar to Monte Carlo, and TD can also provide

estimates based on previously learned estimates, similar to DP.

For any RL algorithm, incremental learning is the key to

updating a policy, as is the case for TD learning. The basic

formula for this update is:

]arg[OldetTStepOldNew −+=

 (8)

The bracketed expression is an error in the old estimate, and is

reduced by taking a step towards the Target value. When

learning Q values, the update can be expressed as:

)],(),([),(),(111 ttttttttt asQasQrasQasQ −++= +++ γα
 (9)

In (9), the step size is � and the target is expanded into the first

two terms within the brackets, taken from (7). This method of

updating the Q values is commonly referred to as SARSA since

it uses the following information: st, at, rt+1, st+1, at+1. The

pseudocode for the SARSA updating algorithm, combined with

a greedy choice of actions is given in Fig 3.

Figure 3: SARSA pseudocode

An episode is defined as the end of the game or process, but is

not critical to the implementation of SARSA. For instance, in

Initialize Q(s,a)

For each episode:

 Initialize state s

Choose a from s using policy from Q

(greedy)

For each step of episode

 Take action a

 Experience r and state s’

Choose a’ from s’ using policy

from Q(greedy)

Update Q using (9)

Set s=s’, a=a’

action

 at

reward

rt

state

 st

Agent

Environment

many games such as checkers there exist distinct episodes, such

as the end of a game, and new games are played repeatedly. But

for some applications there may be only a single episode,

known as a continuous episode, in which case the steps of the

individual episode direct the learning. For the example of

checkers a step would be a single move within the game.

The advantage of this TD learning method over Monte Carlo

and DP methods are numerous from an applications

perspective. TD methods learn estimates based on previous

estimates, but unlike Monte Carlo methods they do not need to

wait until the end of an episode, they can update after each step.

In comparison to DP methods they do not require a model of

the environment, but instead they can build this model through

interactions. These two advantages are the main reasons why

RL algorithms are better suited to on-line applications, such as

tuning a KF incrementally as navigation data is collected.

6. RESULTS USING A TRADITIONAL APPROACH

As a comparative baseline, a traditional tuning approach was

performed. Five EKF parameters were tuned in order as

follows:

1. GPS position update scaling

2. Gyro bias standard deviation

3. Accelerometer bias standard deviation

4. Gyro angular random walk (arw)

5. Accelerometer velocity random walk (vrw)

The exact values of these parameters are unknown in reality

since the tested integration system consisted of SGPS from a

NovAtel OEM4 receiver and inertial measurements from

MEMS sensors (Analog Devices Inc.). Rough estimates of the

true values were obtained through static tests, and appropriate

ranges around these values were set as shown in Table 1.

Parameter

(units)

Min Max Discrete step

GPS pos

scale

(unitless)

0.05 2.05 0.5

Gyro bias std

(deg/h)

200 1000 200

Accel bias

std(mGal)

2000 10000 2000

arw

(deg/sqrt(h))

0.5 2 0.5

vrw

(m/s/sqrt(h))

0.5 5.5 1

Table 1: Tuning parameter ranges

Due to the curse of dimensionality not all combinations of these

tuning parameters could be tested. Instead, the parameters were

all fixed to default values (lab values) then were altered in

order. Once a parameter had been tuned, its future values were

fixed to that value. This approach resulted in 25 tuning

iterations.

This approach is clearly far from optimal since not all cases can

be considered, but this is often done in practice. It is imperative

that the correct tuning order be used, and this often depends on

the various errors within the system. But even if an appropriate

order is used, this does not guarantee that future tuning

parameter state changes will not alter current optimality of

states.

The tuning results led to the parameters in Table 2. They were

evaluated by calculating the minimum average positional drift

during eight 60 second simulated GPS outages from the L

trajectory shown in Fig 4. The forward EKF was run each time

with different a priori parameters, and the case with the lowest

errors was kept as the optimal set of parameters. The final

averaged GPS positional error drifts was found to be 135 meters

which is reasonable for this grade of MEMS IMU combined

with SGPS.

Parameter (units) Tuned value

GPS pos scale (unitless) 0.05

Gyro bias std (deg/h) 200

Accel bias std(mGal) 2000

arw (deg/sqrt(h)) 2

vrw (m/s/sqrt(h)) 5.5

Table 2: Traditional tuning method results

-5000 -4000 -3000 -2000 -1000 0 1000
-500

0

500

1000

1500

2000

2500

3000

3500

East from start (m)

N
o
rt

h
 f

ro
m

 s
ta

rt
 (

m
)

Figure 4: Tuning trajectory

7. RESULTS USING RL TUNING

7.1 EKF Tuning using SARSA

The SARSA iterative method was also applied to the same

tuning problem. An episode was defined as terminated if the

average of the GPS position drifts became less than 100 meters

or if more than 20 tuning steps were performed.

A primary difference between the RL method of tuning using

SARSA and the traditional method is that SARSA can adjust

tuning parameters in parallel. If using an exhaustive search this

would result in a total of 3125 states for the ranges and discrete

steps given in Table 1. The goal of the RL tuning was to come

up with well tuned parameters in significantly less steps than an

exhaustive approach and a better estimate than the traditional

approach.

The actions at each state were delta changes to the current state

tuning values. These deltas could be +1, -1, or 0 multipliers of

the discrete steps. The original states (tuning parameters) were

set randomly. The rewards at each step were set as the negative

value of the averaged position drift in meters, so as to maximize

total reward.

7.2 SARSA Results

The tuning iterations were stopped after 20 episodes, or 400

parallel tuning alterations. Fig. 5 shows the last 20 steps that

occurred in episode 20. This demonstrates the convergence of

the tuning to a value close to 126 meters for these specific GPS

outage drifts.

0 2 4 6 8 10 12 14 16 18 20
-138

-136

-134

-132

-130

-128

-126

-124

Steps (episode 20)

R
e

w
a

rd
s
 (

-m
)

Figure 5: Convergence of tuning in episode 20

The resulting tuning parameters for this optimal set are given in

Table 3. It can be noticed that the first two parameters are

similar to the traditional case, but the remaining three are

significantly different. This is likely a result of weighting the

GPS measurements less strongly through the larger value of the

GPS position scale (the EKF R matrix). This in turn would

create a larger dependence on the remaining parameters

governing the Q matrix, which was not the case using the

traditional tuning method. Unfortunately, without knowing the

true parameter values the only strong indicator of performance

is the averaged position drift of many simulated GPS outages.

Parameter (units) Tuned value

GPS pos scale (unitless) 0.1

Gyro bias std (deg/h) 200

Accel bias std(mGal) 8000

arw (deg/sqrt(h)) 0.5

vrw (m/s/sqrt(h)) 0.5

Table 3: RL SARSA tuning results

Other interesting values to take note of are the EKF error

estimates, which are given in the P matrix. These describe the

predicted level of errors during the GPS outages, and if the filter

is consistent they should be close to the simulated average. In

the case of the traditional tuning the P matrix positional

standard deviations were over 250 meters, while the RL SARSA

parameters resulted in P matrix values of 105 meters. Clearly,

the RL developed parameters resulted in a more consistent filter

and this is also likely due to the weighting between the R and Q

matrices through parallel tuning.

8. ADDITIONAL CONSIDERATIONS

This preliminary analysis considered only 5 tuning parameters

for an EKF. The full set of tuning parameters for a standard

EKF also involves a GPS velocity scale factor, gyro and

accelerometer scale factor standard deviations, as well as time

correlations for the biases and scale factors. These parameters

are typically considered as lesser parameters, but should be

considered in future parallel tuning to fully assess the validity of

this claim.

For other filters, such as the UKF, additional tuning parameters

are also present such as the sigma points. It is not the intent of

this paper to tune individual filters, but to show that regardless

of the parameters or filter type, the a priori information can be

developed in an on-line method without human

intervention/tuning.

Finally, for higher grade IMUs that contain strict manufacturer

specifications, the tuned values should be within a certain

threshold of these values. The initial purpose of this method

was for tuning MEMS integrated systems, but if using higher

grade units this consideration should be built into the algorithm.

9. CONCLUSIONS

A new technique for tuning a Kalman filter was presented using

reinforcement learning. This method can be applied on-line as

navigation data is collected to further update the a priori

parameters needed for the filter.

In terms of performance two distinct indicators were used: time

to tune the filter and accuracy of the tuning. In comparison to

an exhaustive search the tuning took about 400 iterations to

converge, which was significantly less than performing an

exhaustive search of 3125 iterations. For accuracy, the method

was compared to a traditional tuning approach. In this case the

tuning converged to 126 meters with the RL method and 135

meters with a traditional method.

10. ACKNOLEDGEMENTS

This work was supported in part by NSERC and the GEOIDE

NCE. Eun-Hwan Shin is also acknowledged as a co-author of

the Kalman Filter toolbox used to generate the Kalman Filter

results.

11. REFERENCES

Basil, H., Anathasayanam, M. and Puri, S. (2004): Adaptive

Kalman Filter Tuning in Integration of Low-Cost MEMS-

INS/GPS, AIAA Guidance, Navigation and Control

Conference, Providence, RI, Aug. 16-19.

Bellman, R.E. (1957): Dynamic Programming. Princeton

University Press, Princeton.

A. Cichocki, A., Unbehauen, R. (1996): Neural Networks for

Optimization and Signal Processing, Wiley, New York.

Graefe, G., Caspary, W., Heister, H., Klemm, J. and Sever, M.

The road data acquisition system MoSES, Applanix POSLV

product article, available:

http://www.applanix.com/products/poslv_articles.php

Hou, H. Kalman filter fine tuning report, MMSS internal

document, unpublished.

Shin, E-H. (2005): Estimation Techniques for Low-Cost Inertial

Navigation, PhD Thesis, University of Calgary Report 20219,

May 2005. Available:

http://www.geomatics.ucalgary.ca/research/publications/GradTh

eses.html

Sutton, R .S and Barto, A. G. (1998): Reinforcement Learning

An Introduction. Cambridge, Massachusetts, The MIT Press.

Tesauro, G.J. (1995): Temporal difference learning and TD-

Gammon. Communications of the ACM, 38:58-68.

Watkins, C.J.C.H. (1989): Learning from Delayed Rewards.

Ph.D. thesis, Cambridge University.

Weston, J.L., Titterton, D.H. (1997): Strapdown Inertial

Navigation Technology, London: Peter Peregrinus Ltd.

Yudan, Y., Grejner-Brzezinska, D.A. and Toth, C.K. (2005):

Performance Analysis of a Low Cost MEMS IMU and GPS

Integration, Institute of Navigation annual meeting, June 27-29,

Cambridge, MA.

