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ABSTRACT:

A dynamic model is the usual modus operandi of a Mobile Mapping System. The model solution, after linearization and
discretization, is achieved using the Weighted Least-Squares (WLS) approach, which results in one of the various Kalman filter
algorithms. However, implicit in the formulation is that neither the observation equation matrices nor the transition matrices at any
epoch contain random entries. As such an assumption cannot always be guaranteed, we here allow random observational errors to
enter the respective matrices. We replace the WLS by the Total-Least-Squares (TLS) principle - with or without weights - and apply
it to this novel Dynamic Errors-in-Variables (DEIV) model, which results in what we call Total Kalman Filter (TKF). It promises
to offer more representative solutions to the dynamic models of Mobile Mapping Systems over existing versions of Kalman filtering.

1. INTRODUCTION

Mobile Mapping Systems (MMS) are one of the new trends in
mapping applications. A MMS has two main components: the
mapping sensors and the navigation system. During the survey
mission, navigation data (GPS/INS) and mapping data are
collected simultaneously, and the navigation data are integrated
through Kalman filtering followed by backward smoothing
using a dynamic model; this is the usual modus operandi of a
Mobile Mapping System (MMS). In this process, the model
variables of an INS, such as platform position, velocity and
attitude, are estimated together with a number of additional
random system parameters at a given epoch(s), as well as
information about the variance estimates of the navigation
solution.

Traditionally, the dynamic model solution, after linearization
and discretization, is achieved using the Weighted Least-
Squares (WLS) approach, or within the framework of some
Bayesian considerations, which results in one of the various
Kalman filter algorithms. In this formulation, the observation
equation matrices and the transition matrices at any epoch are
not allowed to contain random entries, which cannot always be
guaranteed. For non-dynamical solutions, this problem can be
ameliorated using a quasi-linear model with Errors-in-
Variables (EIV). Golub and van Loan (1980) showed that the
Total Least-Squares Estimate (TLSE) could be obtained by
solving an eigenvalue problem for the suitably augmented
normal equations matrix from the standard least-squares
approach. Several computational methods have been compared
recently by Bjorck et al. (2000). The subject of Total Least-
Squares (TLS) in view of EIV-Modeling was also discussed
extensively in the books by Golub and van Loan (1996), van
Huffel and Vanderwalle (1991), van Huffel (1997), van Huffel
and Lemmerling (2002), as well as by Schaffrin and Felus
(2005) and Schaffrin (2006) in the context of constraints.
However, there is currently no formulation for solving dynamic
problems (in real time) within the context of the TLS principle.
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In this study, we produce a solution in which we allow random
observational errors to be accounted for in the respective
matrices of the underlying model. We replace the WLS
formulation that leads to the Discrete Kalman Filter by the
Total-Least-Squares (TLS) principle - with or without weights -
and apply it to a new Dynamic Errors-in-Variables (DEIV)
model, whose solution we call Total Kalman Filtering (TKF).
This new solution, by virtue of considering the errors in
variables, offers more representative solutions to the dynamic
models of Mobile Mapping Systems over the existing versions
of Kalman filters that are currently in use.

In the following sections, we first derive the standard Kalman
filter solutions (simple and weighted) using a considerably
simpler new approach by making use of condition equations
and straightforward variance propagation rules familiar to all
geodesists. Such an approach provides transparency and
simplicity in addition to the insight into the current Kalman
filters. The TLS solution within an EIV model is then obtained
as result of the traditional Lagrange approach.

Finally, we use a combined approach to derive the TKF as the
properly weighted TLS solution to the DETV model.

2. STANDARD KALMAN FILTER FOR MMS

A typical dynamic model solution, after linearization and
discretization, is achieved using the Weighted Least-Squares
(WLS) approach that results in one of the various Kalman filter
algorithms.  In these algorithms, it is assumed that the
observation equation matrices and the transition matrices at any
epoch during the surveys contain non-random entries. The
corresponding Dynamic Linear Model underlying such a filter
is described in the following subsection.



2.1 Statistical model of type DLM

At an epoch i, a set of n observations, denoted by y; is linearly
related to the m state variables in x; (such as position and
velocity) through the n X m non-stochastic coefficient matrix A4;
and the commensurate observational noise vector e; :

yi=4;x; +e (1)

The state variables, presumably representing linear dynamics of
the system at an epoch i, can be related to the state variables of
an earlier epoch i-1 through the m X m state transition matrix
@, , as follows:

X =0, x +u 2

where we dropped the first index 7 in the stated transition matrix
for simplicity. In the above expression, the state propagation
equation, the m-vector u;denotes the stochastic system

description noise. It is assumed that additional stochastic
information, X,_,, exists about the state vector x,_, at the initial

i

epoch:

~ 0
X =X tey 3)

It is further assumed that the random observation errors, the
random system errors, and the random errors of the additional
information about the state parameters are statistically
independent of each other at any epoch as well as over time:

e, o]fz, 0 o0
u, |~[{0l0 @ o0 “
e, ojjlo o 2

-1

The following compact format states the stochastic model
underlying the Standard Kalman Filter.

y; = Ax; +e, e O[|Z, O 0
x; =@, x;_+u; , | u |[~[|0L 0 © 0 5)
X =x+el, el oflo o =,

2.2 Weighted Least-Squares Solution

In the above expression, the known vector of additional
information can be multiplied by the state transition matrix
from the left and inserted into the state transition equation,
eliminating the unknown state parameter vector x;_;. We

obtain the following reduced equations by propagating the
corresponding dispersion (variance/covariance) matrices:

yi=4x; +e,

¥ . ~ _ 0
X =0 % =x— (- ®e ),

6
e 01[s, 0 ©
u =, e 0]l 0 @+, 5 ,0f,

Further elimination of the unknown state
vector x; from the above expression results in:

parameter

€+ 4 (u; - (I)i—le?—l) -y —4x)=0,

7
e+ 4 (u - (Di—le?—l) ~ (O, Z+4,(0;+ q)i—lz?—lq)iT—l)AiT) @

We observe that this last expression is a set of condition
equations among all the unknown stochastic error parameters.
Their least-squares solution gives:

a1z 0o o I,
i |=l0 e o A7
el [0 0 = -0l 4

2+ 4(0,+@, 3] @] NAT T (v, - 4%)  (8)

from which the adjusted state parameters are computed as
follows:

~ _ -~ ~ NO _ -
X =%+ - P e) =X, +K;z

&)
where
K, =(0; +q)i—lz?—lq)?—l)AiT :
2+ 4,0, + @, 2] @] N4 T,
z; = (y; — 4;X;). (10)
Note that
E{?Ci}:E{Xi}:E{xi}- (11)

Hence, the mean squared error (MSE) matrix of the estimated
state vector is equal to its error dispersion matrix and is given
by:
MSE{X;} =D{X, —x;} = D{(X;, - x,) — (x; - x,)} =
=D{K;z; —(u; - (Di—le?—l)} =
= DiK,e; + (K4 = 1,)(u, — D€l )} =
=KZK +(1,-KA4)0,+®,_ 2,0 )1, -K4)" (12)

It reduces, after some algebraic manipulations, to:

D{x; —x;} =1, - K, 4)(©, +(Di712?71®iT71) = 2? (13)




3. TOTAL LEAST-SQUARES IN THE ERRORS-IN-
VARIABLES MODEL

We will use the following synoptic solution to the Total Least-
Squares problem in an Errors-in-Variables Model, TLS in EIV,
which will later lead to the newly proposed Total Kalman
Filtering.

3.1 Statistical Model of Type EIV

The corresponding observation equations are stated as:

‘y:(A—EA)nXmg-v-e, n>m:rank(A),| (14)

with the following assumed random error properties for the
observational noise:

0 ot 0 0
Fl 5 anag | o

nxn

[ e
e, =vecE ,

As before, y denotes the nx1vector of observations that are
linearly related to the m x1 vector of unknown parameters, &,
through the nxm stochastic (observed) coefficient matrix 4 of
rank m, and e and e, are the corresponding observational noise

vectors with an unknown variance factor o . Rearranging (14)

gives the non-linear Gauss-Helmert model (Helmert, 1907):

y=Aé+]l, —(g”@ln)]{ } (16)

e
€4

We now form the following Lagrange target function
associated with the Total Least-Squares (TLS) principle, with

P:=Q"' and A asthe nx1 vector of Lagrange multipliers:

D(e,e,E,A) =e" Pe+ el (I1®P)e, +

17)
2 [y—e—-(£T®1

)(vecA — e )] = stationary

m
The following partial derivatives of the Lagrange target
function establish the stationarity conditions.
Euler-Lagrange Conditions:

108 _pp_j=g 3 (18)

20e

la_qs:(]m ®P), +(E®INI=0
2 Oey

=2,=-((®0)4 :> (19)

lod = ra.

T (A4-EDTA=0

= ATA=EA=-E"04) (20)
1 0® - A~ a
EH:y—e—A§+EA§iO

= |P(y-45(1+E76) " =] @1)

= ATP(y-AE)=ATP@E -E &) =AT1-(1+ETE)
= ATA=ATP(y - AE)(1+ ETE)
Using (20) and (21) we obtain:

ATP(y—A&)=~ET 01+ ETE) =
=&+ ETET (- AE P(y- A& =5 (22)

where

D= (ATQA1+ETE) =T Pe+el (1, ® P)e, = TSSR| (23)

m

(TSSR: Total Sum of Squared Residuals). Denoting

c:=A"Py=(N-9I,)-& forN:= A" P4, 24)

the first-order approximate solution (as a result of neglecting
the randomness of v ) of the dispersion matrix is given by

Dig} = oy (N =91, N(N =31,) " =

. . . (25)
=03(N=vI,) " +0gv(N-v1,)2.

4. TOTAL KALMAN FILTER

The extension of the previously discussed TLS approach to a
DEIV model is now in order.

4.1 DEIV - Observation Equations

We consider the following observation equations at any epoch i,
together with the state transition equations. Again, the
coefficient matrix in front of the unknown state vector is
stochastic in nature (but not the state transition matrix itself):

Yi=(4—E,;)x; +e,

— s~ 0
X =0 %, =x,—(u; - ®,_e ),

(26)




and

e; 0|, 0 0
vecE, =e, |~||0}| 0 [I,®Z, 0
u, -, e, 0|0 0 0, +®,_ T 07,
27
The corresponding Lagrange target function, following
Schaffrin (1995), is now given for P, := Z,Tl by:
Dle; e, X, A5, 1) = e,.TE-el- +e§i (I, ®F)e, +
+24] [y, —e — Ax; +(x] ®1,)e, 1- (28)

—2u (%, = x) = 1" (O, + D _ T} O )y, = stationary

where the last term is due to the stochastic constraints in (26).
This target function is used to derive the following Euler-
Lagrange necessary conditions.

Euler-Lagrange Necessary Conditions:

19 _ps_jz0 =5-34 (29)
2 Oe;
L9 _ (1 9Py, +(F®I)i =0
2 e, '
=e, :—(371®2/)}:i
354 :_Ziii;z? =-e% (30)
1 6(15 =~ T 5 AL
——=—(4,-E,) L, +4,=0
26)&‘[ ( i A‘) i /ux
31&1‘_‘4?};‘ :_Eiii :fi(izrziii) (€2))
1 6 ~ o~ T ~
——=y.—-Ax —-e+(Xx' ®I))e, =0
Y Vi i i ( i n) A;

= PB(y; - 4x) =P ’EA,S;') = ii(1+)?iT)’€i)

= |4 =Py, - 45)(1+%'%)" (32)

i

102 ==X +%—(0,+ q)i—lz?—lfbrr—l)/&i =0
2 o,
= |%=X%+(0;+ q)[—lz?—lq)gil)ﬁi (33)

Using (31) and (32) we obtain:

APy~ 43) - U+ 5% = (47 4 - )1+ 5T%) =

- T - - - (34
=-x(1+ xfof)_] (i - Aixi)TE(yi —A4X) ==XV,

where the coefficient v; is defined by:

v, = [y,'TR'(J’i - 4%) - )NCiTAiTPi(yi = 4.%)]-(1+ )?iT)?i)_l =
= [y,'TR'(J’i —A4.%;)+ ()NCiT;i)‘;i] “(1+ )?ir)?i)_] - )NCiT/&i’

(3%

thus leading to :

‘;i = y,'TPi(yi =A%) _EIT,[li(l + ’ZTJ?[Y1 = [y,'TPi(yi —4%) -

- fiT (®,+ q)i—lz?—lq)iT—l )" (% —x)(1+ )N‘fT)?f)

(36)

after taking (33) into account which generalizes the usual
Kalman filer formula (9). Obviously, (34) and (36) have to be
solved iteratively, and a formula (approximate) for the mean

squared error matrix 2? = MSPE(X;) still needs to be

developed. Instead, let us follow a different route that should
provide the same results in another form.

4.2 Combining the EIV-Observations with the State
Equations

Here our model reads:

Vi —Ax; = -E, L% + (u _q)i—le?—l )]+

0 (37
+le + A4, (u; — D, e )]
with
e olfs, o 0
e, =vecE, |~110}| 0 I,®%, 0
u~ el 0jL0 0 0+, %), ®,
(38)

We consider the following Lagrange target function with
P=3"

Dle;,e .1, ~®, ), 4)=¢l Pe + ei (I, ®F)e, +
+(; — @, el ) (0, +D, ) @] ), - D, e )+ (39)
+ 2/1;'T (v, —4x)—e — A (u; - (Di—le?—l) +

+ EA,' (ui - (Difletp—l) + EA,.)E,-] = Stationmy

which implies the following Euler-Lagrange necessary
conditions for the stationarity solution.

Euler-Lagrange Necessary Conditions:

——=Pe.-1,=0 =¢ =34 (40)



L% _ 1 erye, +[5+i 0,2 e, =0
2 aeA’_ !
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= EA,- = _21}::' (ii +1; _CDI—IEi(iI)T =-& % (41)
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N N ~ 42
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1 00 f % A ) +E X,
E%=yi —Ax; —e; — A, (u; 7(Di—lei(il)+EA1x" =0

= Py, — A%) = A+ P4, (3, - 5)+ A5 =
= j'f “(1+ ;iT)?i) + P4 (;i - )vci) (43)

= i,- =F(y; _Aifi)‘(1+§ir)~ci)7l| (44)

and thus:

&=y -4%)-1+3'%)", (45)

i

Ey =~ - 43)0+5%)" 5 = 5. (46)

i i

From (42) and (44) we obtain:

X, —%=(0,+ q)i—lz:?—lq)iT—l)lAiT/ii +X; '(j'iTzi/ii)Jz
=(0; + q)f—lz?—lq)ir—l)[Afra(yi —4%)+ % v;]-(1+ )Nfirif)_l

(47)
where

Vo= (AT A0+ 57%) =

48
:(1‘*"7;)71')71()’,' _Aifi)TB(J’i —4X;) @

so that

ATP(y; — 4,%) = AT PA(R, ~ %) =%, ¥, +
+(©; + (Di—lz?—lq)iT—l )" (x; - x)(1+ ffoi) =
= [AiTPiAi +(O; + ®i712?71®£1)71](37i -X;)-
—% V(0,0 IO (F -5 R (49)

from which we conclude:

X, =% +K,z; I, -K;4,)-

50
'[(®f + q)i—lz?—lq)ir—l) EACECT fz‘)(;‘frfi) 50)

with K, and z, being defined as in (10).

We observe that, in this expression, the last term is the
modification due to the TLS principle.

5. CONCLUSION

The solution for the MSE matrix of TKF is complex but
manageable. An approximate solution for the MSE matrix is
available and under testing. Alternatively, numerical estimates
for the MSE matrix can always be computed by bootstrapping.

In this study, we derived a detailed TLS solution to the DEIV
model, and called it Total Kalman Filter (TKF). It is evident
that the TKF solution is an improvement over the existing
Kalman filters by virtue of inclusion of the errors in variables in
the solution. Nevertheless, additional quantitative studies are
needed to quantify its advantages for solutions under varying
observations and - at a later stage - state noise for a variety of
dynamic models.
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