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ABSTRACT: 
 
A dynamic model is the usual modus operandi of a Mobile Mapping System. The model solution, after linearization and 
discretization, is achieved using the Weighted Least-Squares (WLS) approach, which results in one of the various Kalman filter 
algorithms. However, implicit in the formulation is that neither the observation equation matrices nor the transition matrices at any 
epoch contain random entries. As such an assumption cannot always be guaranteed, we here allow random observational errors to 
enter the respective matrices. We replace the WLS by the Total-Least-Squares (TLS) principle - with or without weights - and apply 
it to this novel Dynamic Errors-in-Variables (DEIV) model, which results in what we call Total Kalman Filter (TKF).  It promises 
to offer more representative solutions to the dynamic models of Mobile Mapping Systems over existing versions of Kalman filtering. 
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1. INTRODUCTION 

Mobile Mapping Systems (MMS) are one of the new trends in 
mapping applications. A MMS has two main components: the 
mapping sensors and the navigation system. During the survey 
mission, navigation data (GPS/INS) and mapping data are 
collected simultaneously, and the navigation data are integrated 
through Kalman filtering followed by backward smoothing 
using a dynamic model; this is the usual modus operandi of a 
Mobile Mapping System (MMS).  In this process, the model 
variables of an INS, such as platform position, velocity and 
attitude, are estimated together with a number of additional 
random system parameters at a given epoch(s), as well as 
information about the variance estimates of the navigation 
solution. 
 
Traditionally, the dynamic model solution, after linearization 
and discretization, is achieved using the Weighted Least-
Squares (WLS) approach, or within the framework of some 
Bayesian considerations, which results in one of the various 
Kalman filter algorithms.  In this formulation, the observation 
equation matrices and the transition matrices at any epoch are 
not allowed to contain random entries, which cannot always be 
guaranteed.  For non-dynamical solutions, this problem can be 
ameliorated using a quasi-linear model with Errors-in-
Variables (EIV).  Golub and van Loan (1980) showed that the 
Total Least-Squares Estimate (TLSE) could be obtained by 
solving an eigenvalue problem for the suitably augmented 
normal equations matrix from the standard least-squares 
approach. Several computational methods have been compared 
recently by Björck et al. (2000). The subject of Total Least-
Squares (TLS) in view of EIV-Modeling was also discussed 
extensively in the books by Golub and van Loan (1996), van 
Huffel and Vanderwalle (1991), van Huffel (1997), van Huffel 
and Lemmerling (2002), as well as by Schaffrin and Felus 
(2005) and Schaffrin (2006) in the context of constraints. 
However, there is currently no formulation for solving dynamic 
problems (in real time) within the context of the TLS principle. 

 
In this study, we produce a solution in which we allow random 
observational errors to be accounted for in the respective 
matrices of the underlying model. We replace the WLS 
formulation that leads to the Discrete Kalman Filter by the 
Total-Least-Squares (TLS) principle - with or without weights - 
and apply it to a new Dynamic Errors-in-Variables (DEIV) 
model, whose solution we call Total Kalman Filtering (TKF).  
This new solution, by virtue of considering the errors in 
variables, offers more representative solutions to the dynamic 
models of Mobile Mapping Systems over the existing versions 
of Kalman filters that are currently in use. 
 
In the following sections, we first derive the standard Kalman 
filter solutions (simple and weighted) using a considerably 
simpler new approach by making use of condition equations 
and straightforward variance propagation rules familiar to all 
geodesists. Such an approach provides transparency and 
simplicity in addition to the insight into the current Kalman 
filters.  The TLS solution within an EIV model is then obtained 
as result of the traditional Lagrange approach. 
 
Finally, we use a combined approach to derive the TKF as the 
properly weighted TLS solution to the DEIV model. 
 
 

2. STANDARD KALMAN FILTER FOR MMS 

A typical dynamic model solution, after linearization and 
discretization, is achieved using the Weighted Least-Squares 
(WLS) approach that results in one of the various Kalman filter 
algorithms.  In these algorithms, it is assumed that the 
observation equation matrices and the transition matrices at any 
epoch during the surveys contain non-random entries. The 
corresponding Dynamic Linear Model underlying such a filter 
is described in the following subsection. 
 



 

2.1 Statistical model of type DLM 

At an epoch i, a set of n observations, denoted by yi, is linearly 
related to the m state variables in xi (such as position and 
velocity) through the n×m non-stochastic coefficient matrix Ai 
and the commensurate observational noise vector ie : 
 
 

 

iiii exAy +=  (1) 
 
 
The state variables, presumably representing linear dynamics of 
the system at an epoch i , can be related to the state variables of 
an earlier epoch i-1 through the m× m state transition matrix 

1, −Φ ii as follows: 
 

 

iiii uxx +Φ= −− 11  (2) 
 
 
where we dropped the first index i in the stated transition matrix 
for simplicity.  In the above expression, the state propagation 
equation, the m-vector iu denotes the stochastic system 
description noise.  It is assumed that additional stochastic 
information, ,~

1−ix exists about the state vector 1−ix  at the initial 
epoch: 
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It is further assumed that the random observation errors, the 
random system errors, and the random errors of the additional 
information about the state parameters are statistically 
independent of each other at any epoch as well as over time: 
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The following compact format states the stochastic model 
underlying the Standard Kalman Filter. 
 
 

        
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Σ
Θ

Σ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+=

+Φ=
+=

−−−−

−−
0

1
0

1
0

11

11

00
00
00

,
0
0
0

~,

,~

,

i

i

i

i

i

i

iii

iiii

iiii

e
u
e

exx

uxx
exAy

 (5) 

 
 
2.2 Weighted Least-Squares Solution 

In the above expression, the known vector of additional 
information can be multiplied by the state transition matrix 
from the left and inserted into the state transition equation, 
eliminating the unknown state parameter vector 1−ix .  We 
obtain the following reduced equations by propagating the 
corresponding dispersion (variance/covariance) matrices: 
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Further elimination of the unknown state parameter 
vector ix from the above expression results in: 
 
 

( )T
i

T
iiiiiiiiiii

iiiiiiii

AAeuAe

xAyeuAe

)(,0~)(

,0)()(

1
0

11
0

11

0
11

−−−−−

−−

ΦΣΦ+Θ+ΣΦ−+

=−−Φ−+ (

 (7) 

 
 
We observe that this last expression is a set of condition 
equations among all the unknown stochastic error parameters.  
Their least-squares solution gives: 
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from which the adjusted state parameters are computed as 
follows: 
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Note that 
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Hence, the mean squared error (MSE) matrix of the estimated 
state vector is equal to its error dispersion matrix and is given 
by: 
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It reduces, after some algebraic manipulations, to: 
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3. TOTAL LEAST-SQUARES IN THE ERRORS-IN-
VARIABLES MODEL 

We will use the following synoptic solution to the Total Least-
Squares problem in an Errors-in-Variables Model, TLS in EIV, 
which will later lead to the newly proposed Total Kalman 
Filtering. 
 
3.1 Statistical Model of Type EIV 

The corresponding observation equations are stated as: 
 
 
 ),(,)( ArankmneEAy mnA =>+−= × ξ  (14) 
 
 
with the following assumed random error properties for the 
observational noise: 
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As before, y denotes the 1×n vector of observations that are 
linearly related to the 1×m vector of unknown parameters, ξ , 
through the mn×  stochastic (observed) coefficient matrix A of 
rank m, and e and eA are the corresponding observational noise 
vectors with an unknown variance factor 2

0σ .  Rearranging (14) 
gives the non-linear Gauss-Helmert model (Helmert, 1907): 
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We now form the following Lagrange target function 
associated with the Total Least-Squares (TLS) principle, with 

-1Q  :P =  and λ  as the 1×n vector of Lagrange multipliers: 
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The following partial derivatives of the Lagrange target 
function establish the stationarity conditions. 
  
Euler-Lagrange Conditions: 
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Using (20) and (21) we obtain: 
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(TSSR: Total Sum of Squared Residuals). Denoting 
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the first-order approximate solution (as a result of neglecting 
the randomness of ν̂ ) of the dispersion matrix is given by 
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4. TOTAL KALMAN FILTER 

The extension of the previously discussed TLS approach to a 
DEIV model is now in order. 
 
 
4.1 DEIV - Observation Equations 

We consider the following observation equations at any epoch i, 
together with the state transition equations. Again, the 
coefficient matrix in front of the unknown state vector is 
stochastic in nature (but not the state transition matrix itself): 
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The corresponding Lagrange target function, following 
Schaffrin (1995), is now given for 1: −Σ= iiP by: 
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where the last term is due to the stochastic constraints in (26). 
This target function is used to derive the following Euler-
Lagrange necessary conditions. 
 
Euler-Lagrange Necessary Conditions: 
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Using (31) and (32) we obtain: 
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where the coefficient iν̂ is defined by: 
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thus leading to : 
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after taking (33) into account which generalizes the usual 
Kalman filer formula (9).  Obviously, (34) and (36) have to be 
solved iteratively, and a formula (approximate) for the mean 
squared error matrix )~(0

ii xMSPE=Σ  still needs to be 
developed.  Instead, let us follow a different route that should 
provide the same results in another form. 
 
 
4.2 Combining the EIV-Observations with the State 
Equations 

Here our model reads: 
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with 
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We consider the following Lagrange target function with 

1: −Σ= iiP : 
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which implies the following Euler-Lagrange necessary 
conditions for the stationarity solution. 
 
Euler-Lagrange Necessary Conditions: 
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From (42) and (44) we obtain: 
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so that 
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from which we conclude: 
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with ii zandΚ being defined as in (10). 

We observe that, in this expression, the last term is the 
modification due to the TLS principle. 
 
 

5. CONCLUSION 

The solution for the MSE matrix of TKF is complex but 
manageable.  An approximate solution for the MSE matrix is 
available and under testing. Alternatively, numerical estimates 
for the MSE matrix can always be computed by bootstrapping. 
 
In this study, we derived a detailed TLS solution to the DEIV 
model, and called it Total Kalman Filter (TKF).  It is evident 
that the TKF solution is an improvement over the existing 
Kalman filters by virtue of inclusion of the errors in variables in 
the solution.  Nevertheless, additional quantitative studies are 
needed to quantify its advantages for solutions under varying 
observations and - at a later stage - state noise for a variety of 
dynamic models.   
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