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ABSTRACT: 

 

 
The demand for civil navigation systems in harsh environments has been growing over the last several years.  The Global 

Positioning System (GPS) has been the backbone of most current navigation systems, but its usefulness in downtown urban 

environments or under heavily treed terrain is limited due to signal blockages.  To help bridge these signal gaps inertial navigation 

systems (INS) have been suggested.  An integrated INS/GPS system can provide a continuous navigation solution regardless of the 

environment. 

 

For civil applications the use of MEMS sensors are needed due to cost, size and regulatory restrictions of higher grade inertial 

units.  The Kalman Filter has traditionally been used to optimally weight the GPS and INS measurements, but when using MEMS 

grade sensors the tuned parameters are not always the optimal ones.  In these cases, the position errors during loss of the GPS 

signals accumulate faster than the ideally tuned case.  To help correct imperfect tuning, a reinforcement learning algorithm was 

used to tune the Kalman filter parameters as navigation data was collected. 

 

Tuning any Kalman filter is a difficult task and is often done before navigation with the aid of the filter designer.  This process often 

entails much iteration using the expertise of the designer, and is in no way guaranteed to result in optimal parameters.  

Reinforcement learning is an intelligent solution to this problem which uses a combination of dynamic programming and trial and 

error exploration to develop a set of optimal parameters. 

 

In comparison to a typical iterative approach, it was found that using reinforcement learning led to slightly better estimates of the 

tuning parameter values; furthermore, the tuning process was performed with significantly less iteration, in comparison to an 

exhaustive search, due to the learning capability of the method.  This benefits both static parameters as well as time varying 

parameters since the method is capable of constantly adapting the tuning based on collected navigation data. 

 

 

1. INTRODUCTION 

Integrated navigation systems are becoming increasingly 

popular, especially within the civil community.  Applications 

are emerging which require better coverage and availability than 

is currently possible using a stand-alone satellite navigation 

system.  Vehicle navigation in downtown/urban areas and 

personal navigation in heavily treed environments are typical 

examples of these applications. 

 

The combination of GPS with INS is a robust solution for harsh 

environments where the GPS signals are frequently blocked or 

lost due to multipath.  When available, GPS can be used to 

provide absolute positions, and when the GPS signals are 

blocked the INS can be relied upon for the navigation solution 

since these sensors are fully self-contained and do not rely upon 

external signals.  Furthermore, the absolute positions from GPS 

can filter and minimize the cumulative drift of the dead 

reckoning inertial sensors.  This creates a continuous navigation 

solution with the accuracy determined by the quality of both the 

GPS signals and inertial sensors used. 

 

When integrated together, the largest errors often occur during 

periods of long GPS signal outages.  When used as a primary 

navigation tool, an INS displays quadratic position error drifts 

with respect to time due to integration of errors from previous 

epochs [Barshan et al, 1995].  The magnitude of these drifts 

depends largely on the error characteristics of the inertial 

sensors.  Navigation grade sensors can display errors of less 

than a meter over several minutes; while micro-electro 

mechanical sensors (MEMS) can drift several hundred meters 

within this same time span [Yudan et al, 2005].  Many civil 

applications are restricted to the use of MEMS inertial 

measurement units (IMUs) due to cost, size and regulatory 

restrictions of higher grade sensors.  Furthermore, the use of 

differential GPS is rarely available for everyday use.  Single 

point mode GPS (SGPS) combined with MEMS grade IMUs is 

currently the only practical choice for civil applications, and is 

the focus of this paper. 

 

 

2. KALMAN FILTERING AND MEMS SENSORS 

The Kalman Filter is a useful tool for combining GPS and INS 

measurements.  Several variants of the filter exist, such as the 

Linearized Kalman Filter (LKF), the Extended Kalman Filter 

(EKF) and the Unscented Kalman Filter (UKF).  The EKF was 

used for the analysis in this paper due to its popularity among 



 

many designers of integrated navigation systems, but as will be 

shown, the general approach and conclusions can be made for 

any filter that requires a priori tuning parameters, regardless of 

what these parameters represent. 

 

The EKF combines measurements from SGPS with those of a 

MEMS IMU using certain a priori information  The filter 

requires knowledge of the system and measurement dynamics as 

well as a statistical description of the system noises, 

measurement errors and uncertainty in the dynamic models 

[Weston and Titterton, 1997].  This includes the noise 

characteristics of both the MEMS and SGPS updates.  The filter 

then takes several assumptions, such as white noise behaviour 

and Gauss-Markov properties, to weight the measurements in an 

optimal manner. 

 

The EKF used for this IMU/GPS integration contained 21 error 

states: 3 states each for the positions, the velocities, the 

attitudes, the accelerometer biases, the accelerometer scale 

factors, the gyro biases and the gyro scale factors.  The biases of 

both the accelerometers and gyroscopes were fed back and 

compensated before each GPS epoch. 

 

3. RESIDUAL ERRORS DUE TO POOR TUNING AND 

MEMS VARIABILITY 

If the EKF estimation were perfect then the position errors 

would roughly follow a quadratic drift with time due to 

integration of time correlated stochastic sensor errors at each 

epoch.  Since it is impossible to predict random errors at an 

individual epoch, this would be considered the ideal state when 

navigating with inertial sensors.  In practical applications, 

several factors prevent this optimal situation when using a 

Kalman Filter. 

 

Since the EKF requires a priori knowledge, in the form of 

statistical tuning parameters, its performance can vary.  For 

example, poor initial estimates of the MEMS noise levels can 

greatly affect the drift rate experienced during GPS signal 

outages due to accumulation of errors from the innovation 

sequence.  Proper tuning of the filter is best analyzed during 

periods of GPS signal outages [Graefe et al].   During these 

times, the positional errors accumulate due to the integrated 

inertial errors.  Therefore, if not properly tuned, the filter 

position errors can grow more rapidly with time. 

 

4. TYPICAL TUNING APPROACH 

The actual tuning process for a Kalman filter can be very 

iterative and time consuming.  It usually starts from a static 

estimate of the errors achieved through an Allan Variance 

analysis [Shin, 2005].  This initial estimate is typically 

optimistic, since many hours or even days of static data needs to 

be collected.  It is often used as a starting point for further 

tuning, which is done by taking discrete steps in the tuning 

parameters and evaluating the position drift during GPS 

outages. 

 

To determine the order of parameter tuning a priority setting 

can be made by evaluating the drift caused by various 

parameters during GPS outages.  The gyro bias is usually tuned 

first since it contributes the largest position error.  An 

uncompensated gyro bias in the horizontal direction introduces 

an angular error proportional to time, as in (1). 

 

 

tbdtb gg == �δθ
                                        (1) 

 

 

This angle error causes misalignment of the IMU and projects 

the acceleration vector in the wrong direction, which causes an 

acceleration error proportional to time.  This in turn creates a 

positional error proportional to time cubed after double 

integration, as in (2). 
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A similar analysis can be done for uncompensated 

accelerometer biases to reveal that they produce errors in 

position proportional to time squared, as in (3).  Therefore, the 

gyro bias parameters are often tuned first, with others, such as 

the accelerometer biases, angular random walks and velocity 

random walks, tuned after. 
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Statistically, these parameters have to be tested on a significant 

number of GPS outages covering a variety of dynamics, which 

is hard to do without extensive field test data.  Also, the size of 

the discrete steps taken to tune the parameters affects the 

optimality of the final parameters.  Therefore, the optimal 

parameters are rarely known in reality; the parameters chosen, 

using this method, are often close to optimal but not necessarily 

ideal. 

 

The use of MEMS IMUs further complicates the problem of 

accurate tuning [Basil et al, 2004].  Even similar MEMS 

devices can display different error characteristics and since 

tuning individual filters is expensive in comparison to the cost 

of the sensors, general tuning parameters are used for similar 

units.  An example of different noise characteristics for three 

similar MEMS sensors is shown in Fig. 1.  The Allan variance 

analysis for three Panasonic EWTS82 MEMS gyroscopes is 

given.  The trend for the three gyros is similar but not exactly 

the same.  Gyro 1 is quite different from gyros 2 and 3, which 

would result in different noise characteristics for tuning.  The 

Allan standard deviations corresponding to cluster times of one 

second denote the sensors white noise (angular random walks), 

and the points of zero slopes indicate the sensor bias 

instabilities.  These noise values are different for the three 

EWTS82 MEMS gyros and common values would not 

optimally represent individual noise characteristics. 

 



 

 
 

Figure 1. Allan standard deviation versus cluster times for three 

Panasonic EWTS82 MEMS gyros 

 

There are also other residual errors which can be different for 

each unit.  Axes misalignment involves non-orthogonality in the 

body frame when the sensors are mounted in manufacturing.  

This can be within the individual accelerometer or gyroscope 

triads (non-orthogonality), and can also appear in the relative 

orientations of the two triads with respect to one another.  The 

misalignment between axes within an individual triad can be 

calibrated using special techniques, but for MEMS sensors this 

is usually a time consuming and expensive process that is not 

performed.  Temperature also affects the tuning parameters, 

especially the scale factors and bias estimates.  These errors are 

often left as residual errors for the EKF to estimate.  

Unfortunately, estimates are prone to change with dynamics and 

temperature, so a stable estimate has to be taken using a long 

correlation time and cannot reflect quickly changing errors 

[Shin, 2005]. 

 
5. REINFORCEMENT LEARNING 

5.1 The Problem 

Reinforcement learning (RL) involves learning what to do in 

certain situations, i.e. mapping correct actions to situations.  An 

analogy to RL can be drawn when analyzing how babies learn 

to walk; through a combination of watching someone else walk 

and through their own trial and error interaction with their 

environment.  They receive reinforcement through a number of 

signals such as falling (failure) or not falling (success).  If 

successful, this reinforces to them that their previous actions 

were correct for walking. 

 

RL has typically been used for intelligent game theory, such as 

backgammon [Tesauro, 1995], but lately it has begun to emerge 

in fields such as system control, dynamic prediction and even 

quality control.  Its use in Kalman filter tuning is beneficial in 

helping the system learn how to properly tune the filter.  Even 

with the traditional approach there are many assumptions that 

are taken such as the order of tuning and the size of discrete 

steps taken.  Furthermore, the curse of dimensionality prevents 

optimal use of an exhaustive search method [Bellman, 1957]. 

 

As an example, consider the case of tuning 4 parameters, each 

having 20 discrete steps.  The number of iterations to fully 

explore all combinations would be 204 or 160,000 iterations.  If 

we wanted to generate simulated GPS outages using a forward 

KF on real navigation data that took 1 minute to process then 

this iterative tuning would take over 44 days to complete.  Of 

course, in real applications this tuning is significantly reduced 

due to the intelligent input by the designer.  In the case of the 

RL, it is this intelligent tuning that is trying to be replicated in 

an automatic and more optimal fashion. 

 

5.2 RL Nomenclature 

In any RL problem there is always an interaction between an 

agent and the environment, similar to a baby and its physical 

surroundings.  Within these two, the RL problem contains a 

policy, a reward function, a value function and sometimes a 

model (full/partial) of the environment. 

 

A policy explains how the agent behaves in a given scenario, or 

in other words, what actions should be taken in a given state.  

Policies are the most important element of the problem, and 

once learned they are all that is needed to determine appropriate 

behavior.  In the case of tuning an EKF, the policy would 

roughly explain how to change the tuning parameters in order to 

achieve better estimates of the true value during the tuning 

process. 

 

A reward function associates individual state/action pairs of the 

environment to a number that describes the positive or negative 

reward.  The reward function is typically used to alter the 

optimal policy depending on what is perceived to be good or 

bad by the agent.  For EKF tuning, if we are maximizing the 

reward function, then an immediate reward could be the 

negative average of several simulated GPS outage drifts over a 

fixed outage length. 

 

A value function defines what is good for long-term rewards.  

Typically, an RL problem attempts to maximize the value 

function over individual rewards so that the long-term success 

of the policy is satisfied.  When tuning the EKF, some rewards 

when changing an individual tuning parameter might make the 

GPS outage errors larger, but once other parameters are tuned 

the end results might actually be better.  In this case the long-

term rewards are most important once future states are taken 

into account along with the rewards of those states. 

 

The discounted returns are often used to relate newer and older 

rewards.  Equation (4) gives the discounted reward Rt using all 

future rewards discounted by �, which is always between 0 and 

1. 
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Finally, some RL systems use models of the environment.  

These models can be provided ahead of time, if sufficient 

information is available, or they can be learned through trial and 

error, and then incorporated into the policy.  When tuning a KF 

the model is first developed through trial and error learning, and 

then applied to help guide future tuning decisions. 

 

In general, the interaction between the agent and environment 

can be visualized as in Fig. 2 [Sutton, 1998].  The agent acts on 

the environment, which in turn provides a reward back to the 

agent based on the current state.  This continues for the next 

state/action pair in a recursive manner. 

 

 



 

 
 

Figure 2:  Agent-environment interaction [Sutton, 1998] 

 

5.3 The RL Approach 

Since the RL algorithm estimates value functions and attempts 

to maximize these over future iterations, we define the value of 

taking action a in state s under policy p as: 
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And from (4) we can insert the discounted reward as: 
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This last equation says that as the number of states encountered 

reaches infinity, the average reward will approach the actual 

state value function.  This form of learning is a type of Monte 

Carlo method.  The most commonly used RL algorithms use a 

combination of modeling (dynamic programming) and trial and 

error learning (Monte Carlo methods). 

 

In terms of dynamic programming, RL learning follows 

particular recursive relationships, such as the Bellman 

optimality equation for Q*(s,a) shown here, starting from (6): 
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The * denotes the optimal estimate, while P represents the 

probability of the next state s’ from the current state s and 

action a, and finally, R gives the expected value of the reward. 

 

The importance of (7) is that if we have the optimal Q then the 

agent does not even have to look one step ahead, all it has to do 

is pick the action that maximizes the state/action pair of Q.  

Unfortunately, explicitly solving the Bellman equation is similar 

to performing an exhaustive search.  Thus, RL theory attempts 

to approximate solutions to this optimality equation by 

‘experiencing’ the transitions instead of actually knowing them 

ahead of time. 

 

To obtain an updated policy iteratively, generalized policy 

iteration (GPI) is used.  Iteration is needed since there are two 

simultaneous processes: one makes the value function 

consistent with the current policy, and the other makes the 

policy greedy with respect to the current value function [Sutton, 

1998].  The term greedy means that it usually chooses the 

policy with the maximum value function (if the value function 

is being maximized).  There is always some chance that the 

maximum value function policy is not chosen, and this enables 

further trial and error learning known as exploration. 

 

This leads to the core RL algorithm used in this paper: temporal 

difference (TD) learning.  TD learning uses a combination of 

DP and Monte Carlo methods.  TD can learn directly from 

experience, similar to Monte Carlo, and TD can also provide 

estimates based on previously learned estimates, similar to DP. 

 

For any RL algorithm, incremental learning is the key to 

updating a policy, as is the case for TD learning.  The basic 

formula for this update is:  
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The bracketed expression is an error in the old estimate, and is 

reduced by taking a step towards the Target value.  When 

learning Q values, the update can be expressed as: 
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In (9), the step size is � and the target is expanded into the first 

two terms within the brackets, taken from (7).  This method of 

updating the Q values is commonly referred to as SARSA since 

it uses the following information: st, at, rt+1, st+1, at+1.  The 

pseudocode for the SARSA updating algorithm, combined with 

a greedy choice of actions is given in Fig 3. 

 

 
 

Figure 3:  SARSA pseudocode 

 

An episode is defined as the end of the game or process, but is 

not critical to the implementation of SARSA.  For instance, in 

Initialize Q(s,a) 

For each episode: 

 Initialize state s 

Choose a from s using policy from Q 

(greedy) 

For each step of episode 

 Take action a 

 Experience r and state s’ 

Choose a’ from s’ using policy 

from Q(greedy) 

Update Q using (9) 

Set s=s’, a=a’ 

action 

       at 

reward 

rt 

state 

     st 

Agent 

Environment 



 

many games such as checkers there exist distinct episodes, such 

as the end of a game, and new games are played repeatedly.  But 

for some applications there may be only a single episode, 

known as a continuous episode, in which case the steps of the 

individual episode direct the learning.  For the example of 

checkers a step would be a single move within the game. 

 

The advantage of this TD learning method over Monte Carlo 

and DP methods are numerous from an applications 

perspective.  TD methods learn estimates based on previous 

estimates, but unlike Monte Carlo methods they do not need to 

wait until the end of an episode, they can update after each step.  

In comparison to DP methods they do not require a model of 

the environment, but instead they can build this model through 

interactions.  These two advantages are the main reasons why 

RL algorithms are better suited to on-line applications, such as 

tuning a KF incrementally as navigation data is collected. 

 

6. RESULTS USING A TRADITIONAL APPROACH 

As a comparative baseline, a traditional tuning approach was 

performed.  Five EKF parameters were tuned in order as 

follows: 

 

1. GPS position update scaling 

2. Gyro bias standard deviation 

3. Accelerometer bias standard deviation 

4. Gyro angular random walk (arw) 

5. Accelerometer velocity random walk (vrw) 

 

The exact values of these parameters are unknown in reality 

since the tested integration system consisted of SGPS from a 

NovAtel OEM4 receiver and inertial measurements from 

MEMS sensors (Analog Devices Inc.).  Rough estimates of the 

true values were obtained through static tests, and appropriate 

ranges around these values were set as shown in Table 1. 

 

 

 

 

 

 

Parameter 

(units) 

Min Max Discrete step 

GPS pos 

scale 

(unitless) 

0.05 2.05 0.5 

Gyro bias std 

(deg/h) 

200 1000 200 

Accel bias 

std(mGal) 

2000 10000 2000 

arw 

(deg/sqrt(h)) 

0.5 2 0.5 

vrw 

(m/s/sqrt(h)) 

0.5 5.5 1 

 

Table 1:  Tuning parameter ranges 

 

Due to the curse of dimensionality not all combinations of these 

tuning parameters could be tested.  Instead, the parameters were 

all fixed to default values (lab values) then were altered in 

order.  Once a parameter had been tuned, its future values were 

fixed to that value.  This approach resulted in 25 tuning 

iterations. 

 

This approach is clearly far from optimal since not all cases can 

be considered, but this is often done in practice.  It is imperative 

that the correct tuning order be used, and this often depends on 

the various errors within the system.  But even if an appropriate 

order is used, this does not guarantee that future tuning 

parameter state changes will not alter current optimality of 

states. 

 

The tuning results led to the parameters in Table 2.  They were 

evaluated by calculating the minimum average positional drift 

during eight 60 second simulated GPS outages from the L 

trajectory shown in Fig 4.  The forward EKF was run each time 

with different a priori parameters, and the case with the lowest 

errors was kept as the optimal set of parameters.  The final 

averaged GPS positional error drifts was found to be 135 meters 

which is reasonable for this grade of MEMS IMU combined 

with SGPS. 

 

 

Parameter (units) Tuned value 

GPS pos scale (unitless) 0.05 

Gyro bias std (deg/h) 200 

Accel bias std(mGal) 2000 

arw (deg/sqrt(h)) 2 

vrw (m/s/sqrt(h)) 5.5 

 

Table 2:  Traditional tuning method results 
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Figure 4:  Tuning trajectory 

 

7. RESULTS USING RL TUNING 

7.1 EKF Tuning using SARSA 

The SARSA iterative method was also applied to the same 

tuning problem.  An episode was defined as terminated if the 

average of the GPS position drifts became less than 100 meters 

or if more than 20 tuning steps were performed. 

 

A primary difference between the RL method of tuning using 

SARSA and the traditional method is that SARSA can adjust 

tuning parameters in parallel.  If using an exhaustive search this 

would result in a total of 3125 states for the ranges and discrete 

steps given in Table 1.  The goal of the RL tuning was to come 

up with well tuned parameters in significantly less steps than an 



 

exhaustive approach and a better estimate than the traditional 

approach. 

 

The actions at each state were delta changes to the current state 

tuning values.  These deltas could be +1, -1, or 0 multipliers of 

the discrete steps.  The original states (tuning parameters) were 

set randomly.  The rewards at each step were set as the negative 

value of the averaged position drift in meters, so as to maximize 

total reward. 

 

7.2 SARSA Results 

The tuning iterations were stopped after 20 episodes, or 400 

parallel tuning alterations.  Fig. 5 shows the last 20 steps that 

occurred in episode 20.  This demonstrates the convergence of 

the tuning to a value close to 126 meters for these specific GPS 

outage drifts. 
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Figure 5:  Convergence of tuning in episode 20 

 

The resulting tuning parameters for this optimal set are given in 

Table 3.  It can be noticed that the first two parameters are 

similar to the traditional case, but the remaining three are 

significantly different.  This is likely a result of weighting the 

GPS measurements less strongly through the larger value of the 

GPS position scale (the EKF R matrix).  This in turn would 

create a larger dependence on the remaining parameters 

governing the Q matrix, which was not the case using the 

traditional tuning method.  Unfortunately, without knowing the 

true parameter values the only strong indicator of performance 

is the averaged position drift of many simulated GPS outages. 

 

 

Parameter (units) Tuned value 

GPS pos scale (unitless) 0.1 

Gyro bias std (deg/h) 200 

Accel bias std(mGal) 8000 

arw (deg/sqrt(h)) 0.5 

vrw (m/s/sqrt(h)) 0.5 

 

Table 3:  RL SARSA tuning results 

 

Other interesting values to take note of are the EKF error 

estimates, which are given in the P matrix.  These describe the 

predicted level of errors during the GPS outages, and if the filter 

is consistent they should be close to the simulated average.  In 

the case of the traditional tuning the P matrix positional 

standard deviations were over 250 meters, while the RL SARSA 

parameters resulted in P matrix values of 105 meters.  Clearly, 

the RL developed parameters resulted in a more consistent filter 

and this is also likely due to the weighting between the R and Q 

matrices through parallel tuning. 

 

8. ADDITIONAL CONSIDERATIONS 

This preliminary analysis considered only 5 tuning parameters 

for an EKF.  The full set of tuning parameters for a standard 

EKF also involves a GPS velocity scale factor, gyro and 

accelerometer scale factor standard deviations, as well as time 

correlations for the biases and scale factors.  These parameters 

are typically considered as lesser parameters, but should be 

considered in future parallel tuning to fully assess the validity of 

this claim. 

 

For other filters, such as the UKF, additional tuning parameters 

are also present such as the sigma points.  It is not the intent of 

this paper to tune individual filters, but to show that regardless 

of the parameters or filter type, the a priori information can be 

developed in an on-line method without human 

intervention/tuning. 

 

Finally, for higher grade IMUs that contain strict manufacturer 

specifications, the tuned values should be within a certain 

threshold of these values.  The initial purpose of this method 

was for tuning MEMS integrated systems, but if using higher 

grade units this consideration should be built into the algorithm. 

 

9. CONCLUSIONS 

A new technique for tuning a Kalman filter was presented using 

reinforcement learning.  This method can be applied on-line as 

navigation data is collected to further update the a priori 

parameters needed for the filter. 

 

In terms of performance two distinct indicators were used: time 

to tune the filter and accuracy of the tuning.  In comparison to 

an exhaustive search the tuning took about 400 iterations to 

converge, which was significantly less than performing an 

exhaustive search of 3125 iterations.  For accuracy, the method 

was compared to a traditional tuning approach.  In this case the 

tuning converged to 126 meters with the RL method and 135 

meters with a traditional method. 
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