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ABSTRACT: 
 
Efficient inventory and analysis of highway and road network features requires a reliable and accurate mobile mapping system 
(MMS). Advances in Geomatics technologies such as the Global Positioning System (GPS), Inertial Navigation Systems (INS), and 
laser/ultrasonic imaging sensors made it possible to offer such system. The ultimate objective of this research is to suggest a new 
INS/GPS integration technique that improves the positioning accuracy of the overall system, especially during relatively long GPS 
outages, which could be experienced by a MMS in urban canyons. If left unaided, INS position errors grow to large values due to the 
mathematical integration of sensor errors performed during the INS mechanization procedure. In case of long GPS outages, the 
MMS may suffer from an increasingly position and attitude errors over time. It was also reported that Kalman filtering may not 
provide reliable estimates of the INS position errors during relatively long GPS outages, especially when tactical and low cost INS is 
utilized for the MMS. Several artificial intelligence techniques were proposed as replacement for Kalman filtering.  However, none 
of these methods considered the time dependence nature of the INS error, which may also lead to inadequate performance during 
long GPS outages. Thus, a model capable of establishing time-dependent relationship of the INS errors during long GPS outages is 
necessary. This research proposes a dynamic neural network model for the INS position and velocity errors utilizing Input Delayed 
Neural Networks (IDNN). Such network architecture depends not only on the current input to the network but also on few previous 
inputs and outputs. While the navigation system is relying on INS during GPS outages, IDNN model mimics the patterns of the INS 
errors and provide reliable prediction of the INS position and velocity errors. The proposed IDNN model is evaluated using real field 
test INS and GPS data collected during real road tests. The results showed that the IDNN model provided at least 25% enhancements 
in the positioning accuracy if compared to Kalman filtering and other artificial intelligence models. 
 
 

1. INTRODUCTION 

1.1 

1.2 

Mobile Mapping 

With advances in Geomatics technologies such as the Global 
Positioning System (GPS), Inertial Navigation Systems (INS), 
and laser/ultrasonic imaging sensors, a considerable portion of 
such information can be collected from a moving platform [1].  
Systems that integrate the above technologies are called Mobile 
Mapping Systems (MMS). The advantage of the MMS-mode of 
operation is that data collection can be performed significantly 
faster when compared to traditional survey techniques.  
Consequently, mobile mapping systems are more economic. 
Implementation of automatic data integration techniques also 
provides substantial improvements in efficiency over traditional 
survey methods. In general, the complete MMS consists of 
three major components – a Mobile Mapping Van (MMV), a 
Georeferencing Module (GM), and a Photogrammetric and GIS 
Module (PGM) [2]. The accuracy of georeferencing relies 
mostly on the accuracy of INS/GPS data fusion module and 
how reliable the system can provide accurate positioning 
solution during GPS outages, which are usually experienced in 
urban canyons.   
 

INS/GPS 

There are several situations where GPS experience total system 
outage (due to satellite signal blockage) or deterioration of 
accuracy (due to multipath effects and clock bias error) [3]. 

Therefore, GPS is always combined with inertial navigation 
system (INS), which is a self-contained system incorporating 
three orthogonal accelerometers and three orthogonal 
gyroscopes monitoring the vehicle’s linear accelerations and 
rotation rates. However, the INS accuracy deteriorates with 
time due to the inherent sensor errors (white noise, correlated 
random noise, bias instability, and angle random walk) that 
exhibit considerable long-term growth [4]. 
 
The integration of GPS and INS, therefore, provides a 
navigation system that has superior performance in comparison 
with either a GPS or an INS stand-alone system. Kalman 
filtering (KF) was applied for number of years to provide an 
optimal INS/GPS integrated module [5]. More recently, several 
techniques based on artificial intelligence (AI) have been 
proposed to replace KF in order to eliminate some of its 
inadequacies [6]. All of the existing AI – based models relates 
the INS error at certain time instant to the INS position or 
velocity at the same instant. The major drawback of such 
models is their lack of mimicking the INS error trend at either 
the INS position or velocity during the update procedure. 
Therefore, in case of relatively long GPS outages, any of the 
existing AI–based models may not be capable of providing 
reliable and accurate positioning solution, especially for tactical 
and low cost systems [7]. 
 



 

1.3 

2.1 

Objectives 

In this research, we aim at developing an AI–based INS/GPS 
integration module to increase the accuracy and the robustness 
of MMS. Such AI-based module will be taking into 
consideration the INS error trend and thus providing better 
positioning accuracy for long GPS outages. Input delay neural 
network (IDNN) is proposed for this purpose as a dynamic 
neural network mimicking the INS error trend and models both 
the INS position and velocity errors based on the current and 
some past samples of INS position and velocity, respectively. 
This way more accurate positioning   
 

2. DYNAMIC NEURAL NETWORK 

Dynamic networks are generally more powerful than static 
networks (although somewhat more difficult to train). Because 
dynamic networks have memory, they can be trained to learn 
sequential or time-varying patterns [8]. In fact, to predict 
temporal patterns, an ANN requires two distinct components: a 
memory and an associator. The memory holds the relevant past 
information, and the associator uses the memory to predict 
future events. In this case the associator is simply a static neural 
network, and the memory is generated by a time delay unit (or 
shift register) that constitutes the tapped delay line [8]. In fact, 
the static netowrk model does not perform temporal processing 
since the vector space input encoding gives the model no 
information about the temporal relationship of the inputs. In 
fact, INS velocity or position error prediction is a procedure 
where previous states of the INS velocity and position errors 
have to be seriously considered.  
 

IDNN – Input Delay Neural Network 

The use of an internal time delay operator within the static 
network leads to the time delay neural network, also referred to 
as the Input-Delay Neural Network (IDNN). In this case, the 
static network is transformed into a dynamic network since the 
number of the embedded time delays provides the network with 
a short-term memory [8,9]. The number of neurons associated 
with the input layer is equal to the input variables; therefore, the 
IDNN integrates temporal context information implicitly and 
thus recognize temporal patterns that have arbitrary time 
intervals or arbitrary lengths of temporal effects. Thus the 
IDNN becomes suitable for situations where temporal pattern 
should be considered and is affecting the prediction accuracy, 
which is the major objective of this study. Figure 1 shows a 
single neuron with a tapped delay line that corresponds to a 
buffer containing the p most recent inputs generated by a delay 
unit operator D. It should be also noted that wi(k) are the 
synaptic weights for neuron i, and bi is its bias while G(.) is a 
sigmoid activation function associated with neuron i.  

 
Figure. 1. Single Neuron with Input Delay Line 

During the update procedure, we use a second-order back-
propagation variation namely the Levenberg-Marquardt back-
propagation (LMBP) [9]. The network training process is 
performed by providing input-output data to the network, which 
targets minimizing the error function by optimizing the network 
weights. LMBP uses the second derivative of the error matrix 
(E) to update the weights of the network in a recursive fashion.  
 

3. METHODOLOGY 

The proposed IDNN-based INS/GPS integration module 
establishes models for both INS position and velocity errors 
along the East, the North and the vertical directions, to reliably 
describe INS error trends and to compensate for their impact 
during GPS outages. The robustness of these error models will 
be guaranteed through the application of early stopping 
criterion during the update (training) procedure of the IDNN-
based module while the GPS signals is available. Moreover, the 
real-time realization will be based on non-overlap moving 
window, where the INS/GPS data window moves in real-time 
with steps equal to the window size. This windowing scheme 
has several advantages over the conventionally one time-step 
sliding window method. 
 
3.1 Model Architecture 

To provide complete navigation solution for the MMV, each of 
the three directions involves two IDNN modules; the first for 
the INS velocity error and the second for the residual INS 
position error. Along each direction, the IDNN velocity module 
processes the INS velocity at the input while providing the 
corresponding INS velocity error at the output. After correcting 
the velocity error and obtaining the position error, the modified 
INS position is the input to the IDNN position module, which 
provides the corresponding INS position error at the output. The 
IDNN modules are updated during the training procedure using 
both GPS position and velocity updates.    
 
If INS position and velocity errors are examined, one can 
determine that they are accumulative, usually grow over time 
and follow certain trend. It may not be possible to accurately 
mimic and appropriately model this trend with an AI-based 
model that relates the INS error to the corresponding INS 
output (either position or velocity) for certain time instant. 
Therefore, a collection of particular number of past INS 
position or velocity sequence has to be presented to the model 
in order to capture the trend of the error pattern, thus 
establishing accurate model of INS errors. This can be realized 
by employing the Tapped Delayed Line (TDL) approach by 
which the last m values x(t), x(t -1),..., x(t-m) of a signal x(t) 
(corresponding to either INS position or velocity) are 
simultaneously presented at the input layer of the network.  
 
In this study, one and two time-step input delay sequences will 
be considered. The second-order delay effect will be considered 
by training the IDNN model to experience, in the input layer, 
the previous one time-step sample in addition to the present INS 
position or velocity sample. Moreover, the higher-order error 
can be considered by having two and three time-step delay 
inputs. In the results, the impact of using one and two input 
delay elements will be demonstrated and discussed. 
 

 
 
 

 



 

4. ROAD TEST EXPERIMENTS 

The performance of the suggested IDNN-based INS/GPS 
integration module was examined with a field tests involving 
the CIMU navigation grade INS and a NovATel OEM-4 GPS 
receiver. Over the whole trajectory (shown in Figure 2), no 
natural GPS outages were detected, and thus the position and 
velocity information obtained from this system in the 
differential mode will be used as reference when evaluating the 
overall accuracy. The performance of the IDNN module is 
examined during artificial 100 sec GPS outages intentionally 
introduced to the trajectory in order to test its ability to 
accurately predict the INS errors and provide reliable position 
and velocity information. Four artificial GPS outages were 
selected at different locations of different vehicle dynamics so 
that the system stability and robustness can be examined.  
 
The IDNN modules were initialized and continued to update 
while the GPS signal is available. The real-time implementation 
considered 40 sec window size during the update procedure, 
which is performed to minimize the error between the IDNN 
output and the desired response such that RMSE of 0.0001 m is 
achieved. However, given the real-time implementation 
constraint of processing time, the IDNN update procedure for 
each window was terminated after 100 training epochs apart 
from the RMSE achieved.   
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Fig. 2. Test trajectory showing the locations of GPS outages. 
 
In order to examine the value of the proposed IDNN-based 
module for INS/GPS integration, it is essential to compare the 
positioning accuracy of the IDNN model to the conventional 
techniques, predominantly based on KF, which is considered as 
the base line accuracy level for vehicle positioning in MMS. 
The KF results were obtained using AINS™, a program 
developed and provided by the Mobile Multi-Sensor Systems 
Research Group at the University of Calgary, Calgary, Canada. 
This program processes the INS and GPS data using a 15 state 
KF, where the states include three position errors, three velocity 
errors, three attitude errors, three gyroscope bias errors and 
three accelerometer bias errors. 
 
5. RESULTS AND DISCUSSION 

To investigate the effect of time dependence of the INS error 
(the output of the IDNN module) on the present and past INS 
inputs (the input to the IDNN module), we examined the 
performance of the IDNN position modules during the 4 GPS 
outages. In this analysis, we compare the performance of the 

IDNN module using one time input delay element to the case of 
two input delay elements and the conventional case of non-
input delay elements. As can be depicted from Figure 3 for the 
North direction and Figure 4 for the East direction, the worst 
positioning accuracy for all GPS outages was observed for the 
case of non-input delay network architecture. Accuracy 
enhancements between 20% and 50% occurred when utilizing 
one or two-time step input delay architecture. On the other 
hand, the results clearly show that utilizing two input delay 
elements has minor improvements to the model performances if 
compared to the one input delay IDNN architecture. While the 
proposed IDNN-based module showed slight accuracy 
improvement when using two input delay elements instead of 
one, the additional delay element significantly complicated the 
update procedure and required long training time, which is not 
desirable for real-time applications.  
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Fig. 3. The position error along the North direction. 

 

0

2

4

6

8

10

12

1 2 3 4
GPS Outage #

M
ax

im
um

 P
os

iti
on

 E
rr

or
 (m

) Non Input Delay
One Time Delay Element
Two Time Delay Elements

 
Fig. 4. The position error along the East direction. 

 
By examining the above figures, it can be determined that the 
IDNN provides consistent level of accuracy for both position 
components for all GPS outages except for the East position 
component during the second GPS outage (8m error as noticed 
in Figure 4). In this particular GPS outage, the vehicle was 
subject to noticeable change along the longitude and the East 
velocity component during the whole outage, the update 
procedure (just prior to this outage) was for a training pattern 
corresponding to no longitude changes.  
 
In comparison to KF (for the same trajectory and the same 100 
sec GPS outages) the IDNN module was able to reduce the 
average position error (over the 4 GPS outages) from 8.6m to 
5.9m for along the East direction and from 7.1m to 2.7m for the 
North direction.     



 

6. CONCLUSION 

Motivated by improving positioning accuracy for MMV, this 
research introduced a new technique for INS/GPS integration 
based on IDNN. The IDNN module relies on input delay 
elements at the input layer so that the output INS position or 
velocity error is modeled based on the present and past samples 
of the corresponding INS position or velocity. The impact of 
different delay elements at the input layer on the overall 
positioning accuracy was investigated. In comparison to 
conventional KF techniques, the IDNN module showed superior 
performance for long GPS outages. 
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